A peer-reviewed version of this preprint was published in PeerJ on 21 April 2015.

View the peer-reviewed version (peerj.com/articles/895), which is the preferred citable publication unless you specifically need to cite this preprint.

Harvey MG, Judy CD, Seeholzer GF, Maley JM, Graves GR, Brumfield RT. 2015. Similarity thresholds used in DNA sequence assembly from short reads can reduce the comparability of population histories across species. PeerJ 3:e895 https://doi.org/10.7717/peerj.895
Similarity thresholds used in short read assembly reduce the comparability of population histories across species

Michael G Harvey, Caroline Duffie Judy, Glenn F Seeholzer, James M Maley, Gary R Graves, Robb T Brumfield

Comparing inferences among datasets generated using short read sequencing may provide insight into the concerted effects of evolutionary processes across organisms, but comparisons are complicated by biases introduced during dataset assembly. Sequence similarity thresholds allow the de novo assembly of short reads into loci for analysis, but the resulting datasets are sensitive to both the similarity threshold used and to the variation naturally present in the organism under study. Stringent thresholds as well as highly variable species may result in datasets in which divergent alleles are lost or divided into separate loci (‘over-splitting’), whereas liberal thresholds increase the risk of paralogous loci being combined into a single locus (‘under-splitting’). Comparisons among datasets or species are therefore potentially biased if different similarity thresholds are applied or if the species differ in levels of genetic variation. We examine the impact of a range of similarity thresholds on assembly of empirical short read datasets from populations of four different non-model bird lineages (species or species pairs) with different levels of genetic divergence. We find that, in all species, stringent similarity thresholds result in fewer alleles per locus than more liberal thresholds, which appears to be the result of high levels of over-splitting at stringent thresholds. The frequency of putative under-splitting, conversely, is low at all thresholds. Inferred genetic distances between individuals, gene tree depths, and estimates of the ancestral mutation-scaled effective population size (θ) differ depending upon the similarity threshold applied. Relative differences in inferences across species differ even when the same threshold is applied, but may be dramatically different when datasets assembled under different thresholds are compared. We suggest some best practices for assembling short read data to maximize comparability, such as using more liberal thresholds and examining the impact of different thresholds on each dataset.
With the proliferation of population-level datasets obtained using massively parallel sequencing technologies, there is increasing interest in studies that compare inferences from genomic datasets obtained from different species (e.g., Leaché et al., 2013; Smith et al., 2013) or from different genomic regions (e.g., Evans et al., 2014; Harvey et al., 2013; Leaché et al., in press). Assembly of short sequence reads into orthologous loci is a key component of post-sequence processing, and commonly used methods can lead to biases in population genetic parameter estimation (Ilut, Nydam & Hare, 2014). Here, we explore the effect of one major source of bias on the comparability of datasets and inferences.

Sequence similarity provides the information necessary for assembling reads into orthologous loci (Pop & Salzberg 2008; Chaisson, Brinza & Pevzner, 2009). By setting a sequence similarity threshold, researchers attempt to assemble similar, presumably orthologous reads into loci while separating or removing dissimilar, presumably non-orthologous reads (e.g. Etter et al., 2011; Catchen et al., 2011). Selecting the most appropriate similarity threshold is challenging, primarily because the amount of genetic (allelic) variation can vary greatly among orthologous loci within a species (Ilut, Nydam & Hare, 2014). Because the amount of genetic variation also varies among species and genomic regions, a particular similarity threshold may impact each dataset differently, potentially impacting inferences in comparative studies.

Many methods default to a stringent similarity threshold, often requiring 98-99% sequence similarity among reads for assembly (e.g., Catchen et al., 2011; Lu et al., 2013). However, stringent similarity thresholds may split orthologous reads into multiple loci if the reads come from alleles that are more different than the threshold permits (hereafter “over-splitting”; Fig. 1a). More liberal similarity thresholds permit the assembly of more dissimilar orthologous reads into loci, but are more susceptible to including paralogous reads in the assembly (hereafter “under-splitting”; Fig. 1b). Using simulations, Rubin, Ree and Moreau (2012) found that under-splitting was frequent at more liberal
similarity thresholds in phylogenetic datasets, but did not strongly bias inference. Catchen et al. (2013) examined RAD-Seq data from three-spined sticklebacks, and found that over-splitting was an issue when datasets were processed with similarity thresholds more stringent than 96%. Ilut, Nydam and Hare (2014) tested the impact of similarity threshold selection on both over- and under-splitting in three simulated and one empirical RAD-Seq dataset. They found that under-splitting was minimal and that affected loci were easily identified due to the presence of individuals with more alleles than expected given their ploidy, but that over-splitting was significant at more stringent similarity thresholds.

Comparative phylogeographic and population genetics studies are particularly susceptible to biases resulting from similarity thresholds, particularly over-splitting. Different species often exhibit different levels of genetic diversity (Lewontin, 1974; Taberlet et al., 1998; Smith et al., 2014; Romiguier et al. 2014), and this variation across species may interact with the application of similarity thresholds to differentially bias datasets. Huang and Knowles (In press), for example, found that mutational spectra of datasets simulated under deeper species trees were downward-biased relative to those simulated under shallow species trees when processed with the same settings, including the same similarity threshold. The impacts of similarity thresholds have not been examined, however, using empirical data from species that vary in their levels of genetic diversity. Although diverse parameters required for short read assembly are worthy of scrutiny, we focus on similarity thresholds as they are particularly important for maintaining comparability across species with different levels of variation.

In this study, we examine the effect of similarity thresholds on dataset assembly and phylogeographic inferences across four non-model bird lineages that vary in divergence. We sample two populations or species within each lineage and assemble a RAD-Seq dataset for each species at a series of similarity thresholds to assess the impact of different thresholds on the number of alleles observed within assembled loci. We investigate the effect of different similarity thresholds on
estimates of standard population genetic and phylogeographic parameters within species and in comparisons across species.

MATERIALS AND METHODS

Study Species and Sampling

We sampled four individuals from each of two populations in four lineages (Table S1). The first lineage includes Clapper (*Rallus crepitans* J. F. Gmelin, 1788) and King (*R. elegans* J. J. Audubon, 1834) rails, sister species of medium-sized water birds that interbreed in a narrow hybrid zone centered on a salinity gradient (Maley 2012; Maley & Brumfield 2013). The Streamertail (*Trochilus polytmus* C. Linnaeus, 1758) is a hummingbird endemic to Jamaica containing two subspecies (*T. p. polytmus* and *T. p. scitulus*) that differ primarily in bill coloration, and which also interbreed in a narrow hybrid zone (Gill et al., 1973; Coyne & Price, 2000). The Line-cheeked Spinetail (*Cranioleuca antisiensis* P. L. Sclater, 1859) is a small insectivorous bird distributed along the Andes Mountains (Remsen, 2003), from which we sampled two subspecies (*C. a. antisiensis* and *C. a. baroni*) at either end of the distribution. Finally, we sampled two populations of Plain Xenops (*Xenops minutus* A. E. Sparrman, 1788), a widespread insectivorous bird of lowland Neotropical forests, that are separated by the Andes and differ in plumage, voice, and genetic markers (Remsen 2003; Burney 2009; Harvey & Brumfield, 2015).

Laboratory Methods
For each individual examined, we extracted total DNA from vouchered tissue samples using DNeasy tissue kits (Qiagen, Valencia, CA, USA) following the manufacturer’s protocol. We sent DNA extracts to the Cornell Institute of Genomic Diversity (IGD) to collect data using Genotyping by Sequencing, a RAD-Seq method (Elshire et al., 2011). Briefly, the IGD digested DNA using PstI (CTGCAG) and ligated a sample-specific indexed adapter and common adapter to resulting fragments. The IGD pooled and cleaned ligated samples using a QIAquick PCR purification kit (Qiagen), amplified the pool using an 18-cycle PCR, purified the PCR product using QIAquick columns, and quantified the amplified libraries using a PicoGreen assay (Molecular Probes, Carlsbad, CA, USA). Based on the PicoGreen concentrations, the IGD then combined the samples for this project with unrelated samples and ran plates of 96 samples on a 100-base pair, single-end Illumina HiSeq 2000 lane.

Bioinformatics Processing

We processed the raw GBS reads using the Stacks pipeline (Catchen et al., 2011; 2013) due to its popularity in prior studies assembling RAD-Seq datasets within species. Although other dataset assembly programs are available (e.g. Eaton, 2014; Sovic et al., in press), all should be subject to similar artifacts. Datasets were assembled on compute nodes (2.93 GHz Quad Core Nehalem Xeon 64-bt processors with 24GB 1333 MHz RAM or 96GB 1066MHz RAM) maintained by LSU High Performance Computing. We demultiplexed raw reads, cleaned reads, and removed barcode and adapter sequences using the program process_radtags.pl. We assembled alleles and loci de novo using the program denovo_map.pl. We used custom Python (Python Software Foundation, 2007) scripts (available at https://github.com/mgharvey/misc_Python) to obtain sequence alignments of both alleles for each individual from the Stacks output files. Detailed settings are provided in the supplement.
To investigate the impact of similarity thresholds, we assembled seven datasets for each of the four lineages under similarity thresholds (Stacks settings -M and -n) at all integer values from 93% (7 mismatches allowed) to 99% (1 mismatch allowed), reflecting the range of settings typically used for assembling intraspecific datasets. Assembly with similarity thresholds less stringent than 93% failed due to high computational demand in Stacks, but should not be necessary for the divergences examined here. Reads with similarity values above the selected threshold clustered into assemblies, which we treated as independently segregating loci in downstream analyses. We disabled the use of secondary, more divergent reads for calling genotypes (Stacks setting -H) to prevent the assembly of reads that are less similar than the similarity threshold used for primary stacks. We set minimum depth per allele (Stacks setting -m) to seven, which provides a balance between the inclusion of singleton alleles (potential errors) and the total size of the data matrix (Fig. S1). We set the maximum number of alleles per individual (Stacks setting --max_locus_stacks) to three, one above the ploidy level of the study organisms, in order to detect loci containing individuals with three or more alleles. We used custom Python scripts (available at https://github.com/mgharvey/misc_Python) to format files and calculate basic statistics and used COMPUTE (Thornton, 2003) to estimate standard population genetic summary statistics.

Number of Alleles

We examined the number of alleles per locus across treatments to examine how different similarity thresholds affected each dataset. As an index of the frequency of under-splitting in each dataset, we calculated the number of loci containing individuals with more than two alleles. These loci were presumed to contain paralogous reads and were removed from further analysis. To assess the proportion of loci with putative over-split alleles, we mapped loci assembled under the more
conservative thresholds (94-99%) to the set of loci assembled under the most liberal threshold (93%). This allowed us to detect instances in which multiple loci from the conservative threshold mapped to the same locus from the stringent threshold. We used lastz (Harris, 2007) for mapping with minimum identity set at 93% for all comparisons and no gaps permitted. We subtracted from each total the number of loci from the liberal threshold (93%) that mapped to other loci assembled with the same threshold using lastz.

Genetic Distances and F_{st}

Over-splitting may reduce estimates of genetic distance between individuals or populations by splitting loci containing the most genetically dissimilar alleles. We calculated pairwise p-distances and Jukes-Cantor corrected distances per unit sequence length at each locus. We measured distances between individuals by measuring the average distance between both alleles. For loci containing variable sites, we also estimated F_{st} between the two populations within each lineage using formula (3) of Hudson, Slatkin & Maddison (1992).

Gene Trees

Over-splitting may also reduce average gene tree depth due to the loss of more variable loci. To reduce computation, we selected a random subsample of 1,000 loci for each lineage at each threshold for gene tree estimation. We selected the best-fit finite sites substitution model for each locus using mrAIC.pl (Nylander, 2004) and conducted MrBayes (Ronquist and Huelsenbeck, 2003) runs with a random starting tree, four Markov chains, and a 100,000-iteration burn-in followed by 1,000,000
sampling iterations. We measured the mean depth of gene trees in number of expected substitutions for each sample using the R (R Core Team, 2014) package ape (Paradis, Claude & Strimmer, 2004).

Demographic Parameter Estimation

We used the 1,000 locus subsets from gene tree estimation to estimate the demographic history of each lineage at each similarity threshold using the coalescent model implemented in BP&P (Yang and Rannala, 2010). Although this method assumes no gene flow between populations, which may be violated in some of our study lineages, simulations have demonstrated that BP&P performance is robust to limited gene flow (Zhang et al., 2011). We used a speciation model containing two populations and a divergence time parameter (τ) as well as population standardized mutation rate parameters ($\Theta = 4N_e\mu$, where N_e is the effective population size and μ is the substitution rate per site per generation) for both daughter populations and an ancestral population. We set prior values using gamma distributions determined by a shape parameter (α) and scale parameter (β). Priors for both divergence time and population standardized mutation rate were set to $\alpha = 1$ and $\beta = 300$. We ran analyses for a burn-in of 50,000 iterations and then sampled every other iteration for an additional 500,000 iterations.

RESULTS

After removing loci containing putative paralogous reads (see below), we recovered between 96,776 and 158,328 loci for the four lineages across the range of similarity thresholds (Table 1). The
similarity threshold used had an effect on the number of unique alleles per locus in all four lineages (Kruskal Wallis test p < 2.20^{-16}; Table S2). The number of alleles was low using the 99% similarity threshold, but increased and plateaued as the threshold approached 93% (Fig. 2a). The number of alleles was more similar across lineages at stringent thresholds than at liberal thresholds and this effect impacted relative values between lineages. For example, Xenops contained, on average, 1.4 times as many alleles as Rallus when processed with a 99% similarity threshold, but 1.66 times as many alleles when processed with a 93% similarity threshold.

The proportion of loci containing putative paralogous reads increased slightly with increasing similarity thresholds, but was less than 0.4% at all thresholds for all lineages (Fig. 2b). At all thresholds, Trochilus exhibited roughly half the level of putative paralogy displayed in the other lineages (Table S3). Depending on the lineage, 5 – 61% of loci represented putative over-split alleles based on lastz mapping at the most stringent similarity threshold of 99%, but putative over-split alleles decreased as thresholds became more liberal (Fig. 2b).

Genetic distances between individuals were reduced at more stringent similarity thresholds (Fig. 3a). Variance across lineages in mean genetic distance increased as similarity thresholds became more liberal (Fig. S2), although relative values between lineages were similar across thresholds. F_{st} estimates between populations did not differ across thresholds (Fig. 3b).

Mean gene tree depth, based on the depth of the deepest node, increased as more liberal similarity thresholds were applied in each lineage (Fig. 3c). Variance in mean gene tree depths across lineages was inversely related to threshold stringency (Fig. S2) and relative values across lineages were contingent on the threshold applied. For example, the mean gene tree depth for Xenops was 1.48\times greater than for Rallus at 99% similarity, but 1.91\times greater at 93% similarity.
Ancestral θ estimates were higher at more liberal similarity thresholds for all four lineages (Fig 3d), but contemporary θ estimates and population divergence times (τ) showed no association with similarity thresholds (Figs. S3, S4). Ancestral θ estimates, as with genetic distance and gene tree depth, displayed lower variance across lineages at stringent relative to liberal thresholds (Fig. S2). Relative values across lineages also differed across thresholds. The ancestral θ for *Xenops* was 1.89× greater than for *Rallus* at 99% similarity, for example, but 2.95× greater at 93% similarity.

DISCUSSION

Comparability of parameter estimates is essential for comparative studies of phylogeographic structure and genetic diversity across species or among genomic regions (Nybom 2004). Our results reveal, however, that inferences differ not only among lineages with different population histories, but also according to the similarity threshold applied during dataset assembly. Differences in the impact of similarity thresholds across datasets not only reduce the utility of those datasets for comparative studies, but also preclude the application of standardized mutation rate estimates that would allow demographic parameters in non-model species to be converted to real values (DaCosta & Sorenson, 2014). The issues discussed here are not restricted to RAD-Seq datasets, but are of concern for all short read datasets requiring similarity-based *de novo* assembly, including those from sequence capture and transcriptomics. Mapping reads to existing reference sequences also requires the application of similarity thresholds and, although identifying under-splitting is more straightforward with a reference genome, divergent alleles may still be lost to over-splitting if the threshold used for mapping is too stringent (Trapnell & Salzberg, 2009; Lunter & Goodson, 2011). Careful selection of similarity
thresholds for assembly is an important issue for diverse sequencing projects, particularly if comparisons are to be made across datasets.

We found that datasets assembled under stringent similarity thresholds included fewer unique alleles per locus than those assembled under more liberal thresholds. Similarly, Ilut, Nydam and Hare (2014) found heterozygosity was reduced when stringent similarity thresholds were applied, but increased with more liberal thresholds across three simulated and one empirical dataset. The reduced number of alleles per locus in datasets assembled with stringent thresholds is likely due to the higher frequency of putative over-splitting in those datasets. Prior studies also demonstrated that over-splitting is frequent when datasets are processed at stringent similarity thresholds, and that this leads to allele loss (Catchen et al., 2013; Ilut, Nydam & Hare, 2014). Our results suggest that under-splitting occurs at low frequencies across similarity thresholds and has little impact on datasets. The impact of under-splitting may be more severe in species with highly repetitive genomes or in studies across deep, phylogenetic timescales that require more liberal similarity thresholds for assembly (e.g., Rubin, Ree & Moreau, 2012; Eaton & Ree, 2013).

Variation in datasets resulting from the similarity threshold applied has important effects on downstream parameter estimation. In addition to the biases in population genetic and phylogeographic estimates that we found, Huang and Knowles (In press) found that mutational spectra are downward-biased as a result of the loss of the most divergent loci and phylogenetic estimates are more accurate when more liberal similarity thresholds are applied to simulated data (Rubin, Ree & Moreau, 2012; Huang & Knowles, in press). Unlike other parameters, our F_{st} estimates were not strongly impacted by variation in similarity thresholds, perhaps because F_{st} is calculated using the ratio of between- and within-population divergence, both of which are impacted by allele loss. In addition, θ values from contemporary populations were similar across thresholds, while ancestral θ values were lower at more
stringent thresholds. This may result if stringent thresholds result in the loss of alleles that are fixed between the two divergent populations at a higher rate than those that are variable within populations. Despite these exceptions, it seems likely that observed biases in datasets across similarity thresholds would impact diverse population genetic and phylogeographic parameter estimates.

Stringent similarity thresholds (98-99%) are widely applied currently to population-level studies (e.g. Emerson et al., 2010; Reitzel et al., 2013; Chu et al., 2014), perhaps under the supposition that they are more conservative and less likely to permit the assembly of non-orthologous reads or as an attempt to reduce dataset size and computation times (Ilut, Nydam & Hare, 2014). We concur with Ilut, Nydam and Hare (2014) and Huang and Knowles (In press) that defaulting to stringent thresholds is generally not appropriate. Over-splitting decreases at more liberal similarity thresholds and the number of alleles per locus asymptotes near the 96% threshold, suggesting that datasets assembled under similarity thresholds of 96% or less stringency are relatively less biased by over-splitting. Although this asymptote will vary depending on the divergence within a dataset, other studies have found asymptotes at similar threshold values, for example at roughly 95-96% in empirical data from sticklebacks (Catchen et al., 2013) or between roughly 88% and 96% in simulated tunicate, stickleback, and soybean datasets and an empirical tunicate dataset (Ilut, Nydam & Hare, 2014). The approach suggested by Ilut, Nydam and Hare (2014) in which datasets are assembled at a series of similarity thresholds, the location of the asymptote in over-splitting is identified, and that threshold is used for final assembly is preferable to defaulting to stringent thresholds.

We were unable to directly investigate the frequency of under-splitting and over-splitting in our datasets because we lack genome sequences for the non-model organisms examined. Our indirect measure of over-splitting may detect not just over-split loci, but also loci that are under-split in the assembly from the most liberal threshold but correctly separated in the assembly from the more stringent threshold. The frequency of under-splitting appears to be low enough, however, that this
effect would be minimal. Broad concordance between our results and prior investigations into over-
splitting in systems with a genome for reference (Catchen et al., 2013; Ilut, Nydam & Hare, 2014)
suggest that our test for over-split alleles is a reasonable proxy for use in non-model organisms.

Results from our indirect measure of under-splitting are also broadly consistent with the low
levels of under-splitting observed in prior work using reference genomes (Ilut, Nydam & Hare, 2014)
and were expected given the low level of paralogy in avian genomes (e.g. chicken; Hillier et al., 2004).

Our measure of under-splitting, the number of loci containing individuals with more alleles than
expected, has been used previously to filter out loci with paralogous data from RAD-Seq datasets
(Parchman et al., 2012; Peterson et al., 2012). Some loci may contain reads from paralogous loci but
may not contain sufficient numbers of alleles to trip this filter, potentially inflating estimates of
variation. Prior work, however, suggests that paralogous reads lack strong signal conflicting with that
from entirely orthologous loci and have relatively minor effects on inferences (Rubin, Ree & Moreau,
2011). Other indicators, such as extreme heterozygosity (White et al., 2013) or gene tree topologies
suggesting a history of duplication, might also be used to detect additional loci containing paralogous
reads in situations where under-splitting is a concern.

We uncovered differences in allelic diversity and population history inferences across the four
study lineages examined. *Xenops minutus* generally displayed the greatest allelic diversity and also the
largest genetic distances between individuals, deepest gene trees, and highest \(\theta \) values, which was
perhaps not surprising given prior evidence of deep genetic divergences within this species (Smith et
al., 2014; Harvey & Brumfield, 2015). The other lineages were more similar by most measures,
although *Trochilus polytmus* was slightly higher than *Cranioleuca* and *Rallus* in allelic diversity,
genetic distance, and gene tree depths. Interestingly, *Trochilus polytmus* also exhibited roughly half the
amount of under-splitting, or putative paralogous loci, of the other three species, which may be related to the small genome size of hummingbirds (Gregory et al., 2009).

Our results suggest that the similarity threshold used for assembly impacts the level of variation in a dataset as well as downstream population genetic and phylogeographic estimates. Comparisons across datasets are also biased by the impact of similarity thresholds, appearing more similar across datasets when stringent thresholds are used or in some cases more different if species are assembled with different thresholds. Methods for threshold selection exist that limit these biases (Ilut, Nydam & Hare, 2014), but they need to be further developed and applied more widely across studies if we are to be able to compare inferences and integrate inferences across studies, genomic regions, and organisms.

ACKNOWLEDGEMENTS

We thank the many collectors and museum curators and staff involved in obtaining and maintaining the samples used for this study, in particular John M. Bates and David E. Willard (FMNH), Mark B. Robbins (KUMNH), Donna L. Dittmann (LSUMNS), and James Dean (USNM). Jeremy M. Brown, Michael E. Hellberg, Prosanta Chakrabarty, Jacob A. Esselstyn, and the LSU Vert Lunch group provided helpful comments on the issue addressed in this paper.

REFERENCES

Leaché AD, Harris RB, Maliska ME, Linkem CW. 2013. Comparative species divergence across eight triplets of spiny lizards (*Sceloporus*) using genomic sequence data. *Genome Biology and Evolution* **5**:2410-2419.

Smith BT, Harvey MG, Faircloth BC, Glenn TC, Brumfield RT. 2013. Target capture and massively parallel sequencing of ultraconserved elements (UCEs) for comparative studies at shallow evolutionary time scales. *Systematic Biology* **63**:83-95.

Table 1. Attributes and summary statistics (SD) of datasets assembled under the similarity thresholds examined.

<table>
<thead>
<tr>
<th>Similarity Threshold</th>
<th>Loci</th>
<th>Samples per Locus</th>
<th>Segregating Sites per Locus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cranioleuca</td>
<td>99</td>
<td>147,123</td>
<td>8.28 (3.64)</td>
</tr>
<tr>
<td></td>
<td>98</td>
<td>145,423</td>
<td>8.39 (3.64)</td>
</tr>
<tr>
<td></td>
<td>97</td>
<td>144,475</td>
<td>8.42 (3.64)</td>
</tr>
<tr>
<td></td>
<td>96</td>
<td>143,780</td>
<td>8.43 (3.63)</td>
</tr>
<tr>
<td></td>
<td>95</td>
<td>142,897</td>
<td>8.45 (3.63)</td>
</tr>
<tr>
<td></td>
<td>94</td>
<td>141,880</td>
<td>8.46 (3.63)</td>
</tr>
<tr>
<td></td>
<td>93</td>
<td>140,801</td>
<td>8.47 (3.62)</td>
</tr>
<tr>
<td>Rallus</td>
<td>99</td>
<td>100,086</td>
<td>6.59 (2.62)</td>
</tr>
<tr>
<td></td>
<td>98</td>
<td>99,300</td>
<td>6.61 (2.61)</td>
</tr>
<tr>
<td></td>
<td>97</td>
<td>98,680</td>
<td>6.62 (2.61)</td>
</tr>
<tr>
<td></td>
<td>96</td>
<td>98,206</td>
<td>6.62 (2.60)</td>
</tr>
<tr>
<td></td>
<td>95</td>
<td>97,808</td>
<td>6.62 (2.60)</td>
</tr>
<tr>
<td></td>
<td>94</td>
<td>97,321</td>
<td>6.62 (2.60)</td>
</tr>
<tr>
<td></td>
<td>93</td>
<td>96,776</td>
<td>6.63 (2.59)</td>
</tr>
<tr>
<td>Trochilus</td>
<td>99</td>
<td>125,594</td>
<td>7.65 (3.34)</td>
</tr>
<tr>
<td></td>
<td>98</td>
<td>125,966</td>
<td>7.74 (3.39)</td>
</tr>
<tr>
<td></td>
<td>97</td>
<td>125,697</td>
<td>7.76 (3.39)</td>
</tr>
<tr>
<td></td>
<td>96</td>
<td>125,437</td>
<td>7.76 (3.39)</td>
</tr>
<tr>
<td></td>
<td>95</td>
<td>125,118</td>
<td>7.77 (3.39)</td>
</tr>
<tr>
<td></td>
<td>94</td>
<td>124,669</td>
<td>7.78 (3.39)</td>
</tr>
<tr>
<td></td>
<td>93</td>
<td>123,926</td>
<td>7.79 (3.39)</td>
</tr>
<tr>
<td>Xenops</td>
<td>99</td>
<td>155,933</td>
<td>7.54 (3.42)</td>
</tr>
<tr>
<td></td>
<td>98</td>
<td>158,496</td>
<td>7.87 (3.47)</td>
</tr>
<tr>
<td></td>
<td>97</td>
<td>158,281</td>
<td>7.99 (3.48)</td>
</tr>
<tr>
<td></td>
<td>96</td>
<td>158,328</td>
<td>8.02 (3.48)</td>
</tr>
<tr>
<td></td>
<td>95</td>
<td>158,078</td>
<td>8.03 (3.48)</td>
</tr>
<tr>
<td></td>
<td>94</td>
<td>157,534</td>
<td>8.03 (3.48)</td>
</tr>
<tr>
<td></td>
<td>93</td>
<td>156,640</td>
<td>8.05 (3.48)</td>
</tr>
</tbody>
</table>
Fig. 1. Two ways in which similarity thresholds can result in spurious assemblies: (a) over-splitting occurs when reads from different alleles from the same genomic position are spuriously split into multiple loci due to lower similarity than the similarity threshold parameter, and (b) under-splitting occurs when reads from different genomic positions are clustered into a single locus due to higher similarity than the similarity threshold parameter. Gray bars represent identical sequence across reads, whereas colored squares represent alternate alleles at SNPs.
Fig. 2. The impact of similarity thresholds on empirical datasets from four bird lineages. (a) Stringent similarity thresholds resulted in fewer unique alleles per locus relative to more liberal thresholds. (b) Putative over-split loci (connected by dashed lines) were more frequent in datasets assembled at stringent similarity thresholds, whereas loci containing under-split reads (solid lines) occurred at low frequency across all similarity thresholds.
Fig. 3. The impact of similarity thresholds on population genetic parameter estimates of (a) mean pairwise genetic distance between individuals, (b) mean F_{ST} between populations, (c) mean gene tree depth and (d) ancestral theta based on a coalescent model.