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 31 
Abstract (<250 words)  32 

Current strategies to improve graft outcome following kidney transplantation consider 33 

information at the HLA loci. Here, we used exome sequencing of DNA from ABO compatible 34 

kidney graft recipients and their living donors to determine recipient and donor mismatches at 35 

the amino acid level over entire exomes. We estimated the number of amino acid mismatches in 36 

transmembrane proteins, more likely to be seen as foreign by the recipient’s immune system, and 37 

designated this tally as the allogenomics mismatch score (AMS). The AMS can be measured 38 

prior to transplantation with DNA for potential donor and recipient pairs. We examined the 39 

degree of relationship between the AMS and post-transplantation kidney allograft function by 40 

linear regression. In a discovery cohort, we found a significant inverse correlation between the 41 

AMS and kidney graft function at 36 months post-transplantation (n=10 recipient/donor pairs; 20 42 

exomes) (r2>=0.57, P<0.05). The predictive ability of the AMS persists when the score is 43 

restricted to regions outside of the HLA loci. This relationship was validated using an 44 

independent cohort of 24 recipient donor pairs (n=48 exomes) (r2>=0.39, P<0.005). In an 45 

additional cohort of living and mostly intra-familial recipient/donor pairs (n=19, 38 exomes), we 46 

validated the association after controlling for donor age at time of transplantation. Finally, a 47 

model that controls for donor age, HLA mismatches and time post-transplantation yields a 48 

consistent AMS effect across these three independent cohorts (P<0.05). Taken together, these 49 

results show that the AMS is a strong predictor of long-term graft function in kidney transplant 50 

recipients.  51 

  52 
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Introduction 53 
 54 
Survival of patients afflicted with End Stage Renal Disease (ESRD) is superior following kidney 55 

transplantation compared to dialysis therapy. The short-term outcomes of kidney grafts have 56 

steadily improved since the early transplants (performed in the 1960s) with refinements in 57 

immunosuppressive regimens, use of DNA-based HLA typing, and better infection prophylaxis 58 

(1–3). Despite these advances, data collected across the USA and Europe show that 40-50% of 59 

kidney allografts fail within ten years of transplantation (4). This observation strongly suggests 60 

that as yet uncharacterized factors, including genomic loci, may adversely impact long-term 61 

post-transplantation outcomes. 62 

Observational studies have demonstrated the importance of matching for the HLA-determined 63 

proteins on kidney graft outcome. Therefore, in many countries, including the USA, donor 64 

kidney allocation algorithms includes consideration of HLA matching. With widespread 65 

incorporation of HLA matching in organ allocation decisions, it has become clearer that HLA 66 

mismatching represents an important risk factor for kidney allograft failure but fails to fully 67 

account for the invariable decline in graft function and failure in a large number of cases over 68 

time. Indeed, only a 15% survival difference exist at 10 years post transplantation between the 69 

fully matched kidneys and the kidneys mismatched for both alleles at the HLA-A, B and DR loci 70 

(5). These observations suggest that mismatches at non-HLA loci in the genome could influence 71 

long-term graft outcomes. The current clinical practice of prescribing life-long 72 

immunosuppressive therapy to recipients of fully HLA matched donor kidneys, but not to 73 

recipients of monozygotic identical twin kidneys, also suggests a role for non-HLA related 74 

genomic factors on graft outcome.  75 
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While tests of allelic frequencies are a hallmark of genetic research, transplantation has none of 76 

the Mendelian characteristics for which genetic tests have been developed. Therefore, the 77 

assumption of the Mendelian transmission model seems inadequate to develop predictors of graft 78 

function following transplantation. Indeed, previous attempts at using this methodology have 79 

identified small genotype effects on graft function in cohorts of hundreds of transplant patients, 80 

but often could not be replicated in independent cohorts (reviewed in (6)).  81 

In this work, we present a new method to estimate the genomic compatibility between the organ 82 

graft recipient and donor. This approach, designated as allogenomics in this communication, 83 

considers the entire coding sequence of both recipient and donor genomes, as determined by 84 

exome sequencing. The allogenomics concept makes it possible to estimate a quantitative 85 

compatibility score between the genomes of a recipient and potential donor and is calculated 86 

from genotypes and genome annotations available before transplantation. The allogenomics 87 

approach does not assume a Mendelian inheritance model but integrates the unique features of 88 

transplantation such as the existence of two genomes in a single individual and the recipient’s 89 

immune system mounting an immune response directed at antigens displayed by the donor 90 

kidney. In this report, we show that this new concept helps predict long-term kidney transplant 91 

function from the genomic information available prior to transplantation. 92 

  93 
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Results  94 
 95 

The allogenomic concept and the allogenomics mismatch score (AMS) 96 
 97 
The allogenomics concept is the hypothesis that interrogation of the coding regions of the entire 98 

genome for both the organ recipient and organ donor DNA can identify the number of 99 

incompatible amino-acids (recognized as non-self by the recipient) that inversely correlates with 100 

long-term graft function post transplantation.  Fig. 1A is a schematic illustration of the 101 

allogenomics concept. Because human autosomes have two copies of each gene, we consider 102 

two possible alleles in each genome of a transplant pair. To this end, we estimate allogenomics 103 

score contributions between zero and two, depending on the number of different amino acids that 104 

the donor genome encodes for at a given protein position. Fig. 1B shows the possible 105 

allogenomics score contributions when the amino acids in question are either an alanine, or a 106 

phenylalanine or an aspartate amino acid.  The allogenomics mismatch score (AMS) is a sum of 107 

amino acid mismatch contributions. Each contribution represents an allele coding for a protein 108 

epitope that the donor organ may express and that the recipient immune system could recognize 109 

as non-self (see Equation 1 and 2 in Fig. 1C and Materials and Methods and full description in 110 

the supplementary appendix).  111 

 112 
We have developed and implemented a computational approach to estimate the allogenomics 113 

mismatch score from genotypes derived for pairs of recipient and donor genomes. (See Materials 114 

and Methods for a detailed description of this approach and its software implementation, the 115 

allogenomics scoring tool, available at http://allogenomics.campagnelab.org.) Our approach is 116 

designed to consider the entire set of protein positions measured by a genotyping assay, or 117 
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restrict the analysis to a subset of positions P in the genome. In this study, we focus on the subset 118 

of genomic sites P that encode for amino acids in transmembrane proteins.  119 

 120 

The AMS correlates with post-transplantation graft function in living donor-kidney recipient 121 
pairs 122 
 123 
 124 
In order to test the allogenomics hypothesis, we isolated DNA from 10 kidney graft recipients 125 

and their living donors (Discovery Cohort), performed whole exome sequencing and analyzed 126 

genotype data for these recipient/donor genome pairs (10 pairs, 20 exomes). These patients were 127 

a subset of patients enrolled in a multicenter Clinical Trial in Organ Transplantation-04 (CTOT-128 

04) study of urinary cell mRNA profiling, from whom tissue/cells were collected for future 129 

mechanistic studies (7). Table 1 provides demographic and clinical information about the 130 

patients included in the Discovery Cohort. Exome data were obtained with the Illumina TrueSeq 131 

exome enrichment kit v3, covering 62Mb of the human genome. Primary sequence data analyses 132 

were conducted with GobyWeb (8) (data and analysis management), Last (9) (alignment to the 133 

genome) and Goby (10) (genotype calls). 134 

Kidney graft function is a continuous phenotype and is clinically evaluated by measuring serum 135 

creatinine levels or using estimated glomerular filtration rate (eGFR)(11). In this study, kidney 136 

graft function was evaluated at months 12, 24, 36 and/or 48 following transplantation using 137 

serum creatinine levels and eGFR, calculated using the 2011 MDRD (12) formula. We examined 138 

whether the allogenomics mismatch score is associated with post-transplantation allograft 139 

function.  140 

 141 
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We found positive linear associations between the allogenomics mismatch score and serum 142 

creatinine level at 36 months post transplantation (r2 adj.=0.78, P=0.002, n=10, at 36 months) but 143 

not at 12 or 24 months following kidney transplantation (Fig. 2A, B, C). We also found a 144 

negative linear relationship between the score and eGFR at 36 months post transplantation (r2 145 

adj.=0.57, P=0.02) but not at 12 or 24 months following kidney transplantation  (Fig. 2D, E, F). 146 

These findings suggest that in the discovery cohort the allogenomics score is predictive of long-147 

term graft function, but perhaps not short-term function.  148 

 149 

The AMS correlates with graft function in a second, independent cohort of non-related living 150 

kidney donor/recipient pairs 151 

 152 
We sought to validate the observation that the AMS is associated with post-transplantation 153 

kidney graft function by testing the association in an independent cohort of kidney transplant 154 

patients. To this end, we sequenced DNA collected from 24 additional kidney donor/recipient 155 

pairs (see Table 1 for information about subjects included in the Validation cohort). DNA 156 

sequencing was performed using the Agilent Haloplex assay covering 37Mb of the coding 157 

sequence of the human genome. We called the genotypes and estimated the AMS as described 158 

for the discovery cohort (see Methods). Fig. 3 shows that, as observed with the Discovery 159 

cohort, the AMS correlates progressively better with kidney graft function at longer times 160 

following transplantation. At 36 months post transplantation, a small to moderate positive 161 

association was observed between the allogenomics mismatch score and the serum creatinine 162 

level (r2 adj. 0.139, P=0.049) (Fig. 3C) and eGFR (r2 adj. 0.078, P=0.11) (Fig. 3G). The 163 

association between the score and graft function was stronger and reached significance at 48 164 

months post transplantation for both creatinine level (r2 adj. 0.394, P<0.01) (Fig. 3D), and eGFR 165 

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.854v2 | CC-BY 4.0 Open Access | rec: 27 Sep 2015, publ: 27 Sep 2015



Exome Sequencing and Prediction of Long-Term Kidney Allograft Function, Mesnard et al. 2015  
 
 

 8 

(r2 adj. 0.284, P=0.02) (Fig. 3H), further validating the association in the Validation cohort. In 166 

order to test whether models trained on one cohort would generalize to another similar cohort, 167 

we trained models on the Discovery cohort and used the fixed model to predict graft function in 168 

the Validation cohort. Fig. S1 shows that such a fixed model does generalize when presented 169 

with new recipient-donor pairs, and also exhibited better fit to the longer 48-month time-point 170 

compared to the earlier time point (Fig. S1B vs. Fig. S1C). Similarly, models trained on the 171 

Validation cohort generalize to the Discovery cohort (Fig. S2). These results establish that the 172 

parameters of the models are stable, despite the relatively small numbers of kidney recipient-173 

donor pairs included in the Discovery and Validation cohorts.  174 

 175 

The AMS weakly correlates with graft function in a third cohort  176 

In order to further test the strength of the relationship between AMS and graft function we 177 

applied the approach to a third independent cohort. To this end, we assembled a new cohort 178 

composed mostly of living related kidney donor pairs. We used a peculiarity of the French 179 

transplant system, directed by the French national agency for organ procurement transplant, 180 

which until recently did not allow living non-related kidney transplantation, to select 19 181 

additional pairs from one French center. Demographic and clinical data for this cohort are shown 182 

in Table 1.  As expected in this situation, the range of the AMS is lower than in the other two 183 

cohorts, ranging from 349 to 811 in the well-matched cohort (mean 559 ± 147). This range was 184 

700 to 1630 (mean 1094 ± 259) in the validation cohort and 994 to 2033 in the discovery cohort 185 

(mean 1335 ± 304). These data suggest that the effective range of variation of the AMS is 186 

approximately 300-2000 (1700 AMS units). 187 

In this third cohort, we did not find the simple association between the AMS and graft function 188 

that we observed in the first two cohorts. However, after correction for the strong effect of donor 189 
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age, we observe a trend in the same direction as the association observed in the first two cohorts 190 

at 24, 36 and 48 months when predicting eGFR (e.g., AMS effect estimate=-0.021798 at 36 191 

months). The three cohorts combined yield a statistically significant effect of AMS on graft 192 

function at 36 months (n=48 pairs, AMS effect estimate=-0.015808, P<0.01) and 60 months 193 

(n=13 pairs, AMS effect estimate=-0.04479, P<0.01), and borderline at 48 months (n=32 pairs, 194 

AMS effect estimate=-0.016685, P=0.07). 195 

 196 
Analysis of the relationship between the AMS and the number of HLA mismatches 197 
 198 

HLA mismatches are well-described risk factors for kidney graft failure. Therefore given data 199 

obtained in the first two cohorts , we next focused our attention on the association between AMS 200 

and number of ABDR HLA mismatches.  Fig. 4 presents an analysis where we combined the 201 

Discovery and Validation cohorts (32 transplant kidney recipient-donor pairs) and compared the 202 

AMS to the number of mismatches at the HLA-A, B and DR loci. We find that the AMS was 203 

moderately correlated with the number of mismatch at the HLA loci (Fig. 4A, r2 adj.=0.35, 204 

P<0.001). However, the number of HLA mismatches correlates poorly with an AMS estimated 205 

from exome data when restricting the sites to the HLA A, B and DR loci (Fig. 4B, r2 adj.=0.09, 206 

P=0.047). Furthermore, the AMS estimated outside of the HLA A, B and DR loci still associates 207 

significantly with serum creatinine levels (Fig. 4C, r2 adj.=0.36, P<0.001 and eGFR (Fig. 4D, r2 208 

adj.=0.18, P=0.011). These data indicate that the ability of the AMS to predict future graft 209 

function is mostly independent of the HLA loci.  210 

 211 

Final predictive models  212 
 213 

We fit models across the three combined cohorts to yield final models with fixed parameters: 214 

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.854v2 | CC-BY 4.0 Open Access | rec: 27 Sep 2015, publ: 27 Sep 2015



Exome Sequencing and Prediction of Long-Term Kidney Allograft Function, Mesnard et al. 2015  
 
 

 10 

36-month eGFR = 106.311073 -0.015808 AMS   -0.749321*Donor_Age 215 

48-month eGFR = 108.553088 -0.016685*AMS  -0.798154*Donor_Age 216 

60-month eGFR = 138.60095   -0.04479*AMS    -1.14063 *Donor_Age 217 

These equations and parameters are provided to enable testing these models on independent 218 

cohorts of living transplant pairs genotyped with exome sequencing. Fit parameter values were 219 

estimated with MetaR (train linear model statement, version 1.5.0). We note that the fixed 220 

parameters of this model can be sensitive to the exact analysis pipeline used to align reads to the 221 

genome and to call genotypes and that an objective test of this model would follow the analysis 222 

protocols used to analyze data for this report. 223 

 224 

In the models presented so far, we have considered the prediction of graft function separately at 225 

different time points. An alternative analysis would consider time since transplantation as 226 

another factor that can influence graft function. This is particularly useful when studying cohorts 227 

where graft function was assessed at several distinct time points (e.g., in the French cohort, 228 

clinical data describes graft function from 1 to 96 months post transplantation, but few time 229 

points have observations for all recipients). To implement this alternative analysis, we fit a 230 

mixed linear model of the form eGFR ~ donor age at time of transplant + AMS + T + (1|P), 231 

where T is the time post-transplantation, measured in months, and (1|P) a random effect which 232 

models separate model intercepts for each donor/recipient pairs. To determine the effect of AMS 233 

on eGFR, we compare the fit of models that do or do not include AMS. We find that the effect of 234 

AMS is significant (P=0.0042, χ2= 8.1919, d.f.=1). A similar result is obtained if HLA is used in 235 

covariate in the model (i.e., eGFR ~ donor age at time of transplant + AMS + T + HLA + (1|P), 236 

comparing model with AMS or without, P= 0.038, χ2= 4.284, d.f.=1). In contrast, models that 237 
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include AMS, but do or do not include the number of ABDR HLA mismatches fit the data 238 

equally well (P= 0.60, χ2= 0.2737, d.f.=1), confirming that the effect of AMS is independent of 239 

the number of HLA mismatches. 240 

Table 2 presents confidence intervals for the parameters of the full model (eGFR ~ donor age at 241 

time of transplant + AMS + T + HLA + (1|P)) as well as the effective range of the model 242 

predictors. The table shows the expected impact of each predictor on eGFR when this predictor 243 

is varied over its range, assuming all other predictors are kept constant. For instance, we assume 244 

that donor age at time of transplant varies from 20 years old to 80 years old (range: 60). Across 245 

this range, eGFR will decrease by an estimated 28 units as the donor gets older. The AMS effect 246 

has an effective range of 1,700 and the corresponding eGFR decrease is 19 units. 247 

 248 

Table 2. Estimated Model Parameters, 95% Confidence Intervals and Expected Impact on eGFR. 249 

 250 

Impact of genotyping platform on the estimation of the AMS 251 

We studied the impact of the genotyping platform on the estimation of the AMS (Fig. S3). Large 252 

cohorts of matched recipient and donor DNA are being assembled and genotyped with SNP chip 253 

array technology such as the Illumina 660W bead array platform (13). We asked whether such 254 

platforms would be appropriate to validate the allogenomics model in large cohorts. Fig. S3A 255 

documents the number of sites that contribute to the allogenomics score on each platform. Fig. 256 

S3B indicates that the exome assay captures many more sites with rare polymorphisms (minor 257 

allele frequency <5%) than the GWAS array platform. This is expected because exome assays 258 

directly sequence an individual DNA, while GWAS platforms are designed with a fixed set of 259 

Estimate
Model Coefficient Fit 2.50% 97.50% Effective Range Fit 2.50% 97.50% Note
Time post transplantation (in months) -0.2439 -0.32348868 -0.1644768 480 -117.072 -155.2745664 -78.948864 *
Donor age at transplant (in years) -0.46843 -0.78098518 -0.15179 60 -28.1058 -46.8591108 -9.1074 *
AMS -0.01141 -0.02217172 -0.000627551 1700 -19.397 -37.691924 -1.06683704 *
HLA_ABDR_mismatches -0.57055 -2.73627999 1.606998 6 -3.4233 -16.41767994 9.641988 n.s.

Impact on eGFR
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polymorphisms and will not include many of the rare polymorphisms any given individual may 260 

carry. Fig. S3C compares the correlations measured with the exome assay or that could have 261 

been obtained if we had measured the allogenomics mismatch score with the Illumina 660W 262 

assay. The weak correlations obtained suggest that GWAS platforms are not ideal for future tests 263 

of the allogenomics model. 264 

  265 
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Discussion  266 
 267 
Several Donor/Recipient matching factors have been identified prior to this study as important 268 

for transplantation. For instance, blood group compatibility is a prerequisite unless pre-269 

conditioning of the recipient is undertaken to facilitate blood group incompatible kidney 270 

transplantation. While HLA compatibility is a necessary requirement for successful bone marrow 271 

transplants, full HLA compatibility is not an absolute prerequisite for all types of transplantations 272 

as indicated by the thousands of solid organ transplants performed yearly despite lack of full 273 

matching between the donor and recipient at the HLA-A, B and DR loci. In view of better patient 274 

survival following transplantation compared to dialysis, kidney transplants are routinely 275 

performed with varying degrees of HLA-mismatches, including HLA mismatches for all HLA-276 

class I and II antigens. Although, graft outcomes improve with better HLA-matching, excellent 277 

long-term graft outcomes with stable graft function have been observed in patients with full 278 

ABDR HLA mismatches. The success of these transplants clearly suggests that factors other than 279 

HLA compatibility may influence the long-term clinical outcome of kidney allografts.  280 

 281 

Case-control designs are appropriate when studying phenotypes that are expected to be 282 

associated with genotypes that follow a Mendelian inheritance mechanism. We reason that 283 

transplant patients are not ideal subjects for this experimental design. Indeed, patients who 284 

received a kidney transplant have two genomes in their body: their germline DNA, and the DNA 285 

of the donor. In cases when the transplanted kidney was from an unrelated donor (e.g., organs 286 

from deceased donors), it is clear that a Mendelian genetic transmission mechanism is not at 287 

play. Importantly, even in cases where the donor is one of the parents of the transplant recipient 288 

(familial, living related transplant), the genome of the parent will break the assumptions of 289 
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Mendelian inheritance. Because the transplant recipient has two genomes after transplant, it is 290 

not appropriate to assume that genomic markers can be identified when assuming a Mendelian 291 

inheritance process. Yet, this assumption has been made in most of the transplantation genomic 292 

studies published to date.  293 

 294 

The allogenomics concept that we present in this manuscript postulates a different mechanism 295 

for the development of the immune response in the transplant recipient: immunological and 296 

biophysical principles strongly suggest that alleles present in the donor genome, but not in the 297 

recipient genome, will have the potential to produce epitopes that the recipient immune system 298 

will recognize as non-self. This reasoning explains why the allogenomics score is not equivalent 299 

to the genetic measures of allele sharing distance that have been used to perform genetic 300 

clustering of individuals (14).  301 

 302 

Results presented in this manuscript suggest that allogenomic mismatches in proteins expressed 303 

at the surface of donor cells could explain why some recipients’ immune systems mount an 304 

attack against the donor organ, while other patients tolerate the transplant for many years, when 305 

given similar immunosuppressive regimens.  If the results of this study are confirmed in 306 

additional independent transplant cohorts (renal transplants, solid or hematologic transplants), 307 

they may prompt the design of prospective clinical trials to evaluate whether allocating organs to 308 

recipients with a combination of low allogenomics mismatch scores and low HLA mismatch 309 

scores improves long term graft outcome. A positive answer to this question could profoundly 310 

impact the current clinical and regulatory framework for assigning organs to ESRD patients.  311 

 312 
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In this study, we introduced the allogenomics concept to quantitatively estimate the 313 

histoincompatibility between an organ donor from an ABO compatible living donor and recipient 314 

outside of the HLA locus. We tested the simplest model derived from this concept to calculate an 315 

allogenomics mismatch score (AMS). We demonstrated that the AMS, which can be estimated 316 

before transplantation, helps predict post-transplantation kidney graft function. Interestingly, the 317 

strength of the correlation increases with the time post transplantation, an observation we make 318 

in both the discovery and validation cohorts. When testing the approach in a cohort of closely 319 

related pairs (transplantation mostly from related living donors), we observed that controlling for 320 

donor age at time of transplant was necessary to validate the association between eGFR and 321 

AMS. Donor age at time of transplant is a well-documented predictor of long-term graft function 322 

(15). An alternative model where we control for donor age and time post-transplantation found a 323 

consistent effect of AMS across all three cohorts.  324 

 325 

We chose to focus this study on living ABO compatible (either related or non-related) donors 326 

because kidney transplantation can be planned in advance and because differences in cold 327 

ischemia times and other covariates common in deceased donor transplants are negligible when 328 

focusing on living donors, especially in a small cohort.  329 

 330 

The selection criteria for cadaveric donors include consideration of HLA matching and of the age 331 

of the donor. Compared to related donors we expect that the range of the AMS will be 332 

comparable to that in the discovery cohort (composed in majority of unrelated donors), 333 

Therefore, we expect that the allogenomics approach would also be predictive in cadaveric 334 

deceased donors, given that the AMS score should be high in these pairs.  However, since many 335 
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factors can independently influence graft function after transplantation from a cadaveric donor 336 

(e.g. cold ischemia time), potentially much larger cohorts may be required in such settings to 337 

achieve sufficient power to adequately control for the covariates relevant to cadaveric donors and 338 

to detect the allogenomics effect.   339 

 340 

While several case-control studies have been conducted with large organ transplant cohorts, the 341 

identification of genotype/phenotype associations has been limited to the discoveries of 342 

polymorphisms with small effect, that have been reviewed in (16), which have often not been 343 

replicated (17–19). Such studies have observed small average effects measured across groups of 344 

transplants when our study is measuring moderate effects in individual transplants. Rather than 345 

focusing on specific genomic sites, the allogenomics concept sums contributions of many 346 

mismatches that can impact protein sequence and structure and could yield an immune response 347 

in the recipient. 348 

 349 

While we have not attempted to optimize the set of sites considered to estimate the allogenomics 350 

mismatch score, it is possible that reduced and more focused subsets could increase the 351 

predictive ability of the score. For instance, the AMS could be applied to look for clusters of 352 

allogenomic mismatch sites in genes outside of the HLA loci. Such studies would require larger 353 

cohorts and may enable the discovery of loci enriched in allogenomics mismatches responsible 354 

for a part of the recipient alloresponse against yet unsuspected donor antigens. Their discovery 355 

might foster the development of new immunosuppressive agents targeting the expression of these 356 

immuno-dominant epitopes.  357 
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On the other hand, it is also possible that most polymorphisms that contribute to the score have a 358 

low frequency in the population (e.g., minor allele frequency less than 5%), which would make 359 

the identification of common sites of mismatches unlikely.  360 

 361 

In this study, we propose several linear models that use the AMS to predict graft function after 362 

transplantation. A model that controls for donor age and time post transplantation, and includes 363 

the AMS, achieves an r2 of 0.22 and a RMSE of 15.49 when predicting MDRD eGFR. This 364 

model makes it possible to envision predicting graft function at an arbitrary future time after 365 

transplantation using genomic information available before transplantation. However, several 366 

multi-center independent validations will be essential to establish if prospective clinical trials are 367 

warranted. We recommend focusing such validation efforts on transplant pairs that are not 368 

familial, where the AMS effect appears to be maximal. We distribute the software that we 369 

developed to estimate the allogenomics mismatch score to facilitate further studies by others (see 370 

http://allogenomics.campagnelab.org).  371 

   372 

  373 
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Materials and Methods 374 
 375 

The study was reviewed and approved by the Weill Cornell Medical College Institutional 376 

Review Board (protocol #1407015307 “Predicting Long-Term Function of Kidney Allograft by 377 

Allogenomics Score”, approved 09/09/2014). The second study made on the French cohort was 378 

approved by the Comité de Protection des Personnes (CPP), Ile de France 5, (02/09/2014). Codes 379 

were used to ensure donor and recipient anonymity. All subjects gave written informed consent. 380 

Living donor ABO compatible kidney transplantations were performed according to common 381 

immunological rules for kidney transplantation with a mandatory negative IgG T-cell and B-cell 382 

complement-dependent cytotoxicity cross-match.  383 

Whole exome sequencing and genotyping 384 

Briefly, genotypes of donors and recipients were assayed with exome sequencing (Illumina 385 

TruSeq enrichment kit for the Discovery Cohort and Agilent Haloplex kit for the Validation 386 

cohort and the French cohort. Reads were aligned to the human genome with the Last (9) aligner 387 

integrated as a plugin in GobyWeb (8). Genotype calls were made with Goby (10) and GobyWeb 388 

(8). Prediction of polymorphism impact on the protein sequence were performed with the Variant 389 

Effect Predictor (20). Genes that contain at least one transmembrane segment were identified 390 

using Ensembl Biomart (21). 391 

 392 

Discovery cohort: Transplant recipients and DNA samples 393 

We selected 10 kidney transplant recipients from those who had consented to participate in the 394 

Clinical Trials in Organ Transplantation-04 (CTOT-04), a multicenter observational study of 395 

noninvasive diagnosis of renal allograft rejection by urinary cell mRNA profiling. We included 396 
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only the recipients who had a living donor transplant and along with their donors, had provided 397 

informed consent for the use of their stored biological specimens for future research. Their 398 

demographic and clinical information is shown in Table 1. DNA was extracted from stored 399 

peripheral blood using the EZ1 DNA blood kit (Qiagen®) based on the manufacturer’s 400 

recommendation.  401 

 402 

Discovery cohort: Whole exome sequencing 403 

DNA was enriched for exome regions with the TruSeq exome enrichment kit v3. Sequencing 404 

libraries were constructed using the Illumina TruSeq kit DNA sample preparation kit.  Briefly, 405 

1.8  µg of genomic DNA was sheared to average fragment size of 200  bp using the Covaris E220 406 

(Covaris, Woburn, MA, USA). Fragments were purified using AmpPureXP beads (Beckman 407 

Coulter, Brae, CA, USA) to remove small products (<100  bp), yielding 1  µg of material that was 408 

end-polished, A-tailed and adapter ligated according to the manufacturer’s protocol. Libraries 409 

were subjected to minimal PCR cycling and quantified using the Agilent High Sensitivity DNA 410 

assay (Agilent, Santa Clara, CA, USA). Libraries were combined into pools of six for solution 411 

phase hybridization using the Illumina (Illumina, San Diego, CA, USA) TruSeq Exome 412 

Enrichment Kit. Captured libraries were assessed for both quality and yield using the Agilent 413 

High Sensitivity DNA assay Library Quantification Kit. Sequencing was performed with six 414 

samples per lane using the Illumina HiSeq 2000 sequencer and version 2 of the sequencing-by-415 

synthesis reagents to generate 100  bp single-end reads (1×100SE). 416 

 417 
Validation cohort: Transplant recipients and DNA samples 418 

We studied 24 kidney transplant recipients who had a living donor transplant at the NewYork-419 

Presbyterian Weill Cornell Medical Center. This was an independent cohort and none of the 420 
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recipients had participated in the CTOT-04 trial. Recipients were selected randomly based on the 421 

availability of archived paired recipient-donor DNA specimens obtained at the time of 422 

transplantation at our Immunogenetics and Transplantation Laboratory. The Institutional Review 423 

Board at Cornell approved the study. DNA extraction from peripheral blood was done using the 424 

EZ1 DNA blood kit (Qiagen®) based on the manufacturer’s recommendation.  425 

 426 

French cohort: Transplant recipients and DNA samples 427 

We studied 19 kidney transplant recipients who had a living donor transplant at Tenon Hospital. 428 

This represented a third independent cohort. Recipients were selected randomly based on the 429 

availability of archived paired recipient-donor DNA specimens obtained either at the Laboratoire 430 

d'histocompatibilité, Hôpital Saint Louis APHP, Paris or during patient’s follow-up between 431 

October 2014 and January 2015. DNA extraction from peripheral blood was done using the 432 

Nucleospin blood L kit (Macherey-Nagel®) based on the manufacturer’s recommendation.  433 

 434 

Validation and French cohorts: Whole exome sequencing 435 

The Validation and French cohorts were both assayed with the Agilent Haloplex exome 436 

sequencing assay. The Haloplex assay enriches 37 Mb of coding sequence in the human genome 437 

and was selected for the validation cohort because it provides a strong and consistent exome 438 

enrichment efficiency for regions of the genome most likely to contribute to the allogenomics 439 

contributions in protein sequences. In contrast, the TrueSeq assay (used for the Discovery 440 

Cohort) enriches 63Mb of sequence and includes regions in untranslated regions (5’ and 3’ 441 

UTRs), which do not contribute to allogenomics scores and therefore do not need to be 442 

sequenced to estimate the score. Libraries were prepared as per the Agilent recommended 443 
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protocol. Sequencing was performed on an Illumina 2500 sequencer with the 100bp paired-end 444 

protocol recommended by Agilent for the Haloplex assay. Libraries were multiplexed 6 per lane 445 

to yield approximately 30 million PE reads per sample. 446 

 447 

Minor Allele Frequencies of the AMS Sites 448 

We determined the minor allele frequency of sites used in the calculation of the allogenomics 449 

mismatch score using data from the NHLBI Exome Sequencing Project (ESP) release 450 

ESP6500SI-V2. We downloaded the data file ESP6500SI-V2-SSA137.protein-hgvs-451 

update.snps_indels.txt.tar.gz and extracted MAF in the European American population (EA) and 452 

in the African American population (AA) (22). The ESP measured genotypes in a population of 453 

6,503 individuals across the EA and AA populations using an exome-sequencing assay(22). This 454 

resource made it possible to estimate MAF for most of the variations that are observed in the 455 

subjects included in our discovery and validation cohort. 456 

 457 
Overlap with EVP variants 458 

Of 12,457 sites measured in the validation cohort with an allogenomics contribution strictly 459 

larger than zero (48 exomes, sites with contributions across 24 clinical pairs of transplants), 460 

9,765 (78%) have also been reported in EVP (6,503 exomes). 461 

 462 

Sequence Data Analysis 463 

Illumina sequence base calling was performed in the Weill Cornell Genomics Core Facility. 464 

Sequence data in FASTQ format were converted to the compact-reads format using the Goby 465 

framework [14]. Compact-reads were uploaded to the GobyWeb(8) system and aligned to the 466 

1000 genome reference build for the human genome (corresponding to hg19, released in 467 
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February 2009) using the Last (9, 23) aligner (parallelized in a GobyWeb (8) plugin). Single 468 

nucleotide polymorphisms (SNPs) and small indels genotype were called using GobyWeb with 469 

the Goby (24) discover-sequence-variants mode (parameters: minimum variation support=3, 470 

minimum number of distinct read indices=3) and annotated using the Variant Effect Predictor 471 

(20) (VEP version 75-75.7) from Ensembl. The data were downloaded as a Variant Calling 472 

format (25) (VCF) file from GobyWeb (8) and further processed with the allogenomics scoring 473 

tool (see http://allogenomics.campagnelab.org). 474 

 475 

Estimation of the Allogenomics Mismatch Score (AMS) 476 

The allogenomics mismatch score ∆(r,d) is estimated for a recipient r and donor d as the sum of 477 

score mismatch contributions (see Fig. 1C, Equation 1).  478 

 479 

Equation 1 (reproduced from Fig. 1C).  480 

 481 

Contributions are observed for each polymorphic site p in a set P, where P is determined by the 482 

genotyping assay and analysis methods, and can be further restricted (e.g., to polymorphisms 483 

within genes that code for membrane proteins). Score mismatch contributions σp(Grp,Gdp) are 484 

calculated using the recipient genotype Grp and the donor genotype Gdp at the polymorphic site p. 485 

Here, we consider that a genotype can be represented as a set of alleles that were called in a 486 

given genome. For instance, if a subject has two alleles at one polymorphic site, and we denote 487 

each allele A or B, the genotype at p is represented by the set {A,B}. This representation is 488 

general and sufficient to process polymorphic sites with single nucleotide polymorphisms or 489 

insertion/deletions.  490 

€ 

Δ(r,d) = σ p[Grp
p∈P
∑ = genotype(r, p),Gdp = genotype(d, p)]
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 491 

Equation 2 describes how the individual score mismatch contributions are calculated at a 492 

polymorphic site of interest.  493 

Equation 2 (reproduced from Fig. 1C).  494 

A contribution of 1 is added to the score for each polymorphic site where the donor genome has 495 

an allele (adp) that is not also present in the recipient genome. When both donor and recipient 496 

genome are called at polymorphic site P, no contribution is added. For example, assuming a 497 

genomic site where the donor genome has two alleles, i.e., Gdp={A,B}, and the recipient genome 498 

is homozygote with Grp={A}. In this case, (Grp,Gdp)=1. Fig. 1B presents additional examples of 499 

donor and recipient genotypes and indicates the resulting score contribution (the subscript p is 500 

omitted for conciseness). Score contributions are summed across all polymorphism sites in the 501 

set P to yield the allogenomic mismatch score (see Fig. 1C Equation 1). 502 

 503 

Selection of Informative Polymorphisms 504 

The selection of the set of polymorphic sites P is important to the effectiveness of the approach. 505 

In the current method, we select exonic polymorphic sites that are (1) predicted to create non-506 

synonymous change in a protein sequence, (2) are located in a gene that codes for one or more 507 

membrane proteins (defined as any protein with at least one predicted transmembrane segment, 508 

information obtained from Biomart (21), Ensembl database 75). Additional filters can be applied 509 

to restrict P, which may lead to improved prediction of transplant clinical endpoints. 510 

Constructing additional filters will require the study of a larger training set of matched recipient 511 
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and donor genotypes, which currently does not exist. It is possible that such study will indicate 512 

that other criteria than (2) also lead to predictive scores.  513 

Implementation: the Allogenomics Scoring Tool 514 

We developed the allogenomics scoring tool to process genotypes in the VCF format and 515 

produce allogenomics mismatch scores for specific pairs of genomes in the input file. The 516 

allogenomics scoring tool was implemented in Java with the Goby framework and is designed to 517 

read VCF files produced by Goby and GobyWeb. The source code of the allogenomics scoring 518 

tools is distributed for academic and non-commercial purposes at 519 

http://allogenomics.campagnelab.org. The following command line arguments were used to 520 

generate the estimates described in this manuscript and can be run from the 521 

Allogenomics_Package file provided in supplementary. The genotype input file(s) necessary to 522 

reproduce these results (GobyWeb tags: JEOHQUR (2.3GB), YOOLWXH (83MB)) cannot be 523 

distributed through dbGAP (http://www.ncbi.nlm.nih.gov/gap), or an equivalent archive, because 524 

the consent form signed by the CTOT-04 participants is not compatible with such distribution of 525 

the subject information. A copy of the VCF files can be provided to the editors of the journal 526 

upon request should they wish to make it available to the reviewers upon condition of 527 

confidentiality during peer-review.  528 

Pre-requisite to running the command lines: (1) You must have the Java runtime environment 529 

installed on your computer (the software has been tested with version 1.6) (2) You must define 530 

the environment variable ALLO to the location where you have downloaded the distribution of 531 

the allogemomics scoring tool (3). You must obtain the input VCF files and place them under: 532 

${ALLO}/VCF_files_input/JEOHQUR-stats.vcf.gz ${ALLO}/VCF_files_input/YOOLWXH-533 

stats.vcf.gz. 534 
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Estimating allogenomics mismatch scores on the Discovery cohort: 535 

java -Xmx4g -jar allogenomics-1.1.7-scoring-tool.jar \ 536 

--input ${ALLO}/VCF_files_input/JEOHQUR-stats.vcf.gz \ 537 

-p ${ALLO}/Pair_files/Discovery_cohort.pairs.tsv \ 538 

-a Annotation_files/All_protein_coding_Ensembl_75.gtf \ 539 

--output ${ALLO}/Output/TM-Discovery.tsv \ 540 

--output-format TSV --only-non-synonymous-coding --vep \ 541 

--consider-indels --minimum-depth 10 --max-depth 500 \ 542 

-t ${ALLO}/Annotation_files/TrM-Transcript_Ensembl_75.tsv \ 543 

--clinical  544 

 545 

Estimating allogenomics mismatch scores on the Validation cohort: 546 

java -Xmx4g -jar allogenomics-1.1.7-scoring-tool.jar \ 547 

--input ${ALLO}/VCF_files_input/JEOHQUR-stats.vcf.gz \ 548 

-p ${ALLO}/Pair_files/Validation_cohort.pairs.tsv \ 549 

-a ${ALLO}/Annotation_files/All_protein_coding_Ensembl_75.gtf \ 550 

--output ${ALLO}/Output/TM-Validation.tsv \ 551 

--output-format TSV --only-non-synonymous-coding --vep \ 552 

--consider-indels --minimum-depth 10 --max-depth 500 \ 553 

-t ${ALLO}/Annotation_files/TrM-Transcript_Ensembl_75.tsv \ 554 

--clinical --measured-sites SitesHaloplexExome.tsv  555 

Estimating allogenomics mismatch scores on the French cohort: 556 

java -Xmx4g -jar allogenomics-1.1.7-scoring-tool.jar \ 557 
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--input ${ALLO}/VCF_files_input/YOOLWXH-stats.vcf.gz \ 558 

-p Pair_files/French_cohort.pairs.tsv \ 559 

-a ${ALLO}/Annotation_files/All_protein_coding_Ensembl_75.gtf  \ 560 

--output ${ALLO}/Output/TM-French_cohort.tsv \ 561 

--output-format TSV --only-non-synonymous-coding \ 562 

--vep --consider-indels --minimum-depth 10 \ 563 

--max-depth 500 \ 564 

-t ${ALLO}/Annotation_files/TrM-Transcript_Ensembl_75.tsv --clinical --no-dash 565 

 566 

Estimating allogenomics mismatch scores on merged discovery and validation cohorts: 567 

java -Xmx4g -jar allogenomics-1.1.7-scoring-tool.jar \ 568 

--input ${ALLO}/VCF_files_input/JEOHQUR-stats.vcf.gz\ 569 

-p Pair_files/Discovery+Validation_cohort.pairs.tsv \ 570 

-a ${ALLO}/Annotation_files/All_protein_coding_Ensembl_75.gtf \ 571 

--output ${ALLO}/Output/TM-Discovery+Validation.tsv \ 572 

--output-format TSV --only-non-synonymous-coding \ 573 

--vep --consider-indels --minimum-depth 10 \ 574 

--max-depth 500 \ 575 

-t ${ALLO}/Annotation_files/TrM-Transcript_Ensembl_75.tsv --clinical  576 

 577 

Estimating allogenomics mismatch score limited to Illumina GeneChip660W loci on the 578 

validation cohort: 579 

java -Xmx4g -jar allogenomics-1.1.7-scoring-tool.jar \ 580 
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--input ${ALLO}/VCF_files_input/JEOHQUR-stats.vcf.gz \ 581 

-p ${ALLO}/Pair_files/Validation_cohort.pairs.tsv \ 582 

-a ${ALLO}/Annotation_for_660W/Human660W_Gene_Annotation_hg19-ilmn.tsv \ 583 

--output ${ALLO}/Output/TM-Validation_Illumina660W.tsv \ 584 

--output-format TSV --only-non-synonymous-coding --vep \ 585 

--consider-indels --minimum-depth 10 --max-depth 500 \ 586 

-t ${ALLO}/Annotation_for_660W/TM-as-gene-names_for_Illumina660W.tsv \ 587 

--clinical --measured-sites sites-660W.tsv  588 

 589 

Statistical Analyses 590 

Analyses were conducted with either JMP Pro version 11 (SAS Inc.) or metaR 591 

(http://metaR.campagnelab.org). Figures 2, 3 and 4, as well as SF1B, SF1C, SF2B, SF3C were 592 

constructed with metaR analysis scripts and edited with Illustrator CS6 to increase some font 593 

sizes or adjust the text of some axis labels. The model that includes the time post-transplantation 594 

as a covariate was constructed in metaR and JMP. The R implementation of train linear model 595 

uses the lm R function. This model was executed using the R language 3.1.3 (2015-03-09) 596 

packaged in the docker image fac2003/rocker-metar:1.4.0 597 

(https://hub.docker.com/r/fac2003/rocker-metar/). Models with random effects were estimated 598 

with metaR 1.5.1 and R (train mixed model and compare mixed models statements, which use 599 

the lme4 R package(26)). Comparison of fit for models with random effects was obtained by 600 

training each model alternative with REML=FALSE an performing an anova test, as described in 601 

(27). 602 

 603 
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Figures:  704 
 705 

    706 
Figure 1. Recipient/Donor incompatibility quantified by exome sequencing and calculation 707 

of allogenomics mismatch score (AMS). (A) Hypothesis: Post-transplantation kidney graft 708 

function is associated with the number of amino acids coded by the donor genome that the 709 

recipient’s immune system could recognize as non-self. (B) Examples of donor/recipient amino-710 

acid mismatches at one protein position, and resulting contributions to the allogenomics 711 

mismatch score. The allogenomics mismatch score is calculated by summing contributions over 712 

a set of genomic polymorphisms (see Methods for details). (C) Equations for the allogenomics 713 

model. Score contributions are summed across all genomic positions of interest (set P) to yield 714 

the allogenomics score Δ(r,d). Gr,p: genotype of recipient r at genomic site/position p.  Gd,p: 715 

genotype of donor d at site p. Alleles of a genotype are denoted with the letter a. 716 

  717 

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.854v2 | CC-BY 4.0 Open Access | rec: 27 Sep 2015, publ: 27 Sep 2015



Exome Sequencing and Prediction of Long-Term Kidney Allograft Function, Mesnard et al. 2015  
 
 

 34 

 718 
Characteristic Discovery cohort Validation cohort French Cohort 

Number of Transplant Pairs with living donors 10/10 24/24 19/19 

Allogenomics mismatch score AMS(SD)[range] 1335(304)[994-2033] 1094(259)[700-
1630] 560(147)[349-811] 

Clinical factors    

Age    

Donor (SD) 41 (13) 46 (10) 44(16) 

Recipient (SD) 48 (10) 51 (13) 38(15) 

Living Donor type    

    Living related N (AMS) [SD]) 4 (1116 [143]) 13 (939 [218]) 15(503[108])* 

    Living unrelated N (AMS) [SD]) 6 (1481 [300]) 11(1277 [170]) 4(769[41])* 

Donor sex    

    Male (%) 2 (20%) 8 (33%) 6(32%) 

    Female (%) 8 (80%) 16 (67%) 13(68%) 

Donor Race    

    Black (%) 4(40%) 5 (21%) 2(10%) 

    Non-Black (%) 6(60%) 19 (79%) 17(90%) 

Recipient sex    

    Male (%) 9 (90%) 13 (54%) 13 (53%) 

    Female (%) 1 (10%) 11 (46%) 13 (47%) 

Recipient Race    

    Black (%) 4 (40%) 7 (29%) 2 (10%) 

    Non-Black (%) 6 (60%) 17 (71%) 17 (90%) 

Number of HLA mismatches ABDR (SD) 3.9 (1.91) 3.5 (1.89) 2.5 (1.68)* 

Functional Factors    

Number of Patients at 12 months 10 24 17 

    Serum creatinine level at 12 months mg/dL (SD) 1.51  (0.35) 1.45 (0.41) 1.29 (0.41) 

    eGFR at 12 months ml/min/1.73m2 (SD) 54.3(10) 54.3 (16.3) 61.8 (18.9)* 

 Number of Patients at 24 months 9 23 19 

   Serum creatinine level  at 24 months mg/dL (SD) 1.36 (0.19) 1.45 (0.49) 1.26 (0.3) 

    eGFR at 24 months ml/min/1.73m2 (SD 59 (7.7) 54.85 (15.7) 59.3 (14.5)* 

Number of Patients at 36 months 8 22 19 

    Serum creatinine level at 36 months mg/dL(SD) 1.62 (0.50) 1.38 (0.40) 1.35 (0.45) 

    eGFR at 36 months ml/min/1.73m2 (SD) 53.4 (15) 55.3 (15.9) 56.3 (16.4) 

Number of Patients at 48 months 0 16 16 

    Serum creatinine level at 48 months mg/dL(SD) - 1.34 (0.43) 1.40 (0.56) 

    eGFR at 48 months ml/min/1.73m2 months (SD) - 57.4 (16.4) 55.7 (18.2) 

Patients with an Acute Cellular rejection episode in 
the first year of transplantation, N (%) 3 (30%) 5 (20%) 2 (10%) 

Immunosupression    

    Calcineurin Inhibitors, n (%) 9 (90%) 24 (100%) 19 (100%) 

    Corticosteroids, n (%) 0 (0%) 5 (21%) 17 (90%)* 

 719 
Table 1. Characteristics of Kidney transplant recipients and their donors. In bold, 720 
characteristics that differ between the French and Validation cohorts (*P<0.05 , two tailed t-test). 721 
  722 
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 723 

Figure 2. Relationship between the allogenomics mismatch score (AMS) and kidney graft 724 

function at 12, 24 or 36 months following transplantation in the Discovery cohort. DNA was 725 

isolated from 10 pairs of kidney graft recipients and their living kidney donors (Discovery set). 726 

Whole exome sequencing of the donor genomes and recipient genomes was performed and the 727 

sequencing information was used to calculate allogenomics mismatch scores based on amino 728 

acid mismatches in transmembrane proteins. The panels depict the relationship between the 729 

allogenomics mismatch scores and serum creatinine levels at 12, 24 and 36 months post 730 

transplantation (Panels A, B and C, respectively) and the relationship between the allogenomics 731 

mismatch scores and estimated glomerular filtration rate at 12, 24 and 36 months post 732 

transplantation (Panels D, E and F, respectively). Both serum creatinine levels and eGFR 733 

correlate in a time-dependent fashion with the allogenomics mismatch score with the strongest 734 

correlations being observed at 36 months post-transplantation.   735 
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737 
  738 

Figure 3. Relationships between allogenomics mismatch scores (AMS) and kidney graft 739 

function at 12, 24, 36 or 48 months post transplantation in the Validation Cohort. DNA was 740 

isolated from 24 pairs of kidney graft recipients and their living kidney donors (Validation set). 741 

Whole exome sequencing of the donor and recipient genomes was performed and the sequencing 742 

information was used to calculate allogenomics mismatch scores based on amino acid 743 

mismatches in transmembrane proteins. The relationships between allogenomics mismatch 744 

scores and serum creatinine levels at 12, 24, 36 and 48 months post transplantation (Panels A, B, 745 

C, and D respectively) are shown. In panels E, F, G and H, the relationships between the 746 

allogenomics mismatch scores and estimated glomerular filtration rate at 12, 24, 36 and 48 747 

months post transplantation are shown. Both serum creatinine levels and eGFR correlate in a 748 

time dependent fashion with the allogenomics mismatch score with the strongest correlations 749 

being observed at 48 months post-transplantation.   750 
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 768 

 769 

Figure 4. Relationships between allogenomics mismatch scores and the HLA loci. We 770 

combined the Discovery and Validation cohorts to examine the relation of the allogenomics 771 

mismatch score to the HLA-A, B and DR mismatch between the recipient and the kidney donor. 772 

Allogenomics mismatch scores, either calculated over all transmembrane proteins (Panel A), or 773 

restricted to the HLA A, B DR loci (Panel B) correlate with the number of mismatches in the 774 

A,B, and DR HLA loci for the complete cohort. These correlations however do not explain the 775 

association with post-transplantation graft function because when the HLA loci (A/B/ DR/DQ) 776 

are excluded from the sites included in the calculation of the allogenomics mismatch score, a 777 

significant correlation is still observed between the allogenomics mismatch score and serum 778 

creatinine level (Panel C) and eGFR (Panel D) at 36 months post transplantation (similar results 779 

are obtained when excluding the A/B/C/DR/DQ/DP HLA loci, data not shown). 780 
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Supplementary Materials 794 
Supplementary materials and methods appendix containing: 795 

Fig. S1. Model trained on the Discovery cohort applied to the Validation cohort 796 

Fig. S2. Model trained on the Validation cohort applied to the Discovery cohort 797 

Fig. S3. Effect of genotyping platform on future replication studies. 798 
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 800 
 801 

Supplementary Figures 802 

 803 
Figure S1. Model trained on the Discovery cohort applied to the Validation cohort. A) We 804 
trained a model to predict eGFR on the discovery cohort (using eGFR at 36 months) and used the 805 
trained, fixed, model to predict eGFR at 36 months and 48 months for recipients of the 806 
Validation cohort. The trained model was eGFR= 107.39547- -0.03974*AMS. Correlation 807 
between predicted eGFR and observed eGFR on the Validation cohort at 36 (B) and 48 (C) 808 
months post transplantation. Dashed lines indicate the diagonal and solid lines the regression 809 
lines. 810 
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 813 
 814 

Figure S2. Model trained on the Validation cohort applied to the Discovery cohort. A) We 815 
trained models to predict serum creatinine and eGFR on the validation cohort and used the 816 
trained, fixed, model to predict serum creatinine and eGFR for recipients of the Discovery 817 
cohort. B) Correlation between the eGFR predicted by the fixed model and that observed in the 818 
Discovery cohort. The trained model was eGFR= 78.20459 -0.02114*AMS. Dashed line 819 
indicates the diagonal and solid line the regression lines. 820 
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 830 
Figure S3. Effect of genotyping platform on future replication studies. In this analysis, we 831 
estimate how well the allogenomics mismatch score could be evaluated with the genotyping array 832 
technology frequently used in GWAS studies. Analyses are done on the combined Discovery and 833 
Validation cohorts (n=32 pairs with 36-month eGFR, 64 exomes). A) The allogenomics mismatch 834 
score evaluated with the Illumina TrueSeq or Agilent Haloplex exome platforms takes advantage of 835 
12,657 genomic sites to estimate allogenomic contributions in transmembrane proteins. Only sites 836 
where an allogenomics mismatch score contribution different from zero are counted. We filtered the 837 
exome genomic sites to exclude sites not found on the Illumina 660W genotyping platform (used in 838 
(13)). After filtering, the allogenomics score is estimated with 1,820 remaining genomic sites.  B) 839 
The minor allele frequency (MAF) of the alleles described at each set of genomic sites is shown as 840 
a histogram (MAF is estimated from the EVP database, see Methods). Exome sequencing is an 841 
assay that directly observes variations in an individual DNA sample. The MAF distributions 842 
confirm that exome sequencing helps estimate contributions from many rare (MAF<5%) 843 
polymorphisms, whereas the chip genotyping platform estimates the score based on contributions 844 
from frequent alleles.  C) The scatterplot of the relationship between 36-month eGFR and the score 845 
estimated from the exome sites, or the subset of sites also measured by the GWAS platform. While 846 
some trend is still visible with sites measured on the GWAS platform, more samples would be 847 
needed to reach significance in the combined Discovery and Validation cohorts (n=34 pairs). Note 848 
that the magnitude of the scores is smaller on the GWAS platform because fewer contributions are 849 
summed. In contrast, the exome assays (Illumina TrueSeq for the Discovery cohort or Agilent 850 
Haloplex for the Validation cohort) result in stronger and significant correlations in the same set of 851 
samples.  852 
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