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Background: A major goal of RNA-Seq data analysis is to reconstruct the full set of gene
transcripts expressed in a biological sample in order to quantify their expression levels.
The process typically involves multiple steps including mapping short sequence reads to a
reference genome, and estimating expression levels based on these mappings. Multiple
algorithms and approaches for each processing step exist, and the impact of different
methods on estimation of gene expression is not entirely clear.
Methods: We evaluated the impact of three common mapping algorithms on differential
expression analysis in an RNA-Seq dataset describing the lung response to acute neonatal
hyperoxia. RNA-Seq data generated using the Illumina platform were mapped and aligned
using CASAVA, TopHat, and SHRiMP against the mouse genome. Significance Analysis of
Microarrays and Cuffdiff were used to identify differentially expressed genes between
hyperoxia-challenged and age matched control mice.
Results: 1403 genes were detected as differentially expressed by least one mapping and
gene selection method. A majority of genes (>65%) were identified by all three mapping
methods, regardless of the gene selection approach. Expression patterns for 52 genes
were examined by quantitative polymerase chain reaction (qPCR). Importantly, we found
different validation rates for genes selected by each method; 72% for CASAVA, 69% for
TopHat and 63% for SHRiMP. Surprisingly, the validation rate for genes selected by all
three mapping methods was no greater than the best single method.
Conclusion: The choice of mapping strategy impacts the reliability of gene selection for
RNA-Seq data analysis.
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46 ABSTRACT
47 Background: A major goal of RNA-Seq data analysis is to reconstruct the full set of gene transcripts 
48 expressed in a biological sample in order to quantify their expression levels. The process typically 
49 involves multiple steps including mapping short sequence reads to a reference genome, and estimating 
50 expression levels based on these mappings. Multiple algorithms and approaches for each processing 
51 step exist, and the impact of different methods on estimation of gene expression is not entirely clear. 
52
53 Methods: We evaluated the impact of three common mapping algorithms on differential expression 
54 analysis in an RNA-Seq dataset describing the lung response to acute neonatal hyperoxia. RNA-Seq 
55 data generated using the Illumina platform were mapped and aligned using CASAVA, TopHat, and 
56 SHRiMP against the mouse genome. Significance Analysis of Microarrays and Cuffdiff were used to 
57 identify differentially expressed genes between hyperoxia-challenged and age matched control mice. 
58
59 Results: 1403 genes were detected as differentially expressed by least one mapping and gene selection 
60 method. A majority of genes (>65%) were identified by all three mapping methods, regardless of the 
61 gene selection approach. Expression patterns for 52 genes were examined by quantitative polymerase 
62 chain reaction (qPCR). Importantly, we found different validation rates for genes selected by each 
63 method; 72% for CASAVA, 69% for TopHat and 63% for SHRiMP. Surprisingly, the validation rate 
64 for genes selected by all three mapping methods was no greater than the best single method.
65
66 Conclusion: The choice of mapping strategy impacts the reliability of gene selection for RNA-Seq 
67 data analysis. 
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68 INTRODUCTION
69 Genome-wide expression profiling is used to assess the expression of thousands of genes 
70 simultaneously, with the ultimate goal of creating a comprehensive description of expression at the 
71 mRNA level. Historically DNA microarray technology has been used to measure genome-wide 
72 expression. With the advent of next-generation sequencing, high-throughput sequence-based 
73 approaches for expression analysis are becoming an increasingly popular alternative to microarrays. 
74 RNA-Seq, otherwise known as Whole Transcriptome Shotgun Sequencing (WTSS), refers to the use of 
75 high-throughput technologies to sequence cDNA in order to get information about a sample's RNA 
76 content. Applications of RNA-Seq may include analyzing the genome for coding and non-coding RNA 
77 [1]. RNA-Seq has been used in studies of transcription in yeast [2], Arabidopsis [3], mouse [4, 5], and 
78 human [6, 7]. RNA-Seq is a promising replacement for microarrays as initial studies have shown that 
79 RNA-Seq expression estimates are highly reproducible[6] and are often more accurate, based on 
80 assessments by either quantitative PCR (qPCR) or spike-in experiments [2, 5]. The primary advantages 
81 of RNA-Seq are its large dynamic range (spanning five orders of magnitude), low background noise, 
82 reduced input sample (RNA) requirement and ability to detect novel transcripts, when studied at 
83 appropriate coverage depth [8]. However, similar to the early days of microarray analysis, there are still 
84 a number of experimental and computational issues remaining to be resolved for RNA-Seq. 
85
86 The process of RNA-Seq involves four major steps: (i) generation of cDNA libraries from the RNA 
87 samples, (ii) generating millions of short sequence “reads” from these cDNA libraries (that are 
88 proportional to the mRNA diversity of the initial RNA sample), (iii) mapping the sequence reads to a 
89 reference genome, and (iv) summarizing the mapped reads into raw expression level measures, for 
90 subsequent normalization and analysis. Methods and computational tools are being rapidly developed 
91 to meet the challenges of these steps. Presently, more than 60 mappers are available to accomplish this 
92 task [9, 10]. Our choices of mappers represent a spliced (TopHat) and a contemporary unspliced 
93 (SHRiMP) freeware aligner, as well as the vendor recommended default aligner. While both CASAVA 
94 and TopHat are spliced read aligner which is a critical feature when aligning RNA-seq reads to a 
95 reference genome, we chose to compare them with SHRiMP, which is an unspliced read aligner[11]. 
96 Consensus Assessment of Sequence And Variation, (CASAVA) is the part of Illumina's sequencing 
97 analysis software that performs alignment of a sequencing run to a reference genome and subsequent 
98 variant analysis and read counting [12]. Its underlying alignment algorithm is ELAND (Efficient 
99 Large-Scale Alignment of Nucleotide Databases). ELAND is very fast and can perform multi-seed and 

100 gapped alignment. TopHat is a fast and popular spliced aligner for RNA-Seq reads [13]. It aligns RNA-
101 Seq reads to mammalian-sized genomes by using its underlying mapping engine, either Bowtie or 
102 Bowtie2. TopHat consists of three mapping steps: transcriptome mapping, genome mapping, and 
103 spliced mapping. This three-step pipeline assures the best and unique alignment for each read. It can 
104 identify novel splice sites with direct mapping to known transcripts, producing sensitive and accurate 
105 alignments, even for highly repetitive genomes or in the presence of pseudogenes. Short Read Mapping 
106 Program (SHRiMP) is an unspliced aligner and it aligns reads against a target genome using an 
107 algorithm distinct from that TopHat uses [14]. It was initially developed with the multitudinous short 
108 reads of next generation sequencers and Applied Biosystem's colorspace genomic representation. The 
109 algorithm can align reads with extensive polymorphism and sequencing errors. It can also perform the 
110 multi-seed alignment to speed up the alignment.
111
112 Here we studied the biological impact of these three mapping algorithms on identification of 
113 differentially expressed genes in a typical experimental model dataset. We included molecular 
114 validation for genes identified in individually mapped datasets as a means of determining the estimated 
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115 reliability of each method. Similar studies in the past have used empirical and simulated datasets [15-
116 18], however, these studies did not have further validation results.  
117
118
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119 METHODS
120 RNA-Seq Data
121 This data set represents high throughput sequencing of seven cDNA libraries generated from whole 
122 lung tissue RNA recovered from mice treated under hyperoxic conditions in the newborn period (n=3) 
123 or age-matched controls (n=4). Mice were exposed to 100% oxygen, 40-70% humidity between birth 
124 and postnatal day 10 as shown previously [19]. Mice were housed in sterile microisolator cages in a 
125 specified pathogen-free environment and exposed to super-physiological levels of oxygen according to 
126 a protocol (Protocol No. 2007-121R) approved by the University Committee on Animal Resources at 
127 the University of Rochester. The University Committee on Animal Resources (UCAR) at the 
128 University of Rochester reviewed and approved these studies. The data were generated on the Illumina 
129 Genome Analyzer II platform at an average sequence depth of 20 million reads (65 bases in length) per 
130 sample as reported previously [20]. 
131
132 Short-Read Alignment
133 Sequences were mapped to the mouse genome (mm10), containing 21,718 unique genes, using 
134 multiple alignment algorithms. CASAVA (v 1.7) pipeline software was implemented with the 
135 manufacturer default settings, using the ELAND aligner program in Multiplexer setting, for separating 
136 bar-coded reads into different bins. Tophat (v 2.0.9) was implemented using Bowtie (v 2.1.0) and 
137 SAMtools (v 0.1.18) with default parameters (b2-sensitive, report-secondary-alignments, library-type 
138 fr-unstranded). SHRiMP (v 2.2.3) was implemented using SAMtools (v 0.1.18) with default 
139 parameters (gmapper – ls –qv-offset 33 single_en_reads-). For TopHat and SHRiMP mapping, HTSeq 
140 (v 0.5.3p3) was used to generate the count matrices with the following parameters: 'htseq-count -m 
141 intersection-strict -s no'. For both SHRiMP and TopHat alignments, mouse gene annotation file (GTF) 
142 for mouse genome build 10 obtained from UCSC was used for alignment. Codes for mapping and 
143 generating the raw counts are available in shown in Supplemental Table 1.
144
145 Normalization
146 Alignment counts obtained from CASAVA, SHRiMP and TopHat were further normalized using reads 
147 per million bases (RPM) or trimmed-mean (TM), independently. RPM normalization involves dividing 
148 the raw count for each individual gene in a particular sample by the sum total of counts for all the 
149 genes in that sample (Equation 1). It is a modification of the RPKM (reads per kilobase transcript per 
150 million reads) approach, excluding normalization for transcript length [5].
151                                                152 …..(1)
153
154
155
156 TM normalization involves calculation of the mean of 5th-95th percentile of raw counts for each 
157 sample, which is used to determine a sample-specific normalization factor. The raw counts for all 
158 genes for a sample are then multiplied by this factor (Equation 2).
159 ……(2)
160
161
162 Gene Selection
163 Genes that were not detected in all samples of at least one experimental group (hyperoxia-treated or 
164 control) were excluded from analysis. Multiple gene selection approaches were applied on each 
165 normalized and filtered dataset, from each of the three mapping algorithms. The filtered and 
166 normalized data, were however not log-transformed. Significance Analysis for Microarrays (SAM) is a 
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167 frequentist approach used for identification of differentially expressed genes that uses a modified t-
168 statistic with permutations [21]. SAM was applied using the minimum median False Discovery Rate 
169 (FDR) possible, in MultiExperiment Viewer (MeV) v4.8.1 (http://www.tm4.org/mev.html). For the 
170 purposes of this study, SAM threshold of median FDR of 0 was applied. Cuffdiff uses the Cufflinks 
171 transcript quantification to calculate gene expression levels in different conditions, and tests them for 
172 significant differences [22]. It uses FPKM (fragments per kilobase of exon per million fragments 
173 mapped) normalization. Cuffdiff was applied using mouse gene annotation file (GTF) for mouse 
174 genome build 10 obtained from UCSC with a significance threshold of FDR adjusted q <0.05. 
175
176 Molecular Validation
177 cDNA were synthesised from RNA samples isolated from individual lungs using the iScript Reverse 
178 Transcription Kit (BioRad, Hercules, CA). qPCR was performed on a Viia7 (Applied Biosystems, 
179 Santa Clara, CA) using SYBR green chemistry as previously described [23]. Gene-specific assays 
180 primer sequences were retrieved from the MGH Primer Bank (http://pga.mgh.harvard.edu/primerbank). 
181 Gene expression levels (dCt) were calculated relative to the measured Ct value of PPIA (peptidyl 
182 prolyl isomerase A or cyclophilin A) as an internal, endogenous control and were analyzed for relative 
183 expression changes by the ddCt method as previously described [23]. QPCR data were assessed using 
184 both the students T-test and the Mann-Whitney U test at a p<0.05.
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185 RESULTS
186 The main objective here is to compare the effect of different, state-of-the-art alignment and mapping 
187 procedures upon the accuracy of gene selection. The data set we used for this analysis consists of 3 
188 experimental treatment samples (separate pools of RNA isolated from lungs of neonatal mice 
189 challenged with hyperoxia) and 4 matched, normoxic controls [20]. As indicated in Figure 1, in order 
190 to complete the analysis, Fastq files were independently mapped using 3 different alignment methods; 
191 CASAVA, TopHat and SHRiMP. The mapped data were normalized and filtered, using tools 
192 appropriate for the mapping methods, and analyzed for differential expression using Significance 
193 Analysis for Microarrays (SAM) or Cuffdiff. In particular, we used reads per million (RPM) or 
194 trimmed mean (TM) normalization for SAM, and “fragments per kilobase of exon per million 
195 fragments mapped” (FPKM) normalization for Cuffdiff. Differential expression was estimated using 
196 SAM, for all three mapping methods, or Cuffdiff for TopHat and SHRiMP mapping. qPCR was used to 
197 assess the reliability of differential expression estimation.
198
199 Mapping Statistics
200 For each mapping algorithm we calculated the total number of reads, percentage of genes detected, 
201 alignment rate, number of aligned reads, and the number of reads assigned to genes. Table 1 shows a 
202 summary of these mapping statistics. SHRiMP gave highest total number of reads followed by those of 
203 CASAVA and TopHat. On an average, SHRiMP gave highest percent genes, detected (80%) which 
204 was slightly above those of CASAVA (77%) and TopHat (76%). In addition, the total number of reads 
205 assigned to mapped genes was highest in SHRiMP (12.75 x 106), followed by TopHat (12.56 x 106) 
206 and CASAVA (11.18 x 106).
207
208 The correlation analysis confirmed strong general concordance on the gene expression measurements 
209 across mappers. Pearson correlation coefficients between the raw or either of normalized counts 
210 generated by the TopHat and CASAVA was found to be well above 0.8 indicating the data were of 
211 comparable quality (Figure 1). While the pearson correlation coefficients between the raw or either of 
212 normalized counts generated by the SHRiMP and CASAVA were found to be 0.46 or more, the 
213 correlation coefficients between the raw or either of normalized counts generated by the SHRiMP and 
214 TopHat were 0.58 or more. Figure 2 shows representative plots (from one control and one hyperoxia 
215 sample) for same-sample correlations among the normalized counts obtained using three mappers. 
216 Correlation plots for raw and both normalized counts can be seen in Supplemental Figure 1.
217
218 CASAVA (v 1.7)
219 On average, expression of 77% of the genes in the genome was detected in the samples using 
220 CASAVA. After removing signal from genes not present in all samples of at least one experimental 
221 group, the expression of 16,079 genes were assessed for differential expression (Table 2). As described 
222 elsewhere [20] SAM identified 1020 genes in the TM-normalized data and 813 genes in the RPM-
223 normalized data. A total of 798 genes were common, and 300 of these had a fold-change greater than 
224 or equal to 2. There were a greater number of genes showing significant decreases in expression in 
225 response to treatment (56%) than were increased.
226
227 SHRiMP (v 2.2.3)
228 On average, expression of 80% of the genes in the genome was detected in the lung tissue samples 
229 using SHRiMP. After removing signal from genes not present in all samples of at least one 
230 experimental group, the expression of 17,814 genes were assessed for differential expression (Table 3). 
231 SAM identified 879 genes in the TM-normalized data and 937 genes in the RPM-normalized data. A 
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232 total of 857 genes were common, and 386 of these had a fold-change greater than or equal to 2. Similar 
233 to CASAVA mapped data, there were more genes showing significant decreases in expression in 
234 response to treatment (60%) than were increased. Cuffdiff identified 3886 genes as differentially 
235 expressed, and 1087 of those had a magnitude of change greater than or equal to 2. In addition to 
236 selecting a greater number of genes as significantly affected, Cuffdiff identified a greater number of 
237 genes showing significant increases in expression in response to treatment (57%) than were decreased.
238
239 TopHat (v 2.0.9)
240 On average, expression of 76% of the genes in the genome was detected in the lung tissue samples 
241 using TopHat. After removing signal from genes not present in all samples of at least one experimental 
242 group, the expression of 16,892 genes were assessed for differential expression (Table 4). SAM 
243 identified 880 genes in the TM-normalized data and 951 genes in the RPM-normalized data. A total of 
244 860 genes were common, and 396 of these had a fold-change greater than or equal to 2. Cuffdiff 
245 identified 2831 genes as differentially expressed, and 1044 of those had a fold-change greater than or 
246 equal to 2. Again (similar to SHRiMP mapped data) Cuffdiff identified a greater number of genes 
247 showing significant increases in expression in response to treatment (57%) than were decreased.
248
249 Consistency of Gene Selection
250 We tested the consistency of individual gene selection tools. SAM identified 699 genes that were 
251 selected as differentially expressed by all three mapping methods, of which 251 had a fold change 
252 greater than or equal to 2  (Supplemental Figure 2). CASAVA tended to be more conservative in the 
253 number of genes identified, with a substantial majority of these genes also selected by SHRiMP and 
254 TopHat. 
255
256 Cuffdiff identified 2719 genes that were selected as differentially expressed using both SHRiMP and 
257 TopHat, of which 919 had a fold change greater than or equal to 2 (Supplemental Figure 3). Again, 
258 there was a high degree of consistency between SHRiMP and TopHat, with nearly 90% of genes 
259 identified using data mapped by both methods. 
260
261 There were a total of 240 genes identified by all these analyses (Supplemental Figure 4). SAM, 
262 implemented as described, was much more highly conservative in gene selection. Most genes identified 
263 by SAM were also identified by Cuffdiff, while a majority of genes identified by Cuffdiff (74%) were 
264 not identified by SAM.
265
266 In order to compare gene selection estimation with other mapping algorithms (TopHat and SHRiMP), 
267 we subsequently, focused on Cuffdiff as well. A total of 267 genes were identified as differentially 
268 expressed by SAM on CASAVA, and by Cuffdiff on both SHRiMP and TopHat , which had a fold 
269 change greater than or equal to 2 (Figure 3). 
270
271 Molecular Validation
272 Predicted changes were evaluated by qPCR for 52 of the genes (Table 5). Out of these 32 genes were 
273 identified using CASAVA mapped data separately as reported previously [20]. We chose 10 additional 
274 genes each that were uniquely selected by SHRiMP or TopHat for qPCR validation. These genes were 
275 chosen based on prior knowledge of their relevance to oxidative stress response or lung biology in 
276 general. Genes, that had a significant difference between the two groups (hyperoxia and controls) by 
277 either t-test or Mann-Whitney U test at p-value less than 0.05, were designated as successfully 
278 validated. We report detailed qPCR results for 32 genes identified using CASAVA mapped data 
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279 separately [20]. We validated differential expression for 23 of 32 (72%) of these genes selected by 
280 CASAVA. Of these 32 genes, 29 were selected as differentially expressed by TopHat, and 20 of those 
281 genes (69%) showed significant differences in expression by qPCR. Of these 32 genes, 28 were 
282 selected as differentially expressed by SHRiMP, and 19 of those genes (63%) showed significant 
283 differences in expression by qPCR. Of these 32 genes, 27 were selected as differentially expressed by 
284 all three mapping methods, and 18 of those genes (67%) showed significant differences in expression 
285 by qPCR.  
286
287 Two of the 32 genes were uniquely selected by CASAVA, and both of those genes (100%) showed 
288 significant differences in expression by qPCR. For TopHat, 7 of the 10 (70%) additional unique genes, 
289 and a total of 27 of 39 (69%) genes tested showed significant differences in expression by qPCR. For 
290 SHRiMP, 5 of the 10 (50%) additional unique genes, and a total of 24 of 38 (63%) genes tested showed 
291 significant differences in expression by qPCR. 
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292 DISCUSSION
293 RNA-Seq is becoming the method of choice for genome-wide transcriptomics analysis, and has been 
294 used to identify post-transcriptional changes and other modifications in human diseases such as cancer 
295 [24]. Many methods for data processing and analysis are available, but the best approaches to estimate 
296 differential expression for specific types of data sets are not at all clear. Here, we describe an empirical 
297 assessment of the impact three different mapping algorithms upon the reliability of differential 
298 expression estimation, in a typical genome-wide expression data set from an animal model of disease. 
299 Our initial analysis of this data set indicated a substantial gene expression response associated with the 
300 experimental challenge, such that it was appropriate for the current studies. The rationale behind 
301 choosing these three included multiple factors, such as manufacturer recommendation, usage among 
302 research community, cost, efficiency and ease of usage, among others. 
303
304 Researchers can consider multiple mapping algorithms in their RNA-Seq analysis, which brings up 
305 issues of interoperability. To achieve interoperability, input and output formats need to be 
306 standardized. Currently the level of interoperability is high since most of the mapping algorithms 
307 accept FASTQ format input files and generate SAM/BAM files as output. Prior publications 
308 comparing various combinations of mapping algorithms and tests for differential gene expression have 
309 found high level of consistency among the results [15, 16]. However, these prior studies did not include 
310 subsequent attempts of molecular validation, which is a critical step in any differential expression 
311 analysis.
312
313 It is important to point out that, of the three different mapping algorithms compared in this study, two 
314 of them (SHRiMP and TopHat) were developed at academic institutions, and are freely available, 
315 while the third (CASAVA) is commercial software that is provided by the manufacturer of the 
316 sequencing instrument. We observed that SHRiMP mapping resulted in higher rates of genes detected 
317 as expressed in the samples (80% for SHRiMP, 77% for CASAVA and 76% for TopHat), when 
318 compared to either CASAVA or TopHat. This is likely due to the fact that SHRiMP allows reads to be 
319 mapped to multiple loci, unlike TopHat and CASAVA, which require reads are mapped to a single 
320 locus. Interestingly, a higher number of genes detected as expressed led to higher estimation of 
321 differential expression for SHRiMP, but a somewhat lower level of accuracy as defined by qPCR.
322
323 We report here only a subset of the possible permutations of analysis that could be completed with the 
324 mapping, normalization and gene selection methods we have included. In addition to comparing the 
325 mappers, we also looked at the effects of methods of count generation by running correlation analysis 
326 among the raw and normalized counts of the same samples, and found that even among methods using 
327 different count generation approaches (CASAVA and TopHat), there was a high level of correlation 
328 among the counts (Supplemental Figure 1). This indicated to us that the counting methods, independent 
329 of mapping algorithm, may not have a big impact. Our analysis also revealed that there was a high 
330 level of consistency among the two normalization methods (RPM and TM) on each mapped version of 
331 data, when it comes to gene selection, irrespective of the test for differential expression used. We, 
332 however did notice higher number of genes being identified by Cuffdiff when using FPKM normalized 
333 counts. Even though SAM appeared to be effective in the current data set, applying this analytical 
334 approach to other RNA-Seq datasets identified a number of limitations. For this, and other reasons 
335 (e.g., free access to software, difficulties in generating bam files from CASAVA), we decided to use 
336 SAM analysis of CASAVA data as our benchmark, and focus on the efficiency of Cuffdiff selection 
337 using SHRiMP and TopHat mapping. 
338
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339 Encouragingly, we find that all mapping approaches performed similarly. Overall validation rates for 
340 estimation of differential expression were comparable. CASAVA was most conservative with gene 
341 selection, consistently estimating fewer genes as differentially expressed as compared to SHRiMP and 
342 TopHat. However, this was associated with a higher frequency of validation; 72% for all genes, 100% 
343 for unique genes. Conversely, SHRiMP tended to be slightly more liberal than TopHat, but had a 
344 reduced validation rate than the other mapping approaches (63% for all genes, 50% for unique genes). 
345 It is likely that this is at least partially due to its tolerance for including non-unique mapping for 
346 individual reads. Interestingly, TopHat selected genes as differentially expressed at nearly the same 
347 rate as SHRiMP, but its validation rate was much closer to that of CASAVA (69% for all genes, 70% 
348 for unique genes). It is significant to note that individual genes selected by all mapping methods did 
349 not demonstrate a higher validation rate than those identified by a single mapping method alone.
350
351 CONCLUSIONS
352 In summary, these data describe the differences that can be expected in the performance of these three 
353 common mapping strategies, when applied to a typical genome-wide expression data set comparing 
354 biological paradigms, such as an animal- or cell model response. Our data highlight the importance of 
355 considering the analytical goals when choosing a data analysis approach. For instance, focused 
356 analyses may want to consider a more conservative approach with a slightly higher validation rate, 
357 while discovery approaches may be more tolerant to, and benefit from, more liberal approaches with a 
358 slightly lower validation rate. 
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447 Figure 1: Analysis Workflow. RNA-Seq raw reads were mapped using three separate methods; 
448 CASAVA, SHRiMP and TopHat. Mapped data were normalized using RPM or TM for all three 
449 mapping methods, or FPKM for SHRiMP and TopHat only. Normalized data were filtered and tested 
450 for differential expression using either SAM for all three mapping methods, or CuffDiff for SHRiMP 
451 and TopHat. A subset of the differentially expressed genes was assessed by qPCR.
452
453 Figure 2: Correlation between mapped reads of the sample across three mappers. RPM normalized 
454 counts from individual mappers for the same sample were plotted to identify the correlation between 
455 the expression levels. Shown here are dot plots of two samples (Control: RA 11+12 and Hyperoxia: O2 
456 11+12) between TopHat and CASAVA counts (A:Control, D:Hyperoxia), SHRiMP and CASAVA 
457 (B:Control, E:Hyperoxia) and TopHat and SHRiMP (C:Control, F:Hyperoxia). 
458
459 Figure 3: Summary of gene selection comparison. A comparison of genes with a fold-change greater 
460 than or equal to 2 identified as differentially expressed by SAM using CASAVA mapped data, and by 
461 Cuffdiff on SHRiMP and TopHat mapped data. 
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462 Table 1: Summary of mapping statistics.
463

 CASAVA SHRiMP TopHat
No of genes in genome 21718 23278 23278
Median number of genes mapped 16731 18674 17789
Median number of raw reads (x 106) 16.53 16.53 16.53
Median number of reads assigned to genes (x 106) 11.18 12.75 12.56
Median alignment rate (%) NA 85.26 74.94
Median gene detection rate (%) 77.03 80.21 76.42

464
465 Table 2: Differential expression estimated by CASAVA.
466

CASAVA SAM   
 RPM TM Overlap
Significant Genes 1017 1019 798
FC > 2 472 446 300
No. of up-regulated 210 180 132
No. of down-regulated 262 266 168
% of up-regulated 0.44 0.40 0.44
% of down-regulated 0.56 0.60 0.56

467
468 Table 3: Differential expression estimation by SHRiMP.
469

SHRiMP SAM    Cuffdiff
 RPM TM Overlap  FPKM
Significant Gene 937 879 857 3886
FC > 2 401 386 379 1087
No. of up-regulated 170 157 153 623
No. of down-regulated 231 229 226 464
% of up-regulated 0.42 0.41 0.40 0.57
% of down-regulated 0.58 0.59 0.60 0.43

470  
471
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472 Table 4: Differential expression estimation by TopHat.
473

TopHat SAM   Cuffdiff
 RPM TM Overlap FPKM
Significant Gene 951 880 860 2831
FC > 2 418 412 396 1044
No. of up-regulated 179 172 165 593
No. of down-regulated 239 240 231 451
% of up-regulated 0.43 0.42 0.42 0.57
% of down-regulated 0.57 0.58 0.58 0.43

474
475 Table 5:  qPCR validation rate. Genes were significantly different by either T-Test or MWU at p<0.05
476

Mapping 
Programs

No. of Gene 
Chosen 

No. of Gene 
Validated

Validation 
Rate (%)

Validation Rate of 
Unique Gene (%)

CASAVA 32 23 71.87% 100%
TopHat 39 27 69.23% 70%
SHRiMP 38 24 63.16% 50%

Overlap 27 18 66.67%  
477
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Figure 1(on next page)

Analysis Workflow.

RNA-Seq raw reads were mapped using three separate methods; CASAVA, SHRiMP and

TopHat. Mapped data were normalized using RPM or TM for all three mapping methods, or

FPKM for SHRiMP and TopHat only. Normalized data were filtered and tested for differential

expression using either SAM for all three mapping methods, or CuffDiff for SHRiMP and

TopHat. A subset of the differentially expressed genes was assessed by qPCR.
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Figure 2(on next page)

Correlation between mapped reads of the sample across three mappers.

RPM normalized counts from individual mappers for the same sample were plotted to identify

the correlation between the expression levels. Shown here are dot plots of two samples

(Control: RA 11+12 and Hyperoxia: O2 11+12) between TopHat and CASAVA counts

(A:Control, D:Hyperoxia), SHRiMP and CASAVA (B:Control, E:Hyperoxia) and TopHat and

SHRiMP (C:Control, F:Hyperoxia). @0�
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Figure 3(on next page)

Summary of gene selection comparison.

A comparison of genes with a fold-change greater than or equal to 2 identified as

differentially expressed by SAM using CASAVA mapped data, and by Cuffdiff on SHRiMP and

TopHat mapped data.
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