Isolation & identification of *Yersinia & Pseudomonas* sp. from Australian milk & salad using 16s rDNA

Malile

Malik Adil Nawaz^{1*}, Rewati Raman Bhattarai²

¹School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Qld 4072, Australia.

²Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Qld 4072, Australia.

Correspondence: Malik Adil Nawaz, School of Agriculture and food Sciences, The University of Queensland, St Lucia, Qld, 4072, Australia

Email: malik.nawaz@uqconnect.edu.au Phone: +61 426244515

Abstract

A systematic research was conducted for the isolation and identification of undesirable microorganisms in food products using molecular approach. The result revealed the presence of *Yersinia aleksiciae* and *Pseudomonas fluorescens* strains in Australian pasteurized milk and mixed salad respectively. *Y. aleksiciae* grouped as lacking virulence marker and is regarded non-pathogenic. *P. fluorescens* has been identified as a marker of spoilage of ready-to-eat vegetable salads. This study confirms the rapidity and sensitivity of 16s rDNA analysis in identifying strains which contribute in early monitoring, accurate analysis and control of microbial risks in food products. The described methodology has special relevance in food quality control and safety.

Key words: Milk, Mixed salad, Yersinia, Pseudomonas, PCR

Introduction

Control of microbial spoilage of agro-products is crucial for the quality and safety of foods (Zhang, *et al.*, 2014) which requires an understanding of a number of factors including the knowledge of possible hazards, their likely occurrence in different products, their physiological properties and the availability and effectiveness of different preventative measures (Blackburn, 2006). The rapid, accurate and reliable identification of spoilage microorganisms through PCR is very important in the efficient monitoring of microbiological quality, especially in raw and ready-to-eat foods (Arakawa, *et al.*, 2008).

Milk is a significant food of human nutrition owing to its high nutritional value. It is naturally a good medium for growth of microorganisms. Quality control of milk and milk products is therefore of paramount importance (Bashir, *et al.*, 2014). Recent outbreaks of food-borne illnesses associated with milk and dairy products consumption have been found to be contaminated with pathogenic microorganisms such as *Listeria* spp., *Salmonella* spp., *Campylobacter* spp. and *Yersinia* spp. (Gram, *et al.*, 2002). Microbial analysis of milk and dairy products therefore has a critical role to play in the quality evaluation of these products, promoting public health safety (Nicolaon and Goodacre, 2008; Bashir, *et al.*, 2014).

The popularity of fresh cut fruits and vegetables mixed salad is increasing day by day. The incidence of food borne illness associated with fresh-cut salads is very low relative to the quantity consumed; the increased use of these products has been accompanied by an increase

49

50 51

52

53 54

56

57 58

59

60 61

62

63

64

66

67 68

70 71

72 73

74 75

76

77

78

80

82

83

84 85

86 87

88

89

90

91 92

93

94 95

96

97

98 99

100101

in reported outbreaks associated with their consumption (Palumbo, et al., 2007). The predominant microbiological populations in ready-to-eat salads are psychrotrophs including *Pseudomonas* spp. and *Erwinia* spp.. Pectolytic strains of Pseudomonas have been reported to cause vegetable deterioration during storage (Willocx, et al., 1993). Recent statistics shows that consumption of milk and salad is increasing in Australia (Moore, 2014). In this context, the present investigation will be highly beneficial to mitigate the problems associated with consuming contaminated food. Not only will the consumers, food industries also be equally profited.

Molecular approaches, especially those based on the use of rRNA genes (DNA) and related techniques, have provided the opportunity to analyse complex communities on the basis of sequence diversity. Bacterial species can be identified by generating clone libraries of the 16S rDNA followed by sequencing and comparison with databases containing thousands of ribosomal sequences to allow a phylogenetic affiliation to cultured, as well as uncultured microorganisms (Ercolini, 2004). Unlike conventional cultivation methods which are time consuming and labour intensive, molecular diagnosis tools being highly powerful, sensitive and rapid are gaining popularity for microbial identification (Böhme *et al.*, 2014). To obtain knowledge on the bacterial communities of pasteurized milk and fresh cut salad, packaged under ordinary packaging, in the present study a polyphasic characterization mainly based on molecular approaches, was applied. Therefore, the aim of this study was to identify the foodborne pathogens especially *Yersinia* and *Pseudomonas* spp. from milk and salad through 16s rDNA using PCR.

Material and Methods

The experiment was conducted at the School of Agriculture and Food Sciences, University of Queensland, Australia.

Isolation and Identification of Bacterial Species Two food samples were brought in for isolation and identification of bacteria. The first food sample was Australian Lite Milk. The other food sample was Australian Mixed Salad. 10 samples of each food product (milk and salad) were purchased from the local supermarket. The samples were streak plated on the nutrient agar and incubated at 37°C for 24 hrs. The single and isolated colonies were restreaked on nutrient agar plates to obtain pure cultures.

The well isolated colonies (one round and white colony from each sample) were inoculated into 10 mL of nutrient broth and incubated at 37°C. The gDNA was extracted; PCR and sequencing were performed as described by (Matrone, et al., 2009). 16s rDNA was amplified from genomic of Р. fluorescens primers DNA with the 5'TGGCTCAGATTGAACGCTGGCGG-3' and 5'-GATCCAGCCGCAGGTTCCCCTAC-3′ aleksiciae 5'-GAATATTGCACAATGGGCGCA-3' and 5'and for *Y*. AACAAACCGCCTGCGTGCGC-3' primers were used.

The PCR reaction was carried out in 10X PCR buffer containing 10 mM dNTPs, 10 μ M each primer, 50mM MgCl₂ and 1 μ l gDNA. The PCR program was: 95°C for 2 min; 30 cycles of 95°C for 30 sec, 52°C for 30 sec, 72°C for 2 min and extra 72°C for 5 min . The resulting PCR products were observed on 1% agarose gel electrophoresis in 1X TAE buffer at 120 V for 60 min then the gel was stained with ethidium bromide solution for 10-15 min and photographed on gel documentation system (Bio-Rad). The PCR products were purified with high pure PCR product purification kit (Roche).

Results and Discussion

The initial 16 streak results showed round white colonies produced in milk sample while three different colonies (round yellow, round orange and round white) produced in salad sample. Well isolated round white colonies from both samples were isolated.

Agarose gel of bacterial genomic DNA revealed that both samples comprised of high

139

140

141

142

143

144

145

146

147148

149150

151

152

153154

102

103

104

105

106

107

108

109

110111

112

113

114

115

116

molecular weight DNA and thus was suitable for PCR. The only problem was in mixed salad sample in which the DNA was bit degraded. From the result of agarose gel of PCR product (Figure 1), comparing to the DNA marker, it can be the sample DNA has about 1400 base pairs.

A partial DNA sequence from 20 to 800 was analysed in BLAST website. Both samples show a high ratio match to the database. The result from BLAST database showed the DNA sequence of bacteria isolated from milk sample had 100% matches (Figure 2) with the DNA sequence of *Y. aleksiciae* strain DSM 14987 (Accession FJ717341) while the result from salad sample had 100% matches (Figure 2) with the DNA sequence of *P. fluorescens* strain 1408 (Accession GU726880).

The genus Yersinia is composed of 12 species and belongs to the Enterobacteriaceae family. The most recent addition to the genus Yersinia is Y. aleksiciae. The species name Y. aleksiciae was proposed by Sprague and Neubauer (2005) for a group of strains isolated from diverse origins (human faeces, rats, moles, reindeer and pigs, and from dairy products) formerly classified as Y. kristensenii serotype O:16. Y. aleksiciae is a Gram-negative, motile, coccoid rods. Y. aleksiciae can also be grouped with Y. enterocolitica—like species. Y. enterocolitica—like bacteria lack the classical Yersinia virulence markers and thus have generally been regarded as non-pathogenic. Y. enterocolitica like bacteria have been isolated from almost any possible environmental source imaginable (Sulakvelidze, 2000). Ibrahim, et al., (1997) isolated thirty-eight bacterial isolates from raw milk samples in Queensland, Australia which were identified as members of the genus Yersinia on the basis of biochemical profile, and comparative 16s rDNA sequence analysis. Likewise Prasad and Turner (2011) reported Y. aleksiciae from expired milk highlighting low level of pathogen are generally nonproblematic and strain isolated may not contain virulence factor.

P. fluorescens is a spoilage-causing bacterium present in a variety of food related environments (Sillankorva, et al., 2008). P. fluorescens has been identified as a marker of spoilage of ready-to-eat vegetable salads (Wei, et al., 2006). Prasad & Turner (2011) isolated this bacterium from raw milk and mixed salad. Moreover, Randazzo, et al., (2009) also reported that Pseudomonaceae was the major group of microorganisms contaminating fresh cut salad products. Members of this family are typically present in soil and plants and their distribution are affected by farming procedures (Behrendt, et al., 2001). Many species of the genus Pseudomonas have been previously isolated in field-grown samples such as salad vegetables (Robbs, et al., 1996). These bacteria are tightly associated with plant matrices and are not removed during washing procedures. Among Pseudomonaceae family, P. fluorescens is an opportunistic pathogens, which shows resistance to different antibiotics (Hamilton-Miller and Shah, 2001). Although the behaviour of psychrotrophic bacteria is not always comparable due to the variability of fresh produce, the quality of vegetable salad may be inferior, both through tissue disruption and/or the production of polysaccharides (Tallgren, et al., 1999). Storage at refrigerated temperatures generally selects in favour of the growth of psychrotrophic bacteria, including the pectinolytic *Pseudomonas* (Nguyen-The and Carlin, 1994). Different species of *Pseudomonas* are able to produce pectinolytic enzymes which could influence textural changes in fresh-cut vegetables by degrading the middle lamella and the primary cell wall (Ragaert, et al., 2007). Moore (2014) reported milk as an indispensable item in Australian diet and more than 75% of population consuming vegetables including salads. Regular consumption of healthy foods (including milk and salad) have beneficial effects on human health.

Conclusion

The results of this study confirm the sensitivity of 16s rDNA analysis in identifying strains to the species level, and as an additional, indispensable tool for differentiation among strains expressing heterogeneous biochemical profiles. Such rapid and sensitive detection of microorganisms helps to early detect and control microbial risks in food products.

References

- Arakawa K, Kawai, Y, Iioka, IH, Tanioka, M, Nishimura, J, Kitazawa, H, Tsurumi, K, Saito, T (2008) Microbial Community Analysis of Food-Spoilage Bacteria in Commercial Custard Creams Using Culture-Dependent and Independent Methods. J Dairy Sci 91:2938-2946.
 - Bashir, S, Awan, MS, Khan, SA, Suthar, V, Khan, MM, Khan, MT (2014) Microbiological Quality Evaluation of Raw Milk Consumed in and Around Rawalakot, Azad Jammu and Kashmir. Intl J Microbial Res 5:112-116.
 - Behrendt, U, Ulrich, A, Schumann, P, (2001) Description of *Microbacterium foliorum* sp. nov. and *Microbacterium phyllosphaerae* sp. nov. isolated from the phyllosphere of grasses and the surface litter after mulching the sward and reclassification of *Aureobacterium resistens* as *Microbacterium resistens* comb. Nov.. Int J Sys Evo Microbiol 51:1267–1276.
 - Blackburn, C (2006) Food Spoilage Microorganisms, Woodhead Publishin Limited.
 - Böhme, K, Cremonesi, P, Severgnini, M, Villa, TG, Fernández-No, IC, Barros-Velázquez, J, Castiglioni, B, Calo-Mata, P, (2014) Detection of Food Spoilage and Pathogenic Bacteria Based on Ligation Detection Reaction Coupled to Flow-Through Hybridization on Membranes. BioMed Res Int 2014: 1-11 doi:10.1155/2014/156323
 - Ercolini, D (2004) PCR-DGGE fingerprinting: novel strategies for detection of microbes in food: a review. J Microbiol Methods 56:297–314.
 - Gram, L, Ravn, L, Rasch, M, Bruhn, JB, Christensen, AB, Givskov, M (2002) Food spoilage interactions between food spoilage bacteria. Int J Food Microbiol 78:79-97.
 - Hamilton-Miller, JMT, Shah, S (2001) Identity and antibiotic susceptibility of enterobacterial flora of salad vegetables. Int J Antimicrobial Agents 18:81–83.
 - Ibrahim, A, Liesack, W, Steigerwalt, AG, Brenner, DJ, Stackebrandt, E, Robins-Browne, R M (1997) A cluster of atypical *Yersinia* strains with a distinctive 16S rRNA signature. FEMS Microbiol Letters 146:73–78.
 - Matrone, M, Keid, LB, Rocha, VCM, Vejarano, MP, Ikuta, Cy, Rodriguez, CAR, Ferreira, F, Dias, RA, Ferreira Neto, JS (2009) Evaluation of DNA extraction protocols for *Brucella abortus* PCR detection in aborted foetuses or calves born from cows experimentally infected with strain 2308. Brazil. J Microbiol 40:480-489.
 - Moore, G. (2014). Australian eating habits survey the results? Could do better...(Accessed on 9/10/2014 from http://www.sumosalad.com/australian-eating-habits-survey-the-results-could-do-better/)
 - Nguyen-The, C, Carlin, F (1994) The microbiology of minimally processed fresh fruits and vegetables. Crit Reviews Food Sci Nut 34:371–401.
 - Nicolaon, N, Goodacre, R (2008) Rapid and quantitative detection of the microbialogical spoilage in milk using Fourier transform infrared spectroscopy and chemometrics. The Analyst 133:1424-1431.
 - Palumbo, MS, Gorny, JR, Gombas, DE, Beuchat, LR, Bruhn, CM, Cassens, B, Delaquis, P, Farber, JM, Harris, LJ, Micheal, KI, Osterholm, T, Smith, M, Swanson, KMJ (2007) Recommendations for handling fresh-cut leafy green salads by consumers and retail food service operators. Food Protection Trends 27:892-898.
 - Prasad, P, Turner, MS (2011) What bacteria are living in my food?: An open-ended practical series involving identification of unknown foodborne bacteria using molecular techniques. Biochem Mol Bio Edu *39*:384-390.
- Randazoo, CL, Caggia, C, Neviani, E (2009) Application of molecular approaches to study lactic acid bacteria in artisanal chesses. J Microbial Meth 78:1-9.
- Ragaert, P, Devlieghere, F, Debevere, J (2007) Role of microbiological and physiological

221222

223

224

225226

- spoilage mechanisms during storage of minimally processed vegetables. Postharvest Bio Technol, 44:185–194.
- Robbs, PG, Bartz, JA, Sargent, SA, McFie, G, Hodge, NC (1996) Potential inoculums sources for decay of fresh-cut celery. J Food Sci 61:449–452.
- Sillankorva, S, Neubauer, P, Azeredo, J (2008) *Pseudomonas fluorescens* biofilms subjected to phage phiIBB-PF7A. BMC Biotechnol 8:1-12.
 - Sprague, LD, Neubauer, H (2005) *Yersinia aleksiciae* sp. nov.. Int J Sys Evo Microbiol 55:831-835.
 - Sulakvelidze, A (2000) *Yersiniae* other than *Y. enterocolitica*, *Y. pseudotuberculosis*, and *Y. pestis*: the ignored species. Microbes and Infection 2:497–513.
 - Tallgren, AH, Airaksinen, U, von Weissenberg, R, Ojamo, H, Kuusisto, J, Leisola, M (1999) Exopolysaccharide-producing bacteria from sugar beets. Applied Envir Microbiol 65:862–864.
 - Wei, H, Wolf, G, Hammes, WP (2006) Indigenous microorganisms from iceberg lettuce with adherence and antagonistic potential for use as protective culture. Innovative Food Sci Emerging Technol 7:294-301.
 - Willocx, F, Mercier, M, Hendricks, M, Tobback, P (1993) Modelling the influence of temperature and carbon dioxide upon the growth of *Pseudomonas fluorescens*. Food Microbiol 10:159-173.
 - Zhang, SB, Zhai, HC, Hu, YS, Wang, L, Yu, GH, Huang, SX, Cai, JP (2014) A rapid detection method for microbial spoilage of agro-products based on catalase activity. Food Control, 42:220-224.

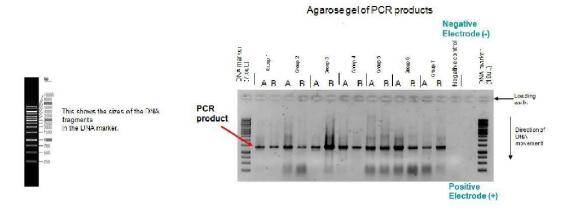


Figure 1 - Agarose Gel of PCR Products.

```
partial sequence Yersinia aleksiciae strain DSM 14987 165 ribosomal RNA gene,
Length=1484
 Score = 702 bits (380), Expect = 0.0
Identities = 380/380 (100%), Gaps = 0/380 (0%)
 Strand=Plus/Plus
Query 1
           GCGCAAGCCTGATGCAGCCATGCCGCGTGTGTGAAGAAGGCCTTCGGGTTGTAAAGCACT
           Sbjct 340
          GCGCAAGCCTGATGCAGCCATGCCGCGTGTGTGAAGAAGCCCTTCGGGTTGTAAAGCACT
                                                                   399
Query 61
           120
           Sbict 400
                                                                   459
          Query 121 AAGCACCGGCTAACTCCGTGCCAGCAGCCGCGGTAATACGGAGGGTGCAAGCGTTAATCG
           Sbjet 460
          AAGCACCGGCTAACTCCGTGCCAGCAGCCGCGGTAATACGGAGGGTGCAAGCGTTAATCG
Query 181
           GAATTACTGGGCGTAAAGCGCACGCAGGCGGTTTGTTAAGTCAGATGTGAAATCCCCGCG
                                                                   240
           Sbjct 520
                                                                   579
          GAATTACTGGGCGTAAAGCGCACGCAGGCGGTTTGTTAAGTCAGATGTGAAATCCCCGCG
          CTTAACGTGGGAACTGCATTTGAAACTGGCAAGCTAGAGTCTTGTAGAGGGGGGTAGAAT
Query 241
                                                                   300
Shigt 580
          CTTAACGTGGGAACTGCATTTGAAACTGGCAAGCTAGAGTCTTGTAGAGGGGGGGTAGAAT
                                                                   639
           TCCAGGTGTAGCGTGAAATGCGTAGAGATCTGGAGGAATACCGGTGGCGAAGGCGGCCC
Query 301
           Sbjct 640
          TCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCGGTGGCGAAGGCGGCCC
                                                                   699
Query 361 CCTGGACAAAGACTGACGCT 380
         CCTGGACAAAGACTGACGCT
Sbjet 700
> gb (GU726880.1) Pseudomonas fluorescens strain 1408 165 ribosomal RNA gene, partial
sequence
Length=1399
 Score = 782 bits (423), Expect = 0.0 Identities = 423/423 (100%), Gaps = 0/423 (0%)
 Strand=Plus/Plus
          TAATGGCTCACCAAGGCGACGATCCGTAACTGGTCTGAGAGGATGATCAGTCACACTGGA 60
Query 1
Sbjet 196 TAATGGCTCACCAAGGCGATCCGTAACTGGTCTGAGAGGATGATCAGTCACACTGGA 255
Query 61
          ACTGAGACACGGTCCAGACTCCTACGGGAGGCAGCAGTGGGGGAATATTGGACAATGGGCG 120
          ACTGAGACACGGTCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGGACAATGGGCG
Sbjct 256
          Query 121
                                                             180
Sbjct 316
Query 181
          AGTTGGGAGGAAGGGTTGTAGATTAATACTCTGCAATTTTGACGTTACCGACAGAATAAG 240
          AGTTGGGAGGAAGGGTTGTAGATTAATACTCTGCAATTTTGACGTTACCGACAGAATAAG
Sbjot 376
                                                             435
          CACCGGCTAACTCTGTGCCAGCAGCCGCGGTAATACAGAGGGTGCAAGCGTTAATCGGAA 300
CACCGGCTAACTCTGTGCCAGCAGCCGCGGTAATACAGAGGGTGCAAGCGTTAATCGGAA 495
Query 241
Sbjct 436
          TTACTGGGCGTAAAGCGCGCGTAGGTGGTTCGTTAAGTTGGATGTGAAATCCCCGGGCTC
TTACTGGGCGTAAAGCGCGCGTAGGTGGTTCGTTAAGTTGGATGTGAAATCCCCGGGCTC
Ouery 301
                                                             360
Shict 496
                                                             555
Query 361 AACCIGGGAACTGCATCCAAAACTGGCGAGCTAGAGTATGGTAGAGGGTGGTGGAATTTC 420
          AACCIGGGAACTGCATCCAAAACTGGCGAGCTAGAGTATGGTAGAGGGTGGTAGTTTC 615
Sbict 556
```

Figure 2 - BLAST Nucleotide Sequence.

Query 421 Sbjct 616

CTG 618