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13 Abstract: A central tenet of ecology and biogeography is that the broad outlines of

14  species ranges are determined by climate, whereas the effects of biotic interactions are
15  manifested at local scales. While the first proposition is supported by ample evidence,
16  the second is still a matter of controversy. To address this question, we develop a

17  mathematical model that predicts the spatial overlap, i.e., co-occurrence, between pairs
18  of species subject to all possible types of interactions. We then identify the scale in

19  which predicted range overlaps are lost. We found that co-occurrence arising from

20  positive interactions, such as mutualism (+/+) and commensalism (+/0), are manifested
21 across scales of resolution. Negative interactions, such as competition (-/-) and

22 amensalism (-/0), generate checkerboard-type co-occurrence patterns that are

23 discernible at finer resolutions. Scale dependence in consumer-resource interactions (+/-
24 ) depends on the strength of positive dependencies between species. Our results

25  challenge the widely held view that climate alone is sufficient to characterize species
26  distributions at broad scales, but also demonstrate that the spatial signature of

27  competition is unlikely to be discernible beyond local and regional scales.

28
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33 Introduction

34  The question of whether the geographical ranges of species are determined by their

35 ecological requirements and the physical characteristics of individual sites, or by

36  assembly rules reflecting interactions between species, has long been a central issue in
37  ecology (e.g., Andrewartha and Birch 1954, Diamond 1975, Gotelli and Graves 1996,
38  Chase and Leibold 2003, Peterson et al. 2011). Evidence is compelling that the limits of
39  species ranges often match combinations of climate variables, especially at high

40 latitudes and altitudes (e.g., Grinnell 1917, Andrewartha and Birch 1954, Hutchinson
41 1957, Woodward 1987, Root 1988), and that these limits shift through time in

42 synchrony with changes in climate (e.g., Walther et al. 2005, Hickling et al. 2006,

43 Lenoir et al. 2008). However, recent evidence suggests that the thermal component of
44  species climatic niches is more similar among terrestrial organisms than typically

45  expected (Araujo et al. 2013), leading to the conclusion that spatial turnover among
46  distributions of species might often result from non-climatic factors (see also for

47  discussion Baselga et al. 2012a). The degree to which non-climatic factors shape the
48  distributions of species has been focus of discussion in community ecology and

49  biogeography for over a century, with several authors proposing that climate exerts

50 limited influence at lower latitudes and altitudes (e.g., Wallace 1878, Dobzhansky 1950,
51  Loehle 1998, Svenning and Skov 2004, Colwell et al. 2008, Baselga et al. 2012b).

52  Specifically, much interest exists regarding the extent to which occurrences of species
53  are constrained by the distributions of other species at broad scales of resolution and
54  extent (e.g., Gravel et al. 2011). It has been argued that biotic interactions determine
55  whether species thrives or withers in a given environment, but that the spatial effects
56  associated with these interactions are lost at broad scales (e.g., Whittaker et al. 2001,
57  Pearson and Dawson 2003, McGill 2010). In contrast, modelling studies have hinted
58 that biotic interactions could leave broad-scale imprints on coexistence and, therefore,
59  on species distributions (e.g., Aratjo and Luoto 2007, Heikkinen et al. 2007, Meier et
60 al. 2010, Bateman et al. 2012). But empirical evidence for the broad scale effects of
61  biotic interactions is limited. A study has shown that with scales of few hundred

62  kilometres the effects of competition on geographical ranges can still be discernible
63  (Gotelli et al. 2010), but at scales of biomes such effects are often diluted (Russell et al.
64 2006, Veech 2006). How general are these patterns?

65
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66  Empirical studies of the effects of biotic interactions on species distributions have

67 historically focused on competition (e.g., Gause 1934, Hardin 1960, MacArthur 1972,
68  Schoener 1982, Amarasekare 2003). However, several authors have pointed out that a
69  greater variety of interactions can control for spatial patterns of overlap between species
70  (e.g., Hairston et al. 1960, Connell 1975, Ricklefs 1987, Callaway et al. 2002, Bruno et
71 al. 2003, Travis et al. 2005, Ricklefs 2010). Competition is a specific case involving two
72 species that are worse off interacting with one another (which we annotate as: -/-). In its
73 extreme form, competition leads to co-exclusion of the interacting species (MacArthur
74 1972). The reverse of competition is mutualism, whereby two species display mutual

75  dependency (+/+). Different combinations of positive, negative, and neutral

76  relationships exist and they generate consumer-resource interactions such as predation,
77  herbivory, parasitism and disease (+/-), or amensalism (-/0) and commensalism (+/0).
78

79  The spatial effects of the different biotic interactions have rarely, if ever, been

80 investigated. Differences in patterns of co-occurrence arising from alternative biotic

81 interactions are seldom stated and focus has been on identifying non-random patterns of
82  co-occurrence between pairs of species (e.g., Gotelli and McCabe 2002, Horner-Devine
83 etal. 2007, Gotelli et al. 2010). Substantial controversy exists regarding the appropriate
84  null models in such analyses (for review and discussion see Gotelli and Graves 1996),
85  but the more fundamental question of whether departures from randomness in co-

86  occurrence patterns provide interpretable information regarding the underlying biotic

87  interactions remains unanswered.

88

89 In practice, several biotic and abiotic factors can simultaneously affect the distributions
90 of species (e.g., Soberon 2010, Peterson et al. 2011) and, therefore, co-occurrence (e.g.,
91  Cohen 1971, Leibold 1997, Amarasekare et al. 2004, Ovaskainen et al. 2010, Aragjo et
92 al. 2011). One approach to disentangle the relative importance of factors causing

93  changes in species co-occurrence is through simulations (Urban 2005). Here, we

94  develop a novel ‘point-process’ model that infers co-occurrence of species across the

95 full space of potential biotic interactions between pairs of species: i.e., given all biotic
96 interaction types (+/+, +/-, -/-, /0, -/0) and all possible combinations of biotic

97 interaction strength (0 < I, < 1) (for more details see material and methods). Dynamic
98  Lotka-Volterra-type models could also be used as they explicitly simulate the effects of

99 different biotic interactions on population dynamics (e.g., predation, competition,
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100  mutualism, see for review Kot 2001). However, Lotka-Volterra models require detailed
101  parameterization of mortality and colonization rates that are highly contingent and are
102 usually impossible to obtain. Furthermore, models predicting the spatial effects of

103  repulsive and attractive interactions at steady state would be particularly useful if the
104  goal is to examine these spatial effects rather than the underlying population dynamics
105 that generate them (see also Dieckmann et al. 2000, Law and Dieckmann 2000). The
106  critical issue 1s whether a simple point-process model, such as ours, simulates spatial
107  patterns of co-occurrence comparable with dynamic Lotka-Volterra models at

108  equilibrium. Preliminary analysis comparing our model with Markov-chain formulation
109  of Lotka-Volterra models by Cohen (1970) supports this view and is being prepared for
110  publication elsewhere (Rozenfeld & Aratijo, unpublished).

111

112 In the current implantation of the proposed point-process model, and to control for the
113 effects of species range sizes and environmental clustering on species distributions,

114  simulations were replicated for species ranges with varying prevalence and spatial

115  autocorrelation. Once co-occurrence between two species was estimated, we sampled
116  ranges at increasingly coarser scales of resolution (i.e., by increasing grid-cell size) and
117  identified the scale at which the original patterns of co-occurrences lost the signature of
118 the biotic interactions effects. When the effects of biotic interactions on patterns of co-
119  occurrence of species were maintained across scales of resolution we interpreted the
120  pattern as providing evidence for scale independence. In contrast, biotic interactions
121  generating patterns of co-occurrence that were lost at increasing scales of resolutions
122 were interpreted as being strongly dependent on the scale.

123

124  Material and methods

125  The model

126 The primary assumption of our point-process model is that the signal of biotic

127  interactions drives spatial attraction (for +) or repulsion (for -). It follows that if no

128 interactions are present (0/0), co-occurrence between species ranges is dependent on
129  their prevalence (p=fraction of the sites where the species is present). Formally, if

130  species probabilities of occurrence are equal to their respective prevalence, i.e.,

131  P(A) = p4 and P(B) = pg, then the probability of co-occurrence between ranges of
132 two non-interacting species is given by

133 P)\h.ll(A N B) = pApD (]\

IVULL X
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The probability of co-occurrence is the expected fraction of sites where species co-
occur. If species A and B interact, then their overlap is a function of both their

prevalence and the strength of their interactions I, and I

P(ANB) = f(pa, PpslasIp) (2)

Interactions can be either attractive I3 or repulsive I7, with 0 < I 275 < 1. It follows
that I stands for the intensity with which species A is attracted by B, and I3 is the
intensity with which species B is attracted by A. Likewise, I; stands for the intensity
with which species A repulses B, and I is the intensity with which species B repulses

A.

In the particular case of mutualism (+/+), positive interactions will cause species to co-
occur more often than expected under the null model

P/ (AN B) = pupp + max(If, I7) X[min (04 05) — Paps] 3)
Where the second term in equation 3 estimates the excess of co-occurrence due to
positive (+/+) interactions. The maximum fraction of sites where species co-occur is
limited by the prevalence of the species with the most restricted range, i.e., min (o4 pp).
So that [min (ps pp) — paps] refers to the maximum excess of co-occurrence over the
null model. With interactions (+/+), the species with the greatest positive dependence is
the one that constrains co-occurrence between the two interacting species. That is, the
maximum excess of co-occurrence is modulated by the maximum attracting index
(max(Iy, I3)).

So,

PaPB IF=0 and If =0

P ANB) =
e/l ) {min(pA,pB) IF=1 or If =1
When both interaction strengths are 0 we recover the null expectation, and when one of

the species is fully dependent on the other the co-occurrence range is maximal.

In the case of competition (-/-), negative interactions will cause the species to co-occur
less often than expected under the null model

P_,-y(ANB) = pappx[1 —max(l;,I5)] 4)
Co-occurrence will tend to zero as the interaction strength of at least one of the

interacting species approaches 1. With interactions (-/-), the species with the greatest
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165  negative (repulsive) interaction is the one that constrains co-occurrence between the two
166  interacting species. That is, co-occurrence decreases below the null expectation

167  proportionally to the maximum repulsion strength (max(l;, I )).

168  So,

_(papg Iy =0 and Iz =0
P(-/-)(A”B)‘{ 0 Iy=1or =1

169  When both interaction strengths are 0 we recover the null expectation and, when one of
170  the species is fully excluded by the other, co-occurrence is zero.

171

172 In the case of consumer-resource interactions (+/-) with A being the consumer and B the
173 resource, both positive and negative interactions will cause co-occurrence to deviates
174  from the null expectation

175 Pry—(ANB) = [papp + I x(min (o4 p5) — paps)1x(1 = I3) (5)
176 ~ The equation 5 is a combination of equations 3 and 4. The first factor [p,pp +

177 (min (paps) — pApB)Ij’] corresponds to equation 3 with I = 0, and it shows how co-
178  occurrence is increased due to the positive dependence of species A on B. The second
179  factor (1 — I5) reduces co-occurrence proportionally to the repulsive strength (I5) .
180  So,

PaPs If=0 and I3 =0
P/-y(ANB)=<{min (pypp) Iy =1 and Iz =0
0 I =1

181  When both interaction strengths are 0 we recover the null expectation. When species A
182  1is fully dependent on B and species B does not repulse A then the co-occurrence reaches
183  its maximum. Finally, when species B repulses A with maximum intensity co-

184  occurrence is forbidden.

185

186  Notice that commensalism is a special case of mutualism (with I7 = 0) or predation,
187  parasitism and disease (with Iz = 0), while amensalism is a special case of competition
188  (with Iz = 0). By varying the sign (+, -) and the strength I, (0 < x < 1), our model
189  predicts range overlaps across the full biotic interaction space.

190

191  Simulations

192  The general formulation of our point-process model defines rules of attraction and

193  repulsion among species subject to different biotic interaction types and strengths, but
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194  these interactions take place in non-heterogeneous landscapes where multiple drivers, in
195  addition to interactions, can affect species ranges and, therefore, co-occurrence.

196  Constraints to the general model can be added to take these drivers into account, such as
197  varying the ecological niches of species (both in the sense of species affecting and being
198  affected by the environment, e.g., Chase and Leibold 2003, Peterson et al. 2011), or

199  dispersal (both in the sense of species having the ability to disperse and being prevented
200  from it due to external barriers, e.g., Levin 1974, Pulliam 1988, Hanski 1998,

201  Humphries and Parenti 1999). Here, we explore two features of species ranges that we
202  deem relevant for studying the geographical scaling of biotic interactions. The first is
203  prevalence (p). In one implementation of the model, the prevalence of species is

204  relatively low: each species occupies 10% of the studied region (0=0.1). In the other
205 implementation of the model species occupy 30% (0=0.3) of the studied region.

206

207  The second feature explored is the placement of ranges. In one implementation of the
208  model, species B is randomly located and species A is constrained by species B. Under
209  this model, environmental conditions are assumed to be homogenous across the studied
210 area as it would be expected if range overlaps were measured within a given habitat

211  type. In such a scenario, species B can be found anywhere in geographical space and
212 range overlaps between species A and B are solely determined by prevalence and the
213 attractive and repulsive effects of interactions. In the modified model, the distribution of
214  species B is spatially structured while species A is a function of species B. This

215  implementation of the model simulates range overlaps when the distribution of one of
216  the species is highly autocorrelated (e.g., Legendre 1993, Dormann et al. 2007). Such
217  autocorrelation can arise because strong environmental gradients exist and act to

218  constrain species ranges (as might often occur at biogeographical extents) and/or when
219  dispersal, demographic or behavioural factors cause individuals to aggregate in specific
220  portions of geographical space (as might often occur at local and landscape extents). All
221 simulations were performed in lattices of 100x100 pixels. In order to account for

222 stochastic differences in the placement of the ranges, simulations were repeated 1000
223 times. Details on the generation of random and spatially autocorrelated distributions are
224  provided in the supporting online material, together with the Mat Lab computer code
225  written by AR and used to generate the species ranges (see supporting online material).
226
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Measuring spatial dependencies in biotic interactions

To address the question of how co-occurrences emerging from different biotic
interactions affect species distributions at different spatial resolutions we used a
hierarchical framework (Allen and Starr 1982). We compared co-occurrence scores
(measured as the ratio of the number of geographical cells where species A and B co-
occur to the total number of occupied cells) at the original resolution used to fit all of
our models (the cell in our lattice landscape) with co-occurrences measured at
progressively larger scales of resolution. This hierarchical framework for scaling was
achieved by increasing the size of the blocks where individuals occur, and then
quantifying the resulting co-occurrence. The quantification of co-occurrence was done
using two approaches. The first seeks to preserve information about the ‘true’ co-
occurrence of species that exists within geographical blocks and counts species as co-
occurring if, and only if, they co-occur within one or more cell within the larger block.
The second emulates the traditional approach of ‘sampling’ species occurrences’ data in
macroecology (e.g., Rahbek and Graves 2001, McPherson et al. 2006, Nogués-Bravo
and Aratjo 2006), and counts species as co-occurring if both species are present

somewhere in the block regardless of whether they co-exist in the cells.

The ‘true’ and ‘sampled’ co-occurrence scores measured at the cell level are then
plotted against progressively larger block sizes. The area between the curves
representing the ‘true’ and ‘sampled’ co-occurrence percentages between species A and
B, across the range of block sizes, provides a measure of scale dependence of co-
occurrence patterns (see Figure 1). The greater the area between the two curves the
more the effects of given biotic interaction on species’ distributions depend on spatial
resolution, and vice versa (see Figure 1). The area between the ‘true’ and the ‘sampled’
co-occurrences is calculated for the full set of possible biotic interactions that can arise

from combining interactions of varying signs (+, -) and strengths I, (0 < x < 1).

PeerJ PrePrints | https://peerj.com/preprints/82v1/ | v1 received: 17 Oct 2013, published: 17 Oct 2013, doi: 10.7287/peerj.preprints.82v1

8



n

S 1

K]

m

E’ 0.8 .

o

g

= 0.6 i

)

>

o

S 0.4 J

[

<))

©

c 0.2 J

)

o

)

n- 0 1 1 1 1

0 20 40 60 80 100

254 Block Size

255  Figure 1 — Scale dependence of biotic interactions. Right (squared landscape): after the range
256  of species A and B have been simulated, co-occurrence between the two species is calculated.
257  Black squares indicate occurrence of species A but not species B, gray squares indicate

258  occurrence of B but not A, and red squares indicate co-occurrence of A and B. Left (diagram):
259 by progressively increasing the size of the squares, ‘sampling” would lead to classifying species
260  has co-occurring if both occurred somewhere in the square (black line indicates ‘resampled’ co-
261  occurrence), while species would only co-occur if species overlapped within the square (red line
262  indicates ‘true’ co-occurrence). The greater the area between the red and black lines the greater
263  the scale dependence of biotic interactions.

264

265  Results

266  Although positive interactions generate range overlaps and negative interactions

267  generate non-overlaps, equivalent degrees of overlap were recorded for species exposed
268  to different types of biotic interactions (Figure 2). For example, the spatial patterns of
269  range overlap for commensalism (If,I3) can be identical to range overlaps arising

270  from mutualistic interactions (I7,17) (Figure 1). Range overlaps from amensalism

271 (I;,I3) can also mach range overlaps from competition (I, I ). Patterns of range

272 overlap from consumer-resource interactions (I3, IZ) can be like that of any type of

273  biotic interaction.
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274

275  Figure 2 — Expected range overlap in biotic-interaction space. Colours on the top graph

276  indicate the intensity of the predicted range overlaps between species A (y axis) and B (x axis),
277  where increasing gradients of red indicate increased range overlap while increasing gradients of
278  blue indicate increased non-overlap. The light gray line indicates the portion of biotic-

279  interaction space where range overlaps between species are no different from the null model.
280  The numbers on the y and x axes represent interactions (I) of varying signal (+, -, 0) and

281  strength (=0 <1). The lower scatter diagrams provide examples of simulated distributions of
282  species A (black) and B (gray), with their respective overlap (red), for interactions of varying
283  sign and strength. Both species have prevalence p=0.1.

284

285  When data are sampled from the cell to progressively larger blocks, estimated co-

286  occurrence between species increases until an asymptote of complete overlap is reached
287  (Figure 3). The difference between ‘sampled’ and ‘true’ co-occurrence (our metric of
288  scale independence, see Figure 1) varies with the spatial resolution, but also with the
289  signal and the strength of the biotic interactions (Figure 3). The stronger the negative
290 interactions, the more scale dependent local patterns of co-occurrence are; in contrast,
291  the stronger the positive interactions the greater the scale independence. In the extreme
292 case of obligate positive dependencies between species pairs, i.e., strong mutualism, no

293  difference exists between ‘sampled’ and ‘true’ co-occurrence across spatial scales.
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294

295  Figure 3 — Scale dependence across biotic interaction space. In the outer scatter plots, red
296  lines indicates ‘true’ co-occurrence (y axis) between species A and B at increased scales of

297  resolution (x axis), while black lines represent estimated co-occurrence after sampling

298  occurrence data at increased scales of resolution. The greater the area between the two curves,
299  the greater the scale dependence in the geographical signatures of biotic interactions. Lattice
300 diagrams are examples of the geographical distribution of species A (black) and B (grey) and
301 their respective overlaps (red) for interactions of varying signal and strength. In the central

302  column of graphs, increasing gradients of red indicate increased scale dependence (i.e.,

303  increased area between red and black lines in outer scatter diagrams), while decreasing gradients
304  ofred indicate increased scale independence (i.e., decreased area between red and black lines in
305  outer scatter diagrams): a) when A and B have prevalence p=0.1 and both are randomly

306  distributed; b) when A and B have p=0.1 and B is geographically structured. Colour scales are
307 log transformed. Estimates of range overlap underlying measurements of scale dependence were
308  obtained with 1000 model runs and values provided are averages across all runs. Summary

309  statistics are provided in table 1.

310
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311 Co-occurrence patterns generated by consumer-resource interactions are also discernible
312  across spatial scales, when at least one of the interacting species has strong positive

313  dependency on the other. The same qualitative trend is maintained when species

314  prevalence and autocorrelation increases (Table 1). However, scale independence tends
315 to increase when interacting species have higher prevalence and ranges have weak

316  spatial autocorrelation structure (Table 1). Spatially autocorrelated ranges also generate
317  higher variance in patterns of scale dependence, chiefly across competitive interaction
318  space (Table 1, Figure S1).

319

320 Table 1 — Mean and SD (after 1000 repetitions) of scale dependence values across sections of
321  biotic interaction space for mutualism (+/+), competition (-/-), consumer-resource interactions
322 (+/-), commensalism (+/0), amensalism (-/0). The greater the mean values, the greater the scale
323  dependence of co-occurrence patterns generated by biotic interactions (large SDs indicate large
324  uncertainties). Results are provided for two different prevalence (10% and 30%) and for two
325  types of distributions (random and autocorrelated). See figure S1 for a visual representation of

326 these results.

Prevalence 10% 30%

Distributio random autocorrelated  random autocorrelated

n

+/+ Mean 0.3414 1.0758 0.1000 0.1203
SD 0.5188 1.3736 0.1390 0.1627

-/- Mean 29.5011 35.4663 21.7188 21.9117
SD 32.9402 29.0701 36.9765 36.9117

+/- Mean 12.5640 15.6700 11.0573 11.1537
SD 28.1500 26.6214 28.9997 28.7860

+/0 Mean 0.8284 2.2766 0.2235 0.2634
SD 0.9412 2.2639 0.2295 0.2646

-/0 Mean 19.5134 26.1670 12.3791 12.5908
SD 26.2082 23.5428 28.5864 28.3371

327

328  Discussion

329  Inferring process from pattern across scales is a critical challenge for ecology,

330  biogeography, as well as for other branches of science (Levin 1992). Our point-process

331  models offer a novel and general framework for studying the signature of any type of
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332 biotic interactions across scales. The results illustrate how relatively simple

333  mathematical models can make testable predictions about species co-occurrence across
334  spatial scales, thus enhancing understanding of community patterns in ecology.

335  Specifically, our findings shed light onto the long-standing controversy of whether the
336  geographical signature of biotic interactions is maintained across spatial scales (Wiens
337 1989, Schneider 2001). It is typically assumed that the geographical signature of biotic
338 interactions is scale dependent, with climate structuring the broad outlines of species
339  ranges and biotic interactions affecting patterns of local abundances (e.g, Whittaker et
340 al. 2001, Pearson and Dawson 2003). Competition is often given as an example of the
341  localized effects of biotic interactions (Connor and Bowers 1987, Whittaker et al. 2001,
342 Pearson and Dawson 2003). Our extensive model simulations support the view that the
343  spatial signature of negative interactions is sensitive to scale, i.e., exclusion by

344  competitors or predators at local scales tends not manifest at coarser scales. In contrast,
345  we also demonstrate that interactions involving positive dependencies between species,
346  such as mutualism (+/+) and commensalism (+/0), are more likely to be manifested

347  across scales. Consumer-resource interactions, such as predation, herbivory, parasitism,
348  or disease (+/-) can also generate scale-independent patterns of coexistence providing
349  that the dependency of the consumer on the resource is higher than the repulsion of the
350  resource on the consumer.

351

352 Previous studies have suggested that consumer-resource interactions could modify the
353  regional composition of species pools (Ricklefs 1987) and control for species range

354  limits (Hochberg and Ives 1999) and diversity (Jabot and Bascompte 2012). Recent

355  findings also highlighted the disproportionate effects of consumers in shaping local

356  responses of resources to climate change (Post 2012). Our results generalize and extend
357 these inferences. Specifically, we identify circumstances in which biotic interactions are
358 likely to generate scale-invariant patterns of co-occurrence among species thus enabling
359  us to propose a new scaling law: the degree to which the signatures of biotic interactions
360  on local co-occurrences scale up depends on the strength of the positive dependencies
361  between species.

362

363  Even though our simulations suggest that competitive interactions generate patterns of
364  co-occurrence that tend not to scale up (for recent empirical evidence of the same

365  pattern see also Segurado et al. 2012), there are circumstances in which the
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366  consequences of competition are expected to be manifested at wide geographical extents
367  and resolutions. Such is the case when competitive exclusion leads to splitting of

368  species ranges at biogeographical scales (Hardin 1960, Horn and MacArthur 1972,

369  Connor and Bowers 1987). To explore this exceptional circumstance we repeated our
370  simulations for the extreme case of repulsion I, = 1 and Iz = 1 (i.e., competition being
371  such that species never co-occur), with highly spatially autocorrelated ranges and

372  subject to varying degrees of range exclusion (0= pyc; < 1.5, see supporting online

373  material). With the extremes: 0 representing no enforced range exclusion, potentially
374  leading to checkerboard distributions when ranges are not spatially autocorrelated (the
375  rule used in all previous simulations); and 1.5 representing fully enforced range

376  exclusion leading to range splitting with not edge contact (see supporting online

377  material for more details). We find, as expected, that the greater the degree of exclusion
378  (Uexc1) between the ranges of two competing species the greater the degree of scale

379  independence of the resulting geographical patterns (Figure 4). For example, the area
380 between the curves of the ‘sampled’ and ‘true’ co-occurrences when no range exclusion
381  is enforced (Uex;=0) 1s 77, while when full range exclusion is enforced ((orc;=1.5) the
382  area between the curves is 82. These areas between curves are, however, well above
383  mean values across biotic interaction space (Table 1) thus supporting our conclusions
384  regarding strong scale-dependence of the co-occurrence patterns with competition.

385  Whether strong forms of range exclusion have an impact in structuring of regional

386  species pools partly depends on the degree to which they are a common feature at

387  biogeographical scales; this question is beyond the scope of our discussion (but see

388  Connor and Bowers 1987).
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390 Figure 4 — Variation in scale dependence of species distributional patterns arising from
391  varying levels of competitive exclusion. With extreme -/- interactions involving I; = 1 and
392 Iz =1, populations of species A and B never co-occur. So, ‘true’ co-occurrence is zero

393  (coincident with the x axis) independently of the size of blocks. By progressively increasing the
394  size of the blocks, sampling leads to classifying species has co-occurring if both species

395  occurred somewhere in the block (black lines). The greater the area between black lines and the
396  horizontal x axis line the greater the scale dependence of distributional patterns arising from
397  competition.

398

399  Our results have important implications for predictions of the effects of environmental
400  changes on species distributions. For example, microcosms experiments have

401  demonstrated that models of species responses to climate change that ignore

402  competition and parasitoid-host interactions could lead to serious errors (Davis et al.
403  1998). However, our results suggest that errors arising from discounting the effects of
404  competition would unlikely scale up to biogeographical scales (see also Hodkinson

405  1999). In contrast, models failing to account for strong positive dependencies between
406  species would likely exclude mechanisms affecting species ranges across scales.

407  Consistent with our prediction, studies have shown that mutualism (Callaway et al.

408  2002), commensalism (Heikkinen et al. 2007), predation (Wilmers and Getz 2005),

409  herbivory (Post 2012) and parasitism (Araujo and Luoto 2007) could significantly affect

410  species responses to climate change (see also Fordham et al. 2013). If predictions from
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411 our models are correct, the bad news is that accurate predictions of climate change

412  effects on species distributions would require the development of more complex models
413  that include biotic interactions. The good news is that only a subset of all conceivable
414  biotic interactions would likely matter. Since, most interactions between species are
415  weak and non-obligate (Bascompte 2007, Aratjo et al. 2011), and species with strong
416  positive interactions are a subset of a relatively small number of species with strong
417  interactions, the critical question would then be to identify the species with properties
418  that are capable of affecting distributions and coexistence across scales. The task of
419  identifying such species is of daunting magnitude, but is less so than documenting and
420  modelling the full web of interactions among species.

421

422 Outlook

423  We are aware that our models can raise scepticism among empirical and theoretical
424  community ecologists. The standard practice is to predict spatial-population processes
425  from models that explicitly and dynamically account for consumer-resource

426  interactions. Here, assumptions about these processes are implicit rather than explicit
427  (arguably because they are impossible to parameterize in nature meaning that we need
428  simplified models and assumptions to make progress). Instead, we characterize the

429  spatial effects on coexistence of biotic interactions based on the expected attractive and
430  repulsive consequences of these processes. The next step is to test our model predictions
431  through extensive model-model (Rozenfeld & Araujo, unpublished) and model-data
432  comparisons. By assuming distributions at steady-state the first comparison that

433  becomes necessary is between expected co-occurrence of species achieved with

434  dynamic Lotka-Volterra models and with static ‘point-process’ models like the ones
435  proposed here. The problem with such comparisons is that consistency with predictions
436  from alternative models lends to conditionally supporting them, but inconsistency leads
437  to inconclusive results as we have no objective way to validate them unless we compare
438  results with data (e.g., Arajo and Guisan 2006). Comparing model results with data is
439  more powerful. However, such tests are difficult to undertake because fully-controlled
440 and fully-replicated experiments at a variety of spatial scales are difficult to undertake
441  and they are extremely costly (Marschall and Roche 1998). Furthermore, our

442  predictions span a full spectrum of biotic interactions rather than focusing on specific
443  types of interaction, thus adding an extra degree of difficulty to experimentation. A

444  possible way forward is to compare predictions from models with smaller scale
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445  experiments. They too have their limitations (Lawton 1998), but a pluralistic approach
446  for testing models is likely the only possible way forward.
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