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Abstract: A central tenet of ecology and biogeography is that the broad outlines of 13	
  

species ranges are determined by climate, whereas the effects of biotic interactions are 14	
  

manifested at local scales. While the first proposition is supported by ample evidence, 15	
  

the second is still a matter of controversy. To address this question, we develop a 16	
  

mathematical model that predicts the spatial overlap, i.e., co-occurrence, between pairs 17	
  

of species subject to all possible types of interactions. We then identify the scale in 18	
  

which predicted range overlaps are lost. We found that co-occurrence arising from 19	
  

positive interactions, such as mutualism (+/+) and commensalism (+/0), are manifested 20	
  

across scales of resolution. Negative interactions, such as competition (-/-) and 21	
  

amensalism (-/0), generate checkerboard-type co-occurrence patterns that are 22	
  

discernible at finer resolutions. Scale dependence in consumer-resource interactions (+/-23	
  

) depends on the strength of positive dependencies between species. Our results 24	
  

challenge the widely held view that climate alone is sufficient to characterize species 25	
  

distributions at broad scales, but also demonstrate that the spatial signature of 26	
  

competition is unlikely to be discernible beyond local and regional scales. 27	
  

 28	
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 32	
  
PeerJ PrePrints | https://peerj.com/preprints/82v1/ | v1 received: 17 Oct 2013, published: 17 Oct 2013, doi: 10.7287/peerj.preprints.82v1

P
re
P
rin

ts



2	
  
	
  

Introduction 33	
  

The question of whether the geographical ranges of species are determined by their 34	
  

ecological requirements and the physical characteristics of individual sites, or by 35	
  

assembly rules reflecting interactions between species, has long been a central issue in 36	
  

ecology (e.g., Andrewartha and Birch 1954, Diamond 1975, Gotelli and Graves 1996, 37	
  

Chase and Leibold 2003, Peterson et al. 2011). Evidence is compelling that the limits of 38	
  

species ranges often match combinations of climate variables, especially at high 39	
  

latitudes and altitudes (e.g., Grinnell 1917, Andrewartha and Birch 1954, Hutchinson 40	
  

1957, Woodward 1987, Root 1988), and that these limits shift through time in 41	
  

synchrony with changes in climate (e.g., Walther et al. 2005, Hickling et al. 2006, 42	
  

Lenoir et al. 2008). However, recent evidence suggests that the thermal component of 43	
  

species climatic niches is more similar among terrestrial organisms than typically 44	
  

expected  (Araújo et al. 2013), leading to the conclusion that spatial turnover among 45	
  

distributions of species might often result from non-climatic factors (see also for 46	
  

discussion Baselga et al. 2012a). The degree to which non-climatic factors shape the 47	
  

distributions of species has been focus of discussion in community ecology and 48	
  

biogeography for over a century, with several authors proposing that climate exerts 49	
  

limited influence at lower latitudes and altitudes (e.g., Wallace 1878, Dobzhansky 1950, 50	
  

Loehle 1998, Svenning and Skov 2004, Colwell et al. 2008, Baselga et al. 2012b). 51	
  

Specifically, much interest exists regarding the extent to which occurrences of species 52	
  

are constrained by the distributions of other species at broad scales of resolution and 53	
  

extent (e.g., Gravel et al. 2011). It has been argued that biotic interactions determine 54	
  

whether species thrives or withers in a given environment, but that the spatial effects 55	
  

associated with these interactions are lost at broad scales (e.g., Whittaker et al. 2001, 56	
  

Pearson and Dawson 2003, McGill 2010). In contrast, modelling studies have hinted 57	
  

that biotic interactions could leave broad-scale imprints on coexistence and, therefore, 58	
  

on species distributions (e.g., Araújo and Luoto 2007, Heikkinen et al. 2007, Meier et 59	
  

al. 2010, Bateman et al. 2012). But empirical evidence for the broad scale effects of 60	
  

biotic interactions is limited. A study has shown that with scales of few hundred 61	
  

kilometres the effects of competition on geographical ranges can still be discernible 62	
  

(Gotelli et al. 2010), but at scales of biomes such effects are often diluted (Russell et al. 63	
  

2006, Veech 2006). How general are these patterns? 64	
  

 65	
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Empirical studies of the effects of biotic interactions on species distributions have 66	
  

historically focused on competition (e.g., Gause 1934, Hardin 1960, MacArthur 1972, 67	
  

Schoener 1982, Amarasekare 2003). However, several authors have pointed out that a 68	
  

greater variety of interactions can control for spatial patterns of overlap between species 69	
  

(e.g., Hairston et al. 1960, Connell 1975, Ricklefs 1987, Callaway et al. 2002, Bruno et 70	
  

al. 2003, Travis et al. 2005, Ricklefs 2010). Competition is a specific case involving two 71	
  

species that are worse off interacting with one another (which we annotate as: -/-). In its 72	
  

extreme form, competition leads to co-exclusion of the interacting species (MacArthur 73	
  

1972). The reverse of competition is mutualism, whereby two species display mutual 74	
  

dependency (+/+). Different combinations of positive, negative, and neutral 75	
  

relationships exist and they generate consumer-resource interactions such as predation, 76	
  

herbivory, parasitism and disease (+/-), or amensalism (-/0) and commensalism (+/0).  77	
  

 78	
  

The spatial effects of the different biotic interactions have rarely, if ever, been 79	
  

investigated. Differences in patterns of co-occurrence arising from alternative biotic 80	
  

interactions are seldom stated and focus has been on identifying non-random patterns of 81	
  

co-occurrence between pairs of species (e.g., Gotelli and McCabe 2002, Horner-Devine 82	
  

et al. 2007, Gotelli et al. 2010). Substantial controversy exists regarding the appropriate 83	
  

null models in such analyses (for review and discussion see Gotelli and Graves 1996), 84	
  

but the more fundamental question of whether departures from randomness in co-85	
  

occurrence patterns provide interpretable information regarding the underlying biotic 86	
  

interactions remains unanswered.  87	
  

 88	
  

In practice, several biotic and abiotic factors can simultaneously affect the distributions 89	
  

of species (e.g., Soberón 2010, Peterson et al. 2011) and, therefore, co-occurrence (e.g., 90	
  

Cohen 1971, Leibold 1997, Amarasekare et al. 2004, Ovaskainen et al. 2010, Araújo et 91	
  

al. 2011). One approach to disentangle the relative importance of factors causing 92	
  

changes in species co-occurrence is through simulations (Urban 2005). Here, we 93	
  

develop a novel ‘point-process’ model that infers co-occurrence of species across the 94	
  

full space of potential biotic interactions between pairs of species: i.e., given all biotic 95	
  

interaction types (+/+, +/-, -/-, +/0, -/0) and all possible combinations of biotic 96	
  

interaction strength (0 ≤ 𝐼! ≤ 1) (for more details see material and methods). Dynamic 97	
  

Lotka-Volterra-type models could also be used as they explicitly simulate the effects of 98	
  

different biotic interactions on population dynamics (e.g., predation, competition, 99	
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mutualism, see for review Kot 2001). However, Lotka-Volterra models require detailed 100	
  

parameterization of mortality and colonization rates that are highly contingent and are 101	
  

usually impossible to obtain. Furthermore, models predicting the spatial effects of 102	
  

repulsive and attractive interactions at steady state would be particularly useful if the 103	
  

goal is to examine these spatial effects rather than the underlying population dynamics 104	
  

that generate them (see also Dieckmann et al. 2000, Law and Dieckmann 2000). The 105	
  

critical issue is whether a simple point-process model, such as ours, simulates spatial 106	
  

patterns of co-occurrence comparable with dynamic Lotka-Volterra models at 107	
  

equilibrium. Preliminary analysis comparing our model with Markov-chain formulation 108	
  

of Lotka-Volterra models by Cohen (1970) supports this view and is being prepared for 109	
  

publication elsewhere (Rozenfeld & Araújo, unpublished).  110	
  

 111	
  

In the current implantation of the proposed point-process model, and to control for the 112	
  

effects of species range sizes and environmental clustering on species distributions, 113	
  

simulations were replicated for species ranges with varying prevalence and spatial 114	
  

autocorrelation. Once co-occurrence between two species was estimated, we sampled 115	
  

ranges at increasingly coarser scales of resolution (i.e., by increasing grid-cell size) and 116	
  

identified the scale at which the original patterns of co-occurrences lost the signature of 117	
  

the biotic interactions effects. When the effects of biotic interactions on patterns of co-118	
  

occurrence of species were maintained across scales of resolution we interpreted the 119	
  

pattern as providing evidence for scale independence. In contrast, biotic interactions 120	
  

generating patterns of co-occurrence that were lost at increasing scales of resolutions 121	
  

were interpreted as being strongly dependent on the scale. 122	
  

 123	
  

Material and methods 124	
  

The model 125	
  

The primary assumption of our point-process model is that the signal of biotic 126	
  

interactions drives spatial attraction (for +) or repulsion (for -). It follows that if no 127	
  

interactions are present (0/0), co-occurrence between species ranges is dependent on 128	
  

their prevalence (ρ=fraction of the sites where the species is present). Formally, if 129	
  

species probabilities of occurrence are equal to their respective prevalence, i.e., 130	
  

𝑃 𝐴 = 𝜌! and 𝑃 𝐵 = 𝜌!, then the probability of co-occurrence between ranges of 131	
  

two non-interacting species is given by 132	
  

𝑃!"## 𝐴 ∩ 𝐵 = 𝜌!𝜌!         (1) 133	
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The probability of co-occurrence is the expected fraction of sites where species co-134	
  

occur. If species A and B interact, then their overlap is a function of both their 135	
  

prevalence and the strength of their interactions 𝐼! and 𝐼! 136	
  

𝑃 𝐴 ∩ 𝐵 = 𝑓 𝜌!,𝜌! , 𝐼!, 𝐼!         (2) 137	
  

 138	
  

Interactions can be either attractive 𝐼!! or repulsive 𝐼!!, with 0 ≤ 𝐼!  !"  !!  !"  ! ≤ 1. It follows 139	
  

that 𝐼!!  stands for the intensity with which species A is attracted by B, and 𝐼!! is the 140	
  

intensity with which species B is attracted by A. Likewise, 𝐼!!  stands for the intensity 141	
  

with which species A repulses B, and 𝐼!! is the intensity with which species B repulses 142	
  

A.  143	
  

 144	
  

In the particular case of mutualism (+/+), positive interactions will cause species to co-145	
  

occur more often than expected under the null model 146	
  

𝑃 !/! 𝐴 ∩ 𝐵 = 𝜌!𝜌! +max 𝐼!!, 𝐼!! ×[min  (𝜌!,𝜌!)− 𝜌!𝜌!]   (3) 147	
  

Where the second term in equation 3 estimates the excess of co-occurrence due to 148	
  

positive (+/+) interactions. The maximum fraction of sites where species co-occur is 149	
  

limited by the prevalence of the species with the most restricted range, i.e., min  (𝜌!,𝜌!). 150	
  

So that [min  (𝜌!,𝜌!)− 𝜌!𝜌!] refers to the maximum excess of co-occurrence over the 151	
  

null model. With interactions (+/+), the species with the greatest positive dependence is 152	
  

the one that constrains co-occurrence between the two interacting species. That is, the 153	
  

maximum excess of co-occurrence is modulated by the maximum attracting index 154	
  

(max 𝐼!!, 𝐼!! ). 155	
  

So, 156	
  

𝑃(!/!) 𝐴 ∩ 𝐵 = 𝜌!𝜌! 𝐼!! = 0        𝑎𝑛𝑑      𝐼!! = 0
  min(𝜌!,𝜌!) 𝐼!! = 1        𝑜𝑟      𝐼!! = 1  

When both interaction strengths are 0 we recover the null expectation, and when one of 157	
  

the species is fully dependent on the other the co-occurrence range is maximal. 158	
  

 159	
  

In the case of competition (-/-), negative interactions will cause the species to co-occur 160	
  

less often than expected under the null model 161	
  

𝑃(!/!) 𝐴 ∩ 𝐵 = 𝜌!𝜌!×[1−max 𝐼!!, 𝐼!! ]      (4) 162	
  

Co-occurrence will tend to zero as the interaction strength of at least one of the 163	
  

interacting species approaches 1. With interactions (-/-), the species with the greatest 164	
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negative (repulsive) interaction is the one that constrains co-occurrence between the two 165	
  

interacting species. That is, co-occurrence decreases below the null expectation 166	
  

proportionally to the maximum repulsion strength (max 𝐼!!, 𝐼!! ).  167	
  

So, 168	
  

𝑃(!/!) 𝐴 ∩ 𝐵 = 𝜌!𝜌! 𝐼!! = 0        𝑎𝑛𝑑      𝐼!! = 0
0 𝐼!! = 1        𝑜𝑟      𝐼!! = 1  

When both interaction strengths are 0 we recover the null expectation and, when one of 169	
  

the species is fully excluded by the other, co-occurrence is zero. 170	
  

 171	
  

In the case of consumer-resource interactions (+/-) with A being the consumer and B the 172	
  

resource, both positive and negative interactions will cause co-occurrence to deviates 173	
  

from the null expectation  174	
  

𝑃(!/!) 𝐴 ∩ 𝐵 = [𝜌!𝜌! + 𝐼!!× min  (𝜌!,𝜌!)− 𝜌!𝜌! ]×(1− 𝐼!!)    (5) 175	
  

The equation 5 is a combination of equations 3 and 4. The first factor [𝜌!𝜌! +176	
  

min  (𝜌!,𝜌!)− 𝜌!𝜌! 𝐼!!] corresponds to equation 3 with 𝐼!! = 0, and it shows how co-177	
  

occurrence is increased due to the positive dependence of species A on B. The second 178	
  

factor (1− 𝐼!!) reduces co-occurrence proportionally to the repulsive strength  (𝐼!!) .  179	
  

So, 180	
  

𝑃(!/!) 𝐴 ∩ 𝐵 =
𝜌!𝜌! 𝐼!! = 0        𝑎𝑛𝑑      𝐼!! = 0

min  (𝜌!,𝜌!) 𝐼!! = 1        𝑎𝑛𝑑      𝐼!! = 0
0 𝐼!! = 1

   

When both interaction strengths are 0 we recover the null expectation. When species A 181	
  

is fully dependent on B and species B does not repulse A then the co-occurrence reaches 182	
  

its maximum. Finally, when species B repulses A with maximum intensity co-183	
  

occurrence is forbidden. 184	
  

 185	
  

Notice that commensalism is a special case of mutualism (with 𝐼!! = 0) or predation, 186	
  

parasitism and disease (with  𝐼!! = 0), while amensalism is a special case of competition 187	
  

(with  𝐼!! = 0). By varying the sign (+, -) and the strength 𝐼! (0 ≤ 𝑥 ≤ 1), our model 188	
  

predicts range overlaps across the full biotic interaction space.  189	
  

 190	
  

Simulations 191	
  

The general formulation of our point-process model defines rules of attraction and 192	
  

repulsion among species subject to different biotic interaction types and strengths, but 193	
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these interactions take place in non-heterogeneous landscapes where multiple drivers, in 194	
  

addition to interactions, can affect species ranges and, therefore, co-occurrence. 195	
  

Constraints to the general model can be added to take these drivers into account, such as 196	
  

varying the ecological niches of species (both in the sense of species affecting and being 197	
  

affected by the environment, e.g., Chase and Leibold 2003, Peterson et al. 2011), or 198	
  

dispersal (both in the sense of species having the ability to disperse and being prevented 199	
  

from it due to external barriers, e.g., Levin 1974, Pulliam 1988, Hanski 1998, 200	
  

Humphries and Parenti 1999). Here, we explore two features of species ranges that we 201	
  

deem relevant for studying the geographical scaling of biotic interactions. The first is 202	
  

prevalence (ρ). In one implementation of the model, the prevalence of species is 203	
  

relatively low: each species occupies 10% of the studied region (ρ=0.1). In the other 204	
  

implementation of the model species occupy 30% (ρ=0.3) of the studied region.  205	
  

 206	
  

The second feature explored is the placement of ranges. In one implementation of the 207	
  

model, species B is randomly located and species A is constrained by species B. Under 208	
  

this model, environmental conditions are assumed to be homogenous across the studied 209	
  

area as it would be expected if range overlaps were measured within a given habitat 210	
  

type. In such a scenario, species B can be found anywhere in geographical space and 211	
  

range overlaps between species A and B are solely determined by prevalence and the 212	
  

attractive and repulsive effects of interactions. In the modified model, the distribution of 213	
  

species B is spatially structured while species A is a function of species B. This 214	
  

implementation of the model simulates range overlaps when the distribution of one of 215	
  

the species is highly autocorrelated (e.g., Legendre 1993, Dormann et al. 2007). Such 216	
  

autocorrelation can arise because strong environmental gradients exist and act to 217	
  

constrain species ranges (as might often occur at biogeographical extents) and/or when 218	
  

dispersal, demographic or behavioural factors cause individuals to aggregate in specific 219	
  

portions of geographical space (as might often occur at local and landscape extents). All 220	
  

simulations were performed in lattices of 100x100 pixels. In order to account for 221	
  

stochastic differences in the placement of the ranges, simulations were repeated 1000 222	
  

times. Details on the generation of random and spatially autocorrelated distributions are 223	
  

provided in the supporting online material, together with the Mat Lab computer code 224	
  

written by AR and used to generate the species ranges (see supporting online material). 225	
  

 226	
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Measuring spatial dependencies in biotic interactions  227	
  

To address the question of how co-occurrences emerging from different biotic 228	
  

interactions affect species distributions at different spatial resolutions we used a 229	
  

hierarchical framework (Allen and Starr 1982). We compared co-occurrence scores 230	
  

(measured as the ratio of the number of geographical cells where species A and B co-231	
  

occur to the total number of occupied cells) at the original resolution used to fit all of 232	
  

our models (the cell in our lattice landscape) with co-occurrences measured at 233	
  

progressively larger scales of resolution. This hierarchical framework for scaling was 234	
  

achieved by increasing the size of the blocks where individuals occur, and then 235	
  

quantifying the resulting co-occurrence. The quantification of co-occurrence was done 236	
  

using two approaches. The first seeks to preserve information about the ‘true’ co-237	
  

occurrence of species that exists within geographical blocks and counts species as co-238	
  

occurring if, and only if, they co-occur within one or more cell within the larger block. 239	
  

The second emulates the traditional approach of ‘sampling’ species occurrences’ data in 240	
  

macroecology (e.g., Rahbek and Graves 2001, McPherson et al. 2006, Nogués-Bravo 241	
  

and Araújo 2006), and counts species as co-occurring if both species are present 242	
  

somewhere in the block regardless of whether they co-exist in the cells.  243	
  

 244	
  

The ‘true’ and ‘sampled’ co-occurrence scores measured at the cell level are then 245	
  

plotted against progressively larger block sizes. The area between the curves 246	
  

representing the ‘true’ and ‘sampled’ co-occurrence percentages between species A and 247	
  

B, across the range of block sizes, provides a measure of scale dependence of co-248	
  

occurrence patterns (see Figure 1). The greater the area between the two curves the 249	
  

more the effects of given biotic interaction on species’ distributions depend on spatial 250	
  

resolution, and vice versa (see Figure 1). The area between the ‘true’ and the ‘sampled’ 251	
  

co-occurrences is calculated for the full set of possible biotic interactions that can arise 252	
  

from combining interactions of varying signs (+, -) and strengths 𝐼! (0 ≤ 𝑥 ≤ 1). 253	
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 254	
  

Figure 1 – Scale dependence of biotic interactions. Right (squared landscape): after the range 255	
  

of species A and B have been simulated, co-occurrence between the two species is calculated. 256	
  

Black squares indicate occurrence of species A but not species B, gray squares indicate 257	
  

occurrence of B but not A, and red squares indicate co-occurrence of A and B. Left (diagram): 258	
  

by progressively increasing the size of the squares, ‘sampling’ would lead to classifying species 259	
  

has co-occurring if both occurred somewhere in the square (black line indicates ‘resampled’ co-260	
  

occurrence), while species would only co-occur if species overlapped within the square (red line 261	
  

indicates ‘true’ co-occurrence). The greater the area between the red and black lines the greater 262	
  

the scale dependence of biotic interactions.  263	
  

 264	
  

Results 265	
  

Although positive interactions generate range overlaps and negative interactions 266	
  

generate non-overlaps, equivalent degrees of overlap were recorded for species exposed 267	
  

to different types of biotic interactions (Figure 2). For example, the spatial patterns of 268	
  

range overlap for commensalism   (𝐼!!, 𝐼!!) can be identical to range overlaps arising 269	
  

from mutualistic interactions  (𝐼!!, 𝐼!!) (Figure 1). Range overlaps from amensalism 270	
  

(𝐼!!, 𝐼!!) can also mach range overlaps from competition (𝐼!!, 𝐼!!). Patterns of range 271	
  

overlap from consumer-resource interactions  (𝐼!!, 𝐼!!) can be like that of any type of 272	
  

biotic interaction.  273	
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 274	
  

Figure 2 – Expected range overlap in biotic-interaction space. Colours on the top graph 275	
  

indicate the intensity of the predicted range overlaps between species A (y axis) and B (x axis), 276	
  

where increasing gradients of red indicate increased range overlap while increasing gradients of 277	
  

blue indicate increased non-overlap. The light gray line indicates the portion of biotic-278	
  

interaction space where range overlaps between species are no different from the null model. 279	
  

The numbers on the y and x axes represent interactions (I) of varying signal (+, -, 0) and 280	
  

strength (≥0 ≤1). The lower scatter diagrams provide examples of simulated distributions of 281	
  

species A (black) and B (gray), with their respective overlap (red), for interactions of varying 282	
  

sign and strength. Both species have prevalence ρ=0.1. 283	
  

 284	
  

When data are sampled from the cell to progressively larger blocks, estimated co-285	
  

occurrence between species increases until an asymptote of complete overlap is reached 286	
  

(Figure 3). The difference between ‘sampled’ and ‘true’ co-occurrence (our metric of 287	
  

scale independence, see Figure 1) varies with the spatial resolution, but also with the 288	
  

signal and the strength of the biotic interactions (Figure 3). The stronger the negative 289	
  

interactions, the more scale dependent local patterns of co-occurrence are; in contrast, 290	
  

the stronger the positive interactions the greater the scale independence. In the extreme 291	
  

case of obligate positive dependencies between species pairs, i.e., strong mutualism, no 292	
  

difference exists between ‘sampled’ and ‘true’ co-occurrence across spatial scales.  293	
  

+/- +/+

-/- +/-
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 294	
  

Figure 3 – Scale dependence across biotic interaction space. In the outer scatter plots, red 295	
  

lines indicates ‘true’ co-occurrence (y axis) between species A and B at increased scales of 296	
  

resolution (x axis), while black lines represent estimated co-occurrence after sampling 297	
  

occurrence data at increased scales of resolution. The greater the area between the two curves, 298	
  

the greater the scale dependence in the geographical signatures of biotic interactions. Lattice 299	
  

diagrams are examples of the geographical distribution of species A (black) and B (grey) and 300	
  

their respective overlaps (red) for interactions of varying signal and strength. In the central 301	
  

column of graphs, increasing gradients of red indicate increased scale dependence (i.e., 302	
  

increased area between red and black lines in outer scatter diagrams), while decreasing gradients 303	
  

of red indicate increased scale independence (i.e., decreased area between red and black lines in 304	
  

outer scatter diagrams): a) when A and B have prevalence ρ=0.1 and both are randomly 305	
  

distributed; b) when A and B have ρ=0.1 and B is geographically structured. Colour scales are 306	
  

log transformed. Estimates of range overlap underlying measurements of scale dependence were 307	
  

obtained with 1000 model runs and values provided are averages across all runs. Summary 308	
  

statistics are provided in table 1. 309	
  

 310	
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Co-occurrence patterns generated by consumer-resource interactions are also discernible 311	
  

across spatial scales, when at least one of the interacting species has strong positive 312	
  

dependency on the other. The same qualitative trend is maintained when species 313	
  

prevalence and autocorrelation increases (Table 1). However, scale independence tends 314	
  

to increase when interacting species have higher prevalence and ranges have weak 315	
  

spatial autocorrelation structure (Table 1). Spatially autocorrelated ranges also generate 316	
  

higher variance in patterns of scale dependence, chiefly across competitive interaction 317	
  

space (Table 1, Figure S1).  318	
  

 319	
  

Table 1 – Mean and SD (after 1000 repetitions) of scale dependence values across sections of 320	
  

biotic interaction space for mutualism (+/+), competition (-/-), consumer-resource interactions 321	
  

(+/-), commensalism (+/0), amensalism (-/0). The greater the mean values, the greater the scale 322	
  

dependence of co-occurrence patterns generated by biotic interactions (large SDs indicate large 323	
  

uncertainties). Results are provided for two different prevalence (10% and 30%) and for two 324	
  

types of distributions (random and autocorrelated). See figure S1 for a visual representation of 325	
  

these results. 326	
  

Prevalence  10% 30% 

Distributio

n 

 random autocorrelated random autocorrelated 

+/+ Mean 0.3414 1.0758 0.1000 0.1203 

 SD 0.5188 1.3736 0.1390 0.1627 

-/- Mean 29.5011 35.4663 21.7188 21.9117 

 SD 32.9402 29.0701 36.9765 36.9117 

+/- Mean 12.5640 15.6700 11.0573 11.1537 

 SD 28.1500 26.6214 28.9997 28.7860 

+/0 Mean 0.8284 2.2766 0.2235 0.2634 

 SD 0.9412 2.2639 0.2295 0.2646 

-/0 Mean 19.5134 26.1670 12.3791 12.5908 

 SD 26.2082 23.5428 28.5864 28.3371 

 327	
  

Discussion 328	
  

Inferring process from pattern across scales is a critical challenge for ecology, 329	
  

biogeography, as well as for other branches of science (Levin 1992). Our point-process 330	
  

models offer a novel and general framework for studying the signature of any type of 331	
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biotic interactions across scales. The results illustrate how relatively simple 332	
  

mathematical models can make testable predictions about species co-occurrence across 333	
  

spatial scales, thus enhancing understanding of community patterns in ecology. 334	
  

Specifically, our findings shed light onto the long-standing controversy of whether the 335	
  

geographical signature of biotic interactions is maintained across spatial scales (Wiens 336	
  

1989, Schneider 2001). It is typically assumed that the geographical signature of biotic 337	
  

interactions is scale dependent, with climate structuring the broad outlines of species 338	
  

ranges and biotic interactions affecting patterns of local abundances (e.g, Whittaker et 339	
  

al. 2001, Pearson and Dawson 2003). Competition is often given as an example of the 340	
  

localized effects of biotic interactions (Connor and Bowers 1987, Whittaker et al. 2001, 341	
  

Pearson and Dawson 2003). Our extensive model simulations support the view that the 342	
  

spatial signature of negative interactions is sensitive to scale, i.e., exclusion by 343	
  

competitors or predators at local scales tends not manifest at coarser scales. In contrast, 344	
  

we also demonstrate that interactions involving positive dependencies between species, 345	
  

such as mutualism (+/+) and commensalism (+/0), are more likely to be manifested 346	
  

across scales. Consumer-resource interactions, such as predation, herbivory, parasitism, 347	
  

or disease (+/-) can also generate scale-independent patterns of coexistence providing 348	
  

that the dependency of the consumer on the resource is higher than the repulsion of the 349	
  

resource on the consumer.  350	
  

 351	
  

Previous studies have suggested that consumer-resource interactions could modify the 352	
  

regional composition of species pools (Ricklefs 1987) and control for species range 353	
  

limits (Hochberg and Ives 1999) and diversity (Jabot and Bascompte 2012). Recent 354	
  

findings also highlighted the disproportionate effects of consumers in shaping local 355	
  

responses of resources to climate change (Post 2012). Our results generalize and extend 356	
  

these inferences. Specifically, we identify circumstances in which biotic interactions are 357	
  

likely to generate scale-invariant patterns of co-occurrence among species thus enabling 358	
  

us to propose a new scaling law: the degree to which the signatures of biotic interactions 359	
  

on local co-occurrences scale up depends on the strength of the positive dependencies 360	
  

between species. 361	
  

 362	
  

Even though our simulations suggest that competitive interactions generate patterns of 363	
  

co-occurrence that tend not to scale up (for recent empirical evidence of the same 364	
  

pattern see also Segurado et al. 2012), there are circumstances in which the 365	
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consequences of competition are expected to be manifested at wide geographical extents 366	
  

and resolutions. Such is the case when competitive exclusion leads to splitting of 367	
  

species ranges at biogeographical scales (Hardin 1960, Horn and MacArthur 1972, 368	
  

Connor and Bowers 1987). To explore this exceptional circumstance we repeated our 369	
  

simulations for the extreme case of repulsion 𝐼!! = 1 and 𝐼!! = 1 (i.e., competition being 370	
  

such that species never co-occur), with highly spatially autocorrelated ranges and 371	
  

subject to varying degrees of range exclusion (0≤ 𝜇!"#$ ≤ 1.5, see supporting online 372	
  

material). With the extremes: 0 representing no enforced range exclusion, potentially 373	
  

leading to checkerboard distributions when ranges are not spatially autocorrelated (the 374	
  

rule used in all previous simulations); and 1.5 representing fully enforced range 375	
  

exclusion leading to range splitting with not edge contact (see supporting online 376	
  

material for more details). We find, as expected, that the greater the degree of exclusion 377	
  

(𝜇!"#$) between the ranges of two competing species the greater the degree of scale 378	
  

independence of the resulting geographical patterns (Figure 4). For example, the area 379	
  

between the curves of the ‘sampled’ and ‘true’ co-occurrences when no range exclusion 380	
  

is enforced (𝜇!"#$=0) is 77, while when full range exclusion is enforced (𝜇!"#$=1.5) the 381	
  

area between the curves is 82. These areas between curves are, however, well above 382	
  

mean values across biotic interaction space (Table 1) thus supporting our conclusions 383	
  

regarding strong scale-dependence of the co-occurrence patterns with competition. 384	
  

Whether strong forms of range exclusion have an impact in structuring of regional 385	
  

species pools partly depends on the degree to which they are a common feature at 386	
  

biogeographical scales; this question is beyond the scope of our discussion (but see 387	
  

Connor and Bowers 1987).  388	
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 389	
  

Figure 4 – Variation in scale dependence of species distributional patterns arising from 390	
  

varying levels of competitive exclusion. With extreme -/- interactions involving 𝐼!! = 1 and 391	
  

𝐼!! = 1, populations of species A and B never co-occur. So, ‘true’ co-occurrence is zero 392	
  

(coincident with the x axis) independently of the size of blocks. By progressively increasing the 393	
  

size of the blocks, sampling leads to classifying species has co-occurring if both species 394	
  

occurred somewhere in the block (black lines). The greater the area between black lines and the 395	
  

horizontal x axis line the greater the scale dependence of distributional patterns arising from 396	
  

competition.  397	
  

 398	
  

Our results have important implications for predictions of the effects of environmental 399	
  

changes on species distributions. For example, microcosms experiments have 400	
  

demonstrated that models of species responses to climate change that ignore 401	
  

competition and parasitoid-host interactions could lead to serious errors (Davis et al. 402	
  

1998). However, our results suggest that errors arising from discounting the effects of 403	
  

competition would unlikely scale up to biogeographical scales (see also Hodkinson 404	
  

1999). In contrast, models failing to account for strong positive dependencies between 405	
  

species would likely exclude mechanisms affecting species ranges across scales. 406	
  

Consistent with our prediction, studies have shown that mutualism (Callaway et al. 407	
  

2002), commensalism (Heikkinen et al. 2007), predation (Wilmers and Getz 2005), 408	
  

herbivory (Post 2012) and parasitism (Araújo and Luoto 2007) could significantly affect 409	
  

species responses to climate change (see also Fordham et al. 2013). If predictions from 410	
  

μ_excl=0

μ_excl=0.9

μ_excl=1.5
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our models are correct, the bad news is that accurate predictions of climate change 411	
  

effects on species distributions would require the development of more complex models 412	
  

that include biotic interactions. The good news is that only a subset of all conceivable 413	
  

biotic interactions would likely matter. Since, most interactions between species are 414	
  

weak and non-obligate (Bascompte 2007, Araújo et al. 2011), and species with strong 415	
  

positive interactions are a subset of a relatively small number of species with strong 416	
  

interactions, the critical question would then be to identify the species with properties 417	
  

that are capable of affecting distributions and coexistence across scales. The task of 418	
  

identifying such species is of daunting magnitude, but is less so than documenting and 419	
  

modelling the full web of interactions among species.  420	
  

 421	
  

Outlook 422	
  

We are aware that our models can raise scepticism among empirical and theoretical 423	
  

community ecologists. The standard practice is to predict spatial-population processes 424	
  

from models that explicitly and dynamically account for consumer-resource 425	
  

interactions. Here, assumptions about these processes are implicit rather than explicit 426	
  

(arguably because they are impossible to parameterize in nature meaning that we need 427	
  

simplified models and assumptions to make progress). Instead, we characterize the 428	
  

spatial effects on coexistence of biotic interactions based on the expected attractive and 429	
  

repulsive consequences of these processes. The next step is to test our model predictions 430	
  

through extensive model-model (Rozenfeld & Araújo, unpublished) and model-data 431	
  

comparisons. By assuming distributions at steady-state the first comparison that 432	
  

becomes necessary is between expected co-occurrence of species achieved with 433	
  

dynamic Lotka-Volterra models and with static ‘point-process’ models like the ones 434	
  

proposed here. The problem with such comparisons is that consistency with predictions 435	
  

from alternative models lends to conditionally supporting them, but inconsistency leads 436	
  

to inconclusive results as we have no objective way to validate them unless we compare 437	
  

results with data (e.g., Araújo and Guisan 2006). Comparing model results with data is 438	
  

more powerful. However, such tests are difficult to undertake because fully-controlled 439	
  

and fully-replicated experiments at a variety of spatial scales are difficult to undertake 440	
  

and they are extremely costly (Marschall and Roche 1998). Furthermore, our 441	
  

predictions span a full spectrum of biotic interactions rather than focusing on specific 442	
  

types of interaction, thus adding an extra degree of difficulty to experimentation. A 443	
  

possible way forward is to compare predictions from models with smaller scale 444	
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experiments. They too have their limitations (Lawton 1998), but a pluralistic approach 445	
  

for testing models is likely the only possible way forward. 446	
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