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ABSTRACT7

Probabilistic topic models are a class of unsupervised machine learning models used for understanding
the latent topics in a corpus of documents. A new method for combining geographic feature data with text
from geo-referenced documents to create topic models that are grounded in the physical environment is
proposed. The Geographic Feature Type Topic Model (GFTTM) models each document in a corpus as
a mixture of feature type topics and abstract topics. Feature type topics are conditioned on additional
observation data of the relative densities of geographic feature types co-located with the document’s
location referent, whereas abstract topics are trained independently of that information. The GFTTM is
evaluated using geo-referenced Wikipedia articles and feature type data from volunteered geographic
information sources. A technique for the measurement of semantic similarity of feature types and places
based on the mixtures of topics associated with the types is also presented. The results of the evaluation
demonstrate that GFTTM finds two distinct types of topics that can be used to disentangle how places
are described in terms of its physical features and more abstract topics such as history and culture.
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INTRODUCTION10

The rendering of a place in natural language text will to some degree reflect the physical properties of that11

place. This is as true of narrative descriptions of first-person experiences as it is of highly stylized writings,12

such as encyclopedia entries and literary works. Consequently, in a large corpus of place descriptions the13

words used to describe environments that share specific types of features will exhibit statistical regularities.14

For example, documents describing travels in mountainous areas will tend to have more discussions of15

climbing and hiking activities than will similar documents describing densely populated urban areas.16

These regularities allow us to identify topics most associated with specific feature types.17

With the ever increasing availability of geographic information online we have at our disposal not18

only many descriptions of places but also an unprecedented amount of information about the geographic19

features present there. In this paper a probabilistic topic model called the Geographic Feature Type Topic20

Model (GFTTM) is presented that uses these two different kinds of evidence to identify the latent topics21

that are associated with specific kinds of geographic feature types Blei (2012). As with other probabilistic22

topic models, each topic is represented as a distribution over words. This model provides us with a23

representation of feature types derived from observations of how people write about them rather than in24

terms of a fixed, formal top-down ontological definition Bennett et al. (2008). Furthermore, it provides25

us with a means to measure the semantic similarity of feature types with respect to the myriad physical26

characteristics, activities, and social constructs associated with those types as reflected in these writings.27

As such, this approach is compatible with the representation of types by the set of common affordances28

that they provide without artificially restricting the representation to a designed ontology Kuhn (2002);29

Janowicz and Raubal (2007); Sinha and Mark (2010).30

A number of probabilistic topic models have been developed, which condition the topics on geographic31

labels or other kinds of spatio-temporal information Mei et al. (2006); Wang et al. (2007); Ramage et al.32

(2009); Eisenstein et al. (2010); Hao et al. (2010); Adams and Janowicz (2012); Hong et al. (2012). The33

GFTTM is distinct from these topic models, because it is the first topic model to directly condition topics34
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on the structure of the geographic environment, in particular the features present in those environments.35

In addition, the generative model of GFTTM is unique in that it represents each document as a mixture of36

both feature type topics that are based on physical characteristics and abstract topics, which are not based37

on the physical characteristics.38

This paper is organized as follows. The next section provides some motivational background for why39

we want to investigate the interplay between language and landscape. Section 3 presents background40

information on probabilistic topic modeling. Section 4 introduces the GFTTM generative model and41

describes a Gibbs sampling algorithm for doing inference on the model. Section 5 presents an evaluation42

of GFTTM using volunteered geographic information, and section 6 discusses the results of this evaluation.43

Section 7 concludes the paper and describes avenues for future research.44

1 MOTIVATION45

Understanding the relationship between language and geography is an ongoing multidisciplinary pursuit.46

Linguistic geography is a well-established field in linguistics where the variation and diffusion of linguistic47

elements are studied, e.g. studying differences in dialects and geographic diffusion of words Kurath48

(1949); Bailey et al. (1993); Labov (2007). The geographic perspective on this research investigates49

the social and geographical processes that give rise to these variations Trudgill (1974). The specific50

relationship between language and the physical geographic environment that people inhabit is the study of51

ethnophysiography Mark and Turk (2003). This research examines how cultural context can imbue strong52

relationships between the features of landscapes with terms in language that are tied to important concepts53

in the culture. These terms need not be restricted to physical description but can reflect, e.g., strong54

spiritual beliefs broadly held within a community about features and categories of features Mark et al.55

(2007, 2012). The cross-cultural aspects of how language use and landscape are related is also an important56

aspect of this work Burenhult and Levinson (2008). In related work, environmental psychologists have57

studied how people relate landscape values and place attachment Brown and Raymond (2007).58

People write about places not locations and ethnophysiography is close related to the study of place59

and place attachment, described as topophilia by Tuan Tuan (1974). In his book Place and Politics John60

Agnew Agnew (1987) argues that one necessary component of a place is a locale, which is a combination61

of the physical setting and configuration of the place and the types of activities that people engage in62

there. The accessibility to large corpora of place descriptions gives us an unprecedented opportunity to63

investigate the research problems of linguistic geography, ethnophysiography, and place through discovery64

of statistical patterns in the data Gregory and Hardie (2011); Adams and McKenzie (2013). However, the65

duality of place as a physical location and social construction – while commonly understood in geography66

– has not been reflected in the topic models of language that have been previously developed.67

2 TOPIC MODELING68

Probabilistic topic modeling is a class of text mining statistical models designed to identify the latent69

topics (or themes) that exist in a corpus of documents, and how each these topics are represented in each70

individual document Steyvers and Griffiths (2007). Since topic models are a type of unsupervised learning71

it means that a structure of the corpus’ content can be discovered without requiring that examples be72

tagged for different pre-selected topics by a human user prior to training. The Latent Dirichlet allocation73

(LDA) model is the most popular probabilistic topic model and describes each document as a mixture74

of topics, where each topic is itself a probability distribution over words Blei et al. (2003). LDA is a75

generative model in that it describes how the documents that exist in the corpus were generated through a76

random process of picking each word that goes into the document given the distributions of words and77

topics defined by the model.78

Let θi be the topic distribution for document i, φk be the word distribution for topic k, zi j be the topic79

for the jth word in document i, and wi j be that word. The LDA generative process is defined as follows80

Blei et al. (2003):81

1. Choose θi ∼ Dir(α), where i ∈ {1, . . . ,M}82

2. Choose φk ∼ Dir(β ), where k ∈ {1, . . . ,K}83

3. For each word wi j, where j ∈ {1, . . . ,Ni}84
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Figure 1. LDA plate notation

(a) Choose a topic zi, j ∼ Multinomial(θi).85

(b) Choose a word wi, j ∼ Multinomial(φzi, j),86

where in the previous Dir(·) is the Dirichlet distribution for the given parameter. Figure 1 shows the LDA87

model in plate notation.88

Given the model we need to infer the most likely topics and words over topics to explain the existing89

corpus. Gibbs sampling Markov Chain Monte Carlo (MCMC) has been an effective approach toward90

implementing LDA inferencing Griffiths and Steyvers (2004). Gibbs sampling is a randomized algorithm91

to approximate the posterior distribution of a graphical model Bishop (2006). In MCMC a Markov chain92

is created with transitions that converge toward a stationary distribution Mackay (2005). In practice,93

the chain is followed for a fixed number of steps and a sample is drawn (this is the Monte Carlo part).94

The Gibbs sampling algorithm is a kind of MCMC developed by Geman and Geman (1984) to sample95

from the joint probability distribution of a set of random variables. Let p(x) = p(x1, . . . ,xn) be a joint96

probability distribution over n variables. At the initial state of the MCMC the variables x1, . . . ,xn are set to97

the values x(0)1 , . . . ,x(0)n , respectively. The values sampled for the variables at step τ of the Markov chain98

are denoted x(τ)1 , . . . ,x(τ)n . At each step, the value for each variable is updated in turn by sampling from99

the conditional probability, given that all other variables remain constant. The Gibbs sampling algorithm100

(from Bishop (2006)) is shown in Algorithm 1. Assuming there are not two variables that are perfectly

Algorithm 1 Gibbs sampling algorithm (from Bishop (2006))

Initialize {xi : i = 1, . . . ,n}
for τ = 1, . . . ,T do

Sample xτ+1
1 ∝ p(x1|x(τ)2 ,x(τ)3 , . . . ,x(τ)n )

Sample xτ+1
2 ∝ p(x2|x(τ+1)

1 ,x(τ)3 , . . . ,x(τ)n )
...
Sample xτ+1

j ∝ p(x j|x(τ+1)
1 , . . . ,x(τ+1)

j−1 ,x(τ)j+1, . . . ,x
(τ)
n )

...
Sample xτ+1

n ∝ p(xn|x(τ+1)
1 ,x(τ+1)

2 , . . . ,x(τ+1)
n−1 )

end for

101

correlated, Gibbs sampling will converge toward a steady state that is the desired distribution Gelman102

et al. (2004).103

The LDA graphical model is easily extended and several variations of LDA have been developed. Of104

relevance to this work especially are the models that condition for topics based on additional geographic105

information. While these models consider geographic information in the form of place labels Mei et al.106

(2006) or location information Eisenstein et al. (2010); Adams and Janowicz (2012), none of these models107

consider the actual features present at the places being described. The GFTTM presented in the next108
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Symbol Meaning Data type representation
D Number of documents in corpus scalar
F Number of feature types for corpus scalar
T f eat Number of feature type topics scalar
T abst Number of abstract topics scalar
pd Feature type distribution for document d F-dim vector
Nd Number of words in document d scalar
W Vocabulary size (number of unique words in corpus) scalar
W Corpus observation data D×W sparse matrix
φ

f eat
t Probabilities of words given feature topic t W -dim vector

φ abst
t Probabilities of words given abstract topic t W -dim vector

ε f Probabilities of feature type topics given feature type f F-dim vector
φ f eat W ×T f eat matrix
φ abst W ×T abst matrix
θd Probabilities of abstract topics given document d T abst -dim vector
πd Binary switch probabilities on feature vs. abstract topic

for document d
2-dim vector

xdi Binary switch assignment for word i, document d ∈ {abst, f eat}
fdi Feature type assignment for word i, document d element of F
zdi Topic assignment for word i, document d element of Tfeat

⋃
Tabst

wdi Word assignment for word i, document d element of W
α Dirichlet prior
β f eat Dirichlet prior
β abst Dirichlet prior
ψ Dirichlet prior
γ Beta prior (parameters α , β )

Table 1. Definitions for symbols used in this paper.

section is a generative model built on the assumption that certain physical features in the environment will109

generate some of the words in a place description.110

3 GEOGRAPHIC FEATURE TYPE TOPIC MODEL (GFTTM)111

The GFTTM is a generative model in the same vein as LDA and its many extensions. The observed data112

of a corpus of place descriptions is modeled as being randomly generated from a set of abstract topics and113

feature type topics, which are conditioned on a second set of observation data describing the features of114

that place. Like these other models the estimation of the parameters can be approximated using Gibbs115

sampling, the algorithm for which is described below. Table 1 is a reference listing of all symbols used116

subsequently along with their meanings.117

3.1 Generative model118

A document that describes a place is assumed to be a mixture of feature type topics and abstract topics.119

The mixture of feature type topics for a document is based on the relative densities of feature types within120

the spatial extent of the place described in the document. Let D be the number of documents in a corpus,121

F be the number of feature types, T f eat be the number of feature type topics, T abst be the number of122

abstract topics. The generative process (shown in plate notation in Figure 2) for creating a corpus of place123

descriptions is defined as follows:124

1. (a) For each feature type topic t f eat ∈ {1 . . .T f eat} choose a multinomial distribution over words125

φ
f eat

t ∝ Dirichlet
(
β f eat

)
126

(b) For each abstract topic tabst ∈ {1 . . .T abst} choose a multinomial distribution over words127

φ abst
t ∝ Dirichlet

(
β abst

)
128

(c) For each feature type f ∈ {1 . . .F} choose a multinomial distribution over feature type topics129

ε f ∝ Dirichlet (ψ)130
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Figure 2. Geographic feature type topic model plate notation

2. For each document d ∈ {1 . . .D}131

(a) Given a multinomial distribution over feature types in place described in document, pd132

(F-dimensional vector)133

(b) Choose a multinomial distribution over abstract topics θd ∝ Dirichlet (α)134

(c) Choose a binomial distribution over feature type topics vs. abstract topics πd ∝ Beta
(
γ f eat ,γabst

)
135

(d) For each word wdi in document d136

i. Choose a binary switch xdi ∝ Binomial (πd)137

ii. If xdi = abst, choose an abstract topic zdi ∝ Multinomial (θd)138

Else if xdi = f eat, choose a feature type fdi ∝ Multinomial (pd) and then choose a139

feature type topic zdi ∝ Multinomial
(
ε fdi

)
140

iii. Choose a word wdi ∝ Multinomial
(
φ

xdi
zdi

)
141

Given this model, the probability of a corpus, W, being generated is shown in Figure 3.142

3.2 Gibbs sampling inference143

In this section a method is described for using Gibbs sampling to estimate the parameters of the GFTTM144

given the observed variables: the corpus W and feature type distributions P and hyperparameters: β f eat ,145

β abst , ψ , α , γ . In a Gibbs sampling simulation a series of iterations is run where the topic assignment146

for each word in the corpus is updated in sequence (see Griffiths and Steyvers (2004)). An update rule147

is applied to determine what topic a word should take on in the current iteration given the assignments148

of topics for all the other words in the corpus. The update rule defines the proportional weight for each149

possible assignment and then a random selection is made based on those weights and the word is updated.150

This calculation is done for each word in one iteration of the algorithm.151

Let the following list of definitions hold for the update rules defined below.152

• nabst z
w,∼di : number of times word w is assigned to abstract topic z.153

• nabst z
d,∼di : number of times a word in document d is assigned to abstract topic z.154
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P(W|φ f t ,φ ab,ε) =
D

∏
d=1

P
(

wd|φ f t ,φ ab,ε,θd ,πd , pd

)
=

D

∏
d=1

Nd

∏
i=1

P
(

wdi |φ f t ,φ ab,ε,θd ,πd , pd

)
=

D

∏
d=1

Nd

∏
i=1

[
P(xdi = abst |πd)

T ab

∑
t=1

P
(

wdi |zdi = t,φ ab
t

)
P(zdi = t |θd)

+ P(xdi = feat |πd)
T f t

∑
t=1

P
(

wdi |zdi = t,φ f t
t

) F

∑
f=1

P
(
zdi = t | fdi = f ,ε f

)
P( fdi = f | pd)

]

Figure 3. Probability of a corpus

P
(

xdi = abst,zdi = z |wdi = w,x∼di,z∼di,w∼di,α,β abst ,γ
)

∝
nabst z

w,∼di +β abst

∑
w′

nabst z
w′,∼di +Wβ

abst ·
nabst z

d,∼di +α

nabst
d,∼di +T abstα

·
(

nabst
d,∼di + γ

abst
)

Figure 4. Gibbs sampling update rule for abstract topics

• nabst
d,∼di : number of times a word in document d is assigned to an abstract topic.155

• n f eat z
w,∼di : number of times the word w is assigned to feature type topic z.156

• n f
z,∼di : number of times feature type topic z is assigned to feature type f .157

• nF
z,∼di : number of times feature type topic z is assigned to a feature type.158

• n f eat
d,∼di : number of times a word in document d is assigned to a feature type topic.159

• n f
d,∼di : number of times a word in document d is assigned to feature type f .160

• pd : probability vector of features for document d.161

• pd f : probability of feature type f for document d.162

The Gibbs sampling update rule for abstract topics is shown in Figure 4. This update rule is similar163

to the update rule for Gibbs sampling LDA Griffiths and Steyvers (2004). The update rule for feature164

type topic is shown in Figure 5. Thus, the probability of a word being assigned a given feature type topic165

is proportional to the probability of the feature given the document times the probability of other topics166

assigned to that feature and the probability of other words assigned to that feature type topic.167

P(xdi = f eat, fdi = f ,zdi = z |wdi = w,x∼di,z∼di, w∼di,pd ,ψ,β f eat ,γ
)

∝
n f eat z

w,∼di +β f eat

∑
w′

n f eat z
w′,∼di +Wβ

f eat
·

pd f

n f
d,∼di/n f eat

d,∼di

·
n f

z,∼di +ψ

nF
z,∼di +Fψ

·
(

n f eat
d,∼di + γ

f eat
)

Figure 5. Gibbs sampling update rule for feature type topics
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3.3 Similarity of feature types168

The similarity of feature types can be measured in terms of the relative entropy of feature type topic169

probabilities for any pair of feature types. For a symmetric measure it is a function of the Jensen-Shannon170

divergence between the multinomial distributions of topics for two feature types. Jensen-Shannon171

divergence is defined in Equation 1.172

JS(P ‖ Q) =
1
2

DKL(P ‖M)+
1
2

DKL(Q ‖M) , (1)

where P and Q are two multinomial distributions, DKL is the Kullback-Leibler divergence (defined in
Equation 2), and M = (P+Q)/2.

DKL(P ‖ Q) = ∑
i

P(i) log
P(i)
Q(i)

. (2)

In this context the similarity of feature types is based entirely on the probabilities of words used,173

conditioned on the presence of specific feature types. This similarity measure can be combined with174

other methods of measuring semantic similarity of feature types (e.g., based on ontologies) Janowicz et al.175

(2011).176

3.4 Similarity of places177

The decomposition of documents into feature type topics and abstract topics allows us also to compare178

the similarity of places in terms of these two different types of topics. We can, for example, use the179

documents associated places to compare two place either in terms of similar descriptions of feature types180

at those places, or in terms of abstract topics. This allows us to explore the ways in which places are181

similar or different in a more nuanced way.182

4 EVALUATION183

To evaluate the GFTTM a training set of georeferenced Wikipedia articles from the United States and184

geographic feature data for the United States from Geonames.org1 were used. Geonames.org classifies185

each feature with one of 645 feature codes 2. These feature codes are defined informally with short textual186

descriptions and are organized into a shallow taxonomy of 9 broad categories (A country, state, region; H187

stream, lake; L parks, area; P city, village; R road, railroad; S spot, building; T mountain, hill, rock; U188

undersea; V forest, heath). Figure 6 shows a sample of these two sources of data that are georeferenced in189

the vicinity of Yosemite valley in California.190

After removing all articles with fewer than 200 words, the total training corpus consisted of 36,994191

Wikipedia articles with 75,772 unique terms. To generate the appropriate feature type ratios for each192

document, the set of all geographic features within 5 km of the georeference location for the article were193

extracted from the Geonames database. Extremely rare or sparse feature codes were removed (i.e., those194

where there are never more than four within 5 km of the georeference location for any article). Following195

the removal of rare feature types there were 85 feature codes remaining. Because some features, such as196

building (S.BLDG) are much more common than others, such as mountain (T.MT), the feature counts197

are normalized based on the maximum number of a given feature type within any 5 km buffer zone (See198

Table 4 for maximum feature type counts within 5km radii of georeferenced Wikipedia articles). The199

rationale for this is that any feature type that is disproportionately more present than normal within a200

place is more likely to be described in a written account of that place. For example, although there are201

relatively few mountains compared to the number of buildings in the Los Angeles area, descriptions of202

L.A. will likely reference mountain related words more often than based on simple counts of features,203

because there are more mountains than an average American city.204

Several experiments were run, varying the hyperparameter values. Picking the appropriate hyperpa-205

rameter values for topic modeling is a bit of an art and will depend on the size and quality of the corpus as206

well as the number of topics that are being modeled. However, in our experiments we found that α = 0.5,207

1http://geonames.org
2http://www.geonames.org/export/codes.html
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Figure 6. Sample of geonames.org features and georeferenced Wikipedia articles in the vicinity of
Yosemite valley. The ‘W’ icons refer to Wikipedia articles and the numbered icons refer to geonames.org
features. The colors correspond with the 9 broad feature type categories defined by geonames.org.

Topics Top words
Feat. type Topic 1 school student team community high city college area develop

year athletic district
Feat. type Topic 2 design build hall student study library art plan artist collect east

park
Feat. type Topic 3 trail area forest camp mountain park locate rock day dam rang

nation
Feat. type Topic 4 air force base fort army command train war squadron wing mili-

tary
Feat. type Topic 5 school house event day make open built east renovate summer

annual surround
Abstract Topic 1 apache territory mexico indian seminole mexican florida spanish

reserve navajo santa
Abstract Topic 2 british force command army battle attack burgoyne hooper arnold

air advance general
Abstract Topic 3 damage tornado tree destroy path unknown length coord utc

source comment sustain
Abstract Topic 4 flight crash aircraft airline accid pilot atr plane crew faa ntsb

cargo
Abstract Topic 5 limit speed mph ishi road truck yahi interstate rural statute high-

way divide

Table 2. Sample topics found for Wikipedia and Geonames data (trained for 50 feature type topics and
100 abstract topics).
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Feature type topic most-similar Abstract topic most-similar
1. Grand Canyon 1. History of the Grand Canyon
2. Dogpatch USA 2. 1935 Labor Day hurricane
3. Shawangunk Ridge 3. Egg Rock
4. Longmire, Washington 4. Tantiusques
5. Old Man of the Mountain 5. Metacomet Trail
6. Bandera County, Texas 6. Weymouth Back River
7. Panther Mountain (New York) 7. Seven Falls
8. Kalalau Valley 8. Staten Island Greenbelt
9. Hays County, Texas 9. Eleven Jones Cave
10. Rapidan Camp 10. Stone Mountain

Table 3. Top-10 most similar georeferenced Wikipedia articles to Yosemite Valley in terms of feature
type topics and abstract topics (excluding all places within 100 km).

β f eat = 0.1, β abst = 0.1, ψ = 0.1, γ f eat = 0.01, and γabst = 2.0 worked well to generate subjectively208

meaningful feature type and abstract topics.209

To demonstrate the difference between the feature type and abstract topic mixtures for a place Table 3210

shows the most similar place articles to the English Wikipedia Yosemite_Valley article in terms of211

feature type and abstract topics. The JS divergence as described in Equation 1 was used to find the top-10212

most similar place articles.213

5 RESULTS AND DISCUSSION214

Table 2 shows sample results for the top words for both feature type topics and abstract topics from the215

training data. For these results we trained for 50 feature type topics and 100 abstract topics. The results216

shown in Table 2 are promising. For example, the terms force and army are assigned both to feature type217

topic 4 and abstract topic 2. In the abstract topic these terms are associated with other terms that are found218

in articles about historical battles. For example, there is reference to John Burgoyne and Benedict Arnold,219

famous generals from the American revolutionary war. In comparison for the feature type topic they are220

associated with other terms that will also be found in documents co-located with the S.INSM (military221

installation) feature type. An examination of the feature type topic mixture for S.INSM confirmed this222

as this topic was the primary topic, mixed with small amounts of feature type topics associated with the223

terms island, bay, harbor and street, building, city.224

At first glance the similar places shown in Table 3 might not show a clear distinction between places225

that are feature type-similar and those that are abstract-similar. Both are heavily dominated by important226

natural features and places that have low human population and few manmade structures. However, upon227

closer examination of the content of the articles in question it is clear that the place descriptions in the228

abstract column nearly all contain significant historical sections variously describing Native American229

populations, national park history, and European settlement – all topics found in the Yosemite Valley230

article. The articles found in the feature type topic column do not contain these topics to such a degree.231

One interesting result from this model is that the abstract topics seem to be more specific than in232

the traditional LDA model. In particular, words that are generally of lower probability in LDA topics,233

show up higher in GFTTM abstract topics. A possible explanation is that many of the more common234

terms in LDA topics are assigned to feature type topics allowing more rare words to move up in the235

abstract topics (which correspond to traditional LDA topics in the model). Further investigation into this236

phenomenon is merited.237

6 RELATED WORK238

Understanding the relationships between topics and geographic locations has been a very active research239

area in recent years. In this section we present relevant related work on spatial and geographic topic240

modeling.241
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Feat. code Max. Name Feat. code Max. Name
A.ADMD 32 administrative division S.HSP 63 hospital

H.BAY 34 bay S.HTL 280 hotel
H.CHN 19 channel S.INSM 22 military installation
H.CNL 34 canal S.LIBR 89 library

H.GLCR 14 glacier(s) S.LTHSE 6 lighthouse
H.HBR 43 harbor(s) S.MALL 38 mall
H.INLT 20 inlet S.MAR 21 marina
H.LK 45 lake S.MN 466 mine(s)

H.OVF 23 overfalls S.MNMT 23 monument
H.RPDS 10 rapids S.MNQ 18 abandoned mine
H.RSV 25 reservoir(s) S.MUS 24 museum

H.RSVT 25 water tank S.OBPT 9 observation point
H.SPNG 91 spring(s) S.PKLT 13 parking lot
H.STM 39 stream S.PO 30 post office

H.STMB 7 stream bend S.RECG 9 golf course
H.SWMP 31 swamp S.REST 105 restaurant
H.WLL 132 well S.RSRT 14 resort
L.AREA 9 area S.RSTN 24 railroad station
L.INDS 26 industrial area S.RSTNQ 21 aband. railroad station
L.LCTY 11 locality S.SCH 436 school
L.OILF 7 oilfield S.SQR 8 square
L.PRK 267 park S.STDM 11 stadium

L.RESW 5 wildlife reserve S.SWT 5 sewage treatment plant
P.PPL 398 populated place S.THTR 19 theater

P.PPLQ 17 aband. populated place S.TOWR 35 tower
P.PPLX 193 sect. of populated place S.WHRF 30 wharf(-ves)

R.RDJCT 42 road junction T.BAR 25 bar
R.TNL 8 tunnel T.BCH 14 beach
R.TRL 106 trail T.BNCH 5 bench

S. 134 spot T.CAPE 27 cape
S.AIRH 31 heliport T.CLF 11 cliff(s)
S.AIRP 7 airport T.CRTR 10 crater(s)

S.ARCH 17 arch T.DPR 13 depression(s)
S.BDG 28 bridge T.GAP 20 gap

S.BLDG 1140 building(s) T.ISL 47 island
S.CH 344 church T.LAVA 7 lava area

S.CMP 32 camp(s) T.LEV 7 levee
S.CMPQ 7 abandoned camp T.MT 34 mountain
S.CMTY 47 cemetery T.PLN 8 plain(s)
S.DAM 21 dam T.RDGE 16 ridge(s)
S.FRM 22 farm T.VAL 27 valley

S.FRMQ 21 abandoned farm V.FRST 17 forest(s)
S.HSE 8 house(s)

Table 4. Feature codes and maximum counts within 5 km radius of any georeferenced Wikipedia article
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6.1 Geographic topic models242

One of the original probabilistic text mining approaches for finding themes associated with spatial regions243

was developed by Mei et al. (2006) and was evaluated for analyzing thematic change in blog entries.244

It uses a simpler unigram model than LDA Blei et al. (2003) for topics but mines for spatiotemporal245

patterns in the topics. The location associated with a document is a place label, not a spatially referenced246

location in longitude and latitude. The Location Aware topic model Wang et al. (2007) alters the LDA247

model to generate not only words from topics but also a location, where a “location” is a place name label.248

Each topic is characterized as a multinomial distribution over locations, just like words. The Geographic249

Topic Model (GTM) is a truly spatial topic model that generates spatial regions associated with topics250

Eisenstein et al. (2010). GTM is a cascading topic model that selects words conditioned by base topics251

that are further conditioned on spatial regions. The Location Topic model uses a binary switch variable252

similar to the one utilized in the GFTTM to differentiate between local and global topics to provide253

recommendations based on travelogue topics Hao et al. (2010). Hong et al. (2012) developed a model to254

find geographical topics in Twitter3 and similar microblogging services, which conditions on geographic255

location as well as user information based on the assumption that individual users of Twitter will tend to256

be geographically localized.257

6.2 Other approaches using topic models258

In addition to the above models, which explicitly model geographic or spatial topics, more general-purpose259

topic models have been utilized to identify geographic topics. The relational topic model (RTM) models260

not only the documents in the corpus but also the network of links between the documents, and the RTM261

has been used to train for regional topics by linking documents that share a spatial relationship, e.g.,262

they are tagged with the same geographic region Chang et al. (2010). The Supervised Latent Dirichlet263

allocation (SLDA) model associates an outcome variable with each topic and in their evaluation of GTM,264

Eisenstein et al. (2010) used a version of SLDA that models Gaussian distributions over the longitude and265

latitude trained from points associated with documents Blei and McAuliffe (2007). Adams and Janowicz266

(2012) presented a method for finding topics associated with places by doing a post-hoc analysis of the267

mean probabilities of basic LDA topics associated with geo-referenced documents.268

7 CONCLUSION269

In this paper a novel topic model, GFTTM, was proposed. GFTTM conditions some topics on the presence270

of feature types while other topics are treated as normal LDA topics. The model was evaluated using271

volunteered geographic information from Wikipedia and the Geonames.org website. The results of this272

evaluation demonstrated that the abstract topics and feature type topics trained using GFTTM form two273

distinct types of topics. These topics can be used to disentangle how places are described in terms of its274

physical features and more abstract topics such as history and culture.275

GFTTM relies on a mapping between documents and feature data points based some degree of276

co-location. Therefore, the results of GFTTM must always be evaluated with due consideration of issues277

of scale and accuracy of the geo-location in both sets of source data. Furthermore, although the GFTTM278

is a more sophisticated generative model for how place descriptions are written, because it is trained279

on two sources of evidence rather than one it has two degrees of freedom for mismatches between the280

geocoded location and the actual place being described in the text. In addition, being a more complex281

model than LDA, inference is significantly slower than for LDA. Further investigation using different data282

sources will be needed to evaluate its practical usefulness for specific application domains.283
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