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An examination of disparities in cancer incidence in Texas
using Bayesian random coefficient models

Corey Sparks

Disparities in cancer risk exist between ethnic groups in the United States. These
disparities often result from differential access to healthcare, differences in socioeconomic
status and differential exposure to carcinogens. This study uses cancer incidence data
from the population based Texas Cancer Registry to investigate the disparities in digestive
and respiratory cancers from 2000 to 2008. A Bayesian hierarchical regression approach is
used. All models are fit using the INLA method of Bayesian model estimation. Specifically,
a spatially varying coefficient model of the disparity between Hispanic and Non-Hispanic
incidence is used. Results suggest that a spatio-temporal heterogeneity model best
accounts for the observed Hispanic disparity in cancer risk. Overall, there is a significant
disadvantage for the Hispanic population of Texas with respect to both of these cancers,
and this disparity varies significantly over space. The greatest disparities between
Hispanics and Non-Hispanics in digestive and respiratory cancers occur in eastern Texas,
with patterns emerging as early as 2000 and continuing until 2008.
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Abstract: Disparities in cancer risk exist between ethnic groups in the United States. These
disparities often result from differential access to healthcare, differences in socioeconomic status
and differential exposure to carcinogens. This study uses cancer incidence data from the
population based Texas Cancer Registry to investigate the disparities in digestive and respiratory
cancers from 2000 to 2008. A Bayesian hierarchical regression approach is used. All models are
fit using the INLA method of Bayesian model estimation. Specifically, a spatially varying
coefficient model of the disparity between Hispanic and Non-Hispanic incidence is used. Results
suggest that a spatio-temporal heterogeneity model best accounts for the observed Hispanic
disparity in cancer risk. Overall, there is a significant disadvantage for the Hispanic population of
Texas with respect to both of these cancers, and this disparity varies significantly over space.
The greatest disparities between Hispanics and Non-Hispanics in digestive and respiratory
cancers occur in eastern Texas, with patterns emerging as early as 2000 and continuing until
2008.
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1. Introduction

Disparities in cancer incidence and mortality exist between racial and ethnic groups in the
United States and worldwide (Du et al., 2007; Elmore et al., 2005; Harper et al., 2009; Hun,
Siegel, Morandi, Stock, & Corsi, 2009; McKenzie, Ellison-Loschmann, & Jeffreys, 2010; Siegel,
Naishadham, & Jemal, 2012; Vainshtein, 2008). The causes of these disparities have been
suggested to be rooted in different levels of socioeconomic status (SES), access to medical care,
differential exposure to carcinogenic materials and differential treatment by medical staff of
racial and ethnic minorities (Krieger, 2005; Sarfati, Blakely, Shaw, Cormack, & Atkinson, 2006;
Schootman et al., 2010). While these causes are often non-specific in their effects of how they
directly influence cancer incidence, they do allow us to conceptualize and measure key factors
related inequalities in health. Furthermore, understanding disparities in cancer risk and being
able to visualize the place-based differences both in the determinants of cancer inequality can be
a valuable tool to both scientist and policy maker alike. The goal of this paper is to identify
geographic clusters of disparities in cancer risk between the Hispanic and non-Hispanic
populations of the state of Texas using current incidence data from a population based cancer
registry.

Respiratory and digestive system cancers have been identified as often having direct and
identifiable causal pathways associated with them, many of which are behavior or
environmentally influenced. Lung cancer is perhaps the most widely recognized environmentally
influenced cancer type, with strong evidence to support the effects of smoking, poor diet and
direct inhalation of certain carcinogens including asbestos and other indoor air pollutants
(Alberg, Ford, & Samet, 2007; Alberg & Samet, 2003; Ruano-Ravina, Figueiras, & Barros-Dios,

2003). The exposure to these carcinogens generally leads to errors in somatic cell growth, such
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as chromosomal abnormalities, cellular mutations, and alterations in tumor suppressor cells.
Gastrointestinal system cancers also have a variety of causes, with some consistency between the
types of cancer, but other types also have distinct know etiologies. For example, hepatocellular
carcinoma (primary liver cancer) has been directly linked with hepatitis infection, alcoholic
cirrhosis and dietary aflotoxins (El-Serag, 2012; Stuver & Trichopoulous, 2008) while other
digestive system cancers, such as colorectal cancers are heavily influenced by dietary and
lifestyle factors (Chao et al., 2005). While the specific etiologies of the cancers of these two
body systems sometimes have direct causal paths, they are generally thought to be influenced by
both behavioral and environmental circumstances, which interact with familial and genetic
pathways in complicated ways.

The state of Texas is the second most populous state in the United States, with a current
population estimate of 25.7 million persons. Between 2000 and 2010, Texas was the sixth fastest
growing state, and the highest in total numerical population gain (Makun & Wilson, 2011).
Additionally, it is consistently in the top five fastest growing states in the nation. The Hispanic
population of Texas was estimated to be 10.1 million persons, or over 38% of the population in
2013 and Texas has the second largest Hispanic population, behind only California (Makun &
Wilson, 2011). In addition to being a large part of the state’s population, the Hispanic
population also faces socioeconomic disadvantages compared to other ethnic groups. The
poverty rate for Texas Hispanics was 25.8% according to the 2010 American Community
Survey, while non-Hispanic whites only had an 8.8% poverty rate (United States Department of
Commerce, 2012). Likewise, Hispanics were are more likely to be employed in construction
related activities (18.7% compared to 6.1% for non-Hispanic Whites), which could expose this

population to more risk from air-born carcinogens.
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87 For such a large and dynamic state, little population-based cancer disparity research has
88 been published for Texas. In a recent study of cancer disparities in Texas counties, Phillips et. al.
89 (2011) found that an index of socioeconomic well-being was significantly associated with
90 county-level ratios of metastatic to non-metastatic tumors in all-cause, female genital and lung
91 cancers. In a study of El Paso county, Collins et. al. (2011) found higher cancer risk for the
92  Hispanic population of that area, and they go on to discuss how in El Paso, areas of the city that
93 had the highest levels of Hispanic population who had low levels of education had six times the
94  risk of the more educated areas, and areas with the highest proportion of Hispanic renters had
95 seven times the risk of cancer than other, more socioeconomically advantaged areas. Using a
96 geographically weighted regression approach, (Tian, Wilson, & Zhan, 2011) on data from the
97 Texas Cancer Registry, found not only that that Hispanics and non-Hispanic Blacks faced
98 disparities in breast cancer mortality, but that these disparities varied over space within the state.
99 These studies likewise point to the placed-based inequality and increased risks that minority
100  groups, including the Hispanic population, face in certain areas within the state. This study will
101 add to the literature on cancer disparities by employing a spatially oriented statistical analysis for
102  the entire state over a more inclusive time period.
103 With respect to access-based disparities related to cancer risk, Hispanics have been
104 shown to have lower chances of seeking preventative care (Cristancho, Garces, Peters, &
105 Mueller, 2008; Hosain, Sanderson, Du, Chan, & Strom, 2011; Lantz et al., 2006; Shih, Zhao, &
106  Elting, 2006; Suther & Kiros, 2009) in general, and specifically cancer screening. Reasons for
107  not seeking care include lack of insurance, language barriers and the high cost of health care

108  (Cristancho et al., 2008). In a study of colorectal cancer, Wan et. al. (Wan, Zhan, Lu, &
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109 Tiefenbacher, 2012) found significant disparities for Hispanics and non-Hispanic Blacks in

110 accessibility to care.

111 1.2 Visualizing disparities across space

112 From a methodological standpoint, testing for disparities in rates is a relatively

113  straightforward task and a variety of statistical procedures are well suited for it. Specifically, a
114  disparity in two rates can be measured as either a difference in total rates, or as a ratio of risks
115 the groups being compared (Keppel et al., 2005). In terms of visualizing the disparities, this can
116 be more of a challenge. For measuring the disparity between population subgroups, the

117  standardized risk ratio is a useful measure, but it is often subject to noise in the underlying rates,
118 most notably in small populations or in cases of rare disease. Maps of such relative risks, as a
119  result of the noise caused by small populations, often lead to the reporting of unstable risk

120  estimates. Tango (2010) describes a variety of methods for both visualizing and detecting

121  disease clusters. Methods for mapping such risk ratios in a scan-statistic context have been

122 described by Chen and co-authors (2008), and Bayesian disease mapping methods are also cited
123 as being particularly good at mapping spatial disease risk (Anderson, Lee, & Dean, 2014; Choo
124 & Walker, 2008; Earnest et al., 2010; Kim & Oleson, 2008; Lawson, 2013; Lawson et al., 2000;
125 Lee & Mitchell, 2014; Lee & Shaddick, 2010). The Bayesian approach allows for smoothing of
126 the relative risk by combining information across spatial units, as well as across time.

127 It is the purpose of this paper to investigate the spatial variation in cancer incidence

128  disparities between Hispanic and non-Hispanic populations of the state of Texas between 2000
129 and 2008 using data from a population-based cancer registry. This research adds to the literature
130 in spatial epidemiology by examining the disparities in these two populations over time and

131 space by using a Bayesian modeling methodology, which models the variation in cancer
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disparities between these two populations within the state. The Bayesian modeling framework is
used to specify a series of varying coefficient models as a method of both more accurately
modeling the disparity between these two populations, but also for visualizing where the
disparities between the populations exist. The goal of this process it to provide a locally accurate
depiction of health disparities which state and local health officials could use in combating health
inequalities.

2. Data and methods

2.1 Data source

Data for this analysis come from the Texas Cancer Registry’s (www.dshs.state.tx.us/tcr/)

Limited-Use data file from 2000 to 2008. Access to these data was approved by the Texas
Department of State Health Services IRB #12-030. These data consist of de-identified individual
records of primary cancer diagnoses by oncologists in the state of Texas. For the purposes of
this study, relevant variables in the data include year of diagnosis, age, sex, Hispanic ethnicity,
International Catalog of Disease for Oncology (ICD-0O-3) codes for cancer diagnosis site and
county of residence at the time of diagnosis. Two main types of cancer were chosen: digestive
system (ICD-O-3 codes C150 — C488) and respiratory system cancers (codes C300 — C399).
These cancers were chosen because several of the sub-types of these cancers have been linked to
environmental or behavioral influences, and several have also been shown to vary between
ethnic groups in their incidence (Howe et al., 2006; Singh & Hiatt, 2006; Singh & Siahpush,
2002; Wiggins, Becker, Key, & Samet, 1993; Willsie & Foreman, 2006). These two cancers are
selected for study, because they constitute 41% of all cancers in the state for this period. For the
years of this study a total of n=155,652 digestive and n=124,438 respiratory system cases were in

the data. The most prevalent form of digestive system cancer was colorectal cancer, with 53% of
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155 digestive cancers, and squamous cell carcinoma of the lung was the most prevalent respiratory
156 cancer, representing 22% of all cases.

157 The dependent variable in the analysis is the count of either digestive or respiratory

158 cancers in each of the 254 counties of Texas between 2000 and 2008. The data are stratified by
159  ethnicity into two categories Hispanic and non-Hispanic. The stratification of the cases is

160 accomplished by using the Hispanic ethnicity variable in the registry. Thus for each year, there
161 are two separate counts for each cancer type and for each of the 254 counties in the state. Since
162 the dependent variables are counts, they are generally expressed as a standardized ratio of counts
163  to expected counts. This is typically called the standardized incidence ratio (SIR), and is

164  expressed:

165  SIR;x = yyi/eji

166 Where y; is the count of cases in the i county for the j* year for the k” ethnicity and ey is the
167 expected number of cases in the county for each group. Here, to estimate the expected number
168  of cases for each county, year and ethnicity, an assumption of equal risks is used. The expected
169 number of cases in each county, year and ethnicity, e, is calculated by assuming each county
170 has the average incidence rate for the whole state for the period 2000 to 2008, or:

171 ey = Zny*r

172, where n;; is the number of residents in each county for each ethnicity, and r is the average

173  incidence rate for the state for the period 2000 to 2008. This is repeated for each type of cancer:
174  digestive and respiratory. This generates a set of expected values for the Hispanic and non-

175 Hispanic population of each county, using the statewide rate and the county population size for

176  each group.
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177 To control for background characteristics of the counties, and to measure proxies for

178 factors affecting cancer risk, four independent variables are constructed. The first of these is the
179  metropolitan status of the county, which is measured as a dummy variable indicating whether the
180 United States Department of Agriculture’s Economic Research Service considers the county

181 metropolitan. These counties are coded as 1, and non-metro counties are coded as 0. The

182  poverty rate in each county is calculated from the US Census Bureau’s Summary File 3 for 2000,
183 and is expressed as the proportion of all residents living below the poverty line in 1999. The

184  proportion of the labor force in construction is used to measure a crude proxy for occupational
185 exposure to certain carcinogens. This is again measured using the Census’s Summary File 3 and
186 expressed as a proportion. Finally, the Area Resource File (US Department of Health and

187 Human Services, 2009) for 2008 is used to measure the number of hospitals in each county per
188 10,000 residents. This is used as a crude proxy for healthcare access in each county.

189 2.2 Statistical methods

190 2.2.1 Model Specification

191 Since the dependent variable is a count, a Poisson distribution is used to model the outcome. To
192  model this outcome, a log-linear Poisson hierarchical regression model for each county, i, year, J,

193 ethnicity, &, and type of cancer, C, is specified as:

194

Ycijk | Gcljk ~ Poisson (ec,-jk * chk)
195

The relative risk function, 6¢;, can be parameterized using a number of different models, the
196

present paper considers a Bayesian model specification.
197

In the Bayesian modeling paradigm all model parameters are considered to be random

198

variables and are given a prior distribution and all inference about these parameters is made from
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199
the posterior distribution of these parameters, given the observed data and the information given

200
in the priors. This is generally referred to as Bayes Theorem, and typically stated as:

201 p(Bly)ocp(r|0)p(6)

202  Where p(8]y) is the posterior distribution of the model parameter of interest, p(y|60) is the model
203 likelihood function, here defined as a Poisson likelihood, and p(@) is the prior distribution for the
204 parameters in the model. Inference for all parameters is done via their posterior distribution,

205 which can be used to derive mean values, quantiles or other descriptive statistics. One useful
206 method for summarizing these distributions is the Bayesian Credible Interval (BCI), not unlike
207 frequentist confidence interval, which gives the values of the posterior density for each

208 parameter that contain 100*(1-a)% of the posterior density. Inference on these BCI regions

209 usually consists of examining if the null hypothesis value of the parameter, typically zero, is

210 contained in the interval.

211
Since the primary interest in this paper is the relative difference between the incidence of

212

cancer in the Hispanic and non-Hispanic populations of each county, the simplest way to
213

parameterize the model is as a linear difference in the incidence rates using a simple,
214

unstructured linear predictor. This is the first model considered, and is parameterized as:
215
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IN(0) = at + S *ethe, + Y, By +dg + v + to+¥e
k

a. ~ U(—1nf,inf)
0.~ N(0,.0001)
B ~N(0,.0001)

Ve ~N(0,7¢,) (Model 1)
1

ug N(—Zucj,TCu /n,)
o~

t; ~N(0,7)

Wi ~NO,7,0)
, which follows the standard form for spatio-temporal disease incidence models commonly used
in the literature (Blangiardo & Cameletti, 2015; Blangiardo, Cameletti, Baio, & Rue, 2013; Held,
Graziano, Frank, & Rue, 2006; Knorr-Held, 2000; Lawson, 2013; Lee & Mitchell, 2014;
Schrodle & Held, 2011b; Ugarte, Goicoa, Ibanez, & Militino, 2009). This model specifies the
relative risk as a linear function of a grand intercept for each cancer type, o, a mean difference
between the two ethnicities (eth) for each cancer type, d¢, a linear predictor effect of the
independent variables for each cancer type, 2 fic xi, a “convolution” spatial prior, corresponding
to the Besag, York and Mollie (Besag, York, & Mollie, 1991) model, which incorporates an
unstructured heterogeneity term for each county and cancer type, v¢;, and a correlated
heterogeneity term as a conditionally autoregressive random effect, uc;, a temporally
unstructured random effect for each year and cancer type, 7,/ and finally a spatio-temporal
interaction random effect, ¥¢;;, which follows the Type 1 specification in Knorr-Held (Knorr-
Held, 2000). In this model there is a single parameter for measuring the disparity between
Hispanics and non-Hispanics for each cancer type, and this is done on average for the entire

state. This model additionally captures the underlying characteristics of the counties, the overall

1 Other prior distributions, including a first order random walk (RW1) priors were used, but did
not increase model fit in this case, so the simpler exchangeable random effect for time was used
in the final model.
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spatial structure of cancer risk, and the temporal variation between years in the relative risk.
Priors are assigned to all parameters in a minimally informative fashion, with an improper flat
prior for o, high variance Normal distribution priors for the o and ¢ and_v¢;, a Normal
distribution prior for # and vague Gamma priors for the precisions of the unstructured
heterogeneity, correlated heterogeneity, temporal and spatio-temporal components. For all
models, the Normal distribution priors are specified in terms of their mean and precision, which
is common in Bayesian modeling, with the precision being the inverse of the variance: T = 1/62,
such that low precisions equal high variances.

A second model adds more flexibility to Model 1 by including a random slope for each

county’s difference between Hispanic and non-Hispanic risk. This model is specified as:

In(0) = et + 8 *ethy, + Y PXy +ilg + Ve +ig + W,
k

a. ~U(—1inf, inf)
Oc ~0po+ 0,00~ N(0,7,)
B ~N(0,.0001)

v~ N(O,7c,) Model 2
1

ugy N(—Zucj, 7o, /1)
jog~

o~ N@,7,,)
I//Cij ~ N(O’ T(//C)

which is similar to (1), but includes a J¢; term which allows the differences between Hispanic
and non-Hispanic risk to vary between counties, equivalent to an unstructured random-slopes
model for the disparity. This is much like the spatially varying coefficient model discussed
elsewhere (Banerjee, Carlin, & Gelfand, 2004; Gelfand, Kim, Sirmans, & Banerjee, 2003),
except in this model, the random slope term is not spatially correlated.

A final model adds a correlated slope for the disparity parameter to Model 2. This model

follows the example of previous authors, who model the disparity between groups as a spatially
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250 autoregressive random slope (Tassone, Waller, & Casper, 2009; Wheeler, Waller, & Elliott,

251 2008). This model has the form:

In(0) = a. + 38, *ethy, + Y By + e + Vg +ig +We,
k
o ~U(—1nf, inf)
1
O¢; = O0py + 00,0 N(_Z5qarca /n,)
JoJ~i
252 IBCk NN(O,.OOOI)
v ~N(0,7.,) Model 3
ug N(iZqu,TCu/ni)
i

b~ NQ,7,,)
Ve ~ N(O, T.//c)

253
, which smooths the disparity parameter over neighboring counties within the state.

254 For geographic modeling, neighbors are identified using a first order Queen contiguity
255 rule. Other neighbor specifications were examined, specifically a first order rook contiguity rule,
256 and the results were substantively robust to this other neighbor specification. Also, since the

257 precision terms for Bayesian hierarchical models have been shown to be sensitive to prior

258 specifications, a sensitivity analysis is performed. The models specified above all considered
259  Uniform distributions for the standard deviation of each of the precision parameters. To examine
260 the sensitivity of the models to alternative specifications, proper Gamma (.5, .0005) priors are
261 also considered for all precision terms. This prior distribution has been used by other authors,
262 and is thought of to be a sufficiently vague prior for the precision for these parameters.

263 2.3 Computing - INLA

264 The software R (R Development Core Team, 2015) and the R package R-INLA

265 (Martins, Simpson, Lindgren, & Rue, 2013; Rue, Martino, & Chopin, 2009) were used to prepare

266 data for analysis and parameter estimation. The Integrated Nested Laplace Approximation, or
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267 INLA, approach is a recently developed, computationally simpler method for fitting Bayesian
268 models (Rue et al., 2009), compared to traditional Markov Chain Monte Carlo (MCMC)

269 approaches. INLA fits models that are classified as latent Gaussian models, which are applicable
270  in many settings (Martino & Rue, 2010). In general, INLA fits a general form of additive

271  models such as:
272 n:a+if,f”)(u,~,~)+nzﬁ,ﬁkzki+€i

=] k=1
273, where 7 is the linear predictor for a generalized linear model formula , and is composed of a
274 linear function of some variables u, /5 are the effects of covariates, z, and ¢ is an unstructured
275 residual (Rue et al., 2009). As this model is often parameterized as a Bayesian one, we are
276 interested in the posterior marginal distributions of all the model parameters. Rue and Martino
277 (2007) show that the posterior marginal for the random effects (x) in such models can be
278  approximated as:
279 plx1y)=2 b(x,16,.)5(6, IM)A,
280 via numeriial integration (Rue & Martino, 2007; Schrodle & Held, 20113, 2011b). The

281 posterior distribution of the hyperparameters (6) of the model can also be approximated

282 as:
N p(x,0,y) «
Oly)oc—"""""|x=x (0
283  p@ly) 3G 16.) x=x (60)
284

285 , where G is a Gaussian approximation of the posterior and x*(6) is the mode of the conditional
286  distribution of p(x|6,y). Thus, instead of using MCMC to find an iterative, sampling-based
287 estimate of the posterior, it is arrived at numerically. This method of fitting the spatio-temporal

288 models specified above has been presented by numerous authors (Blangiardo & Cameletti, 2015;
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Blangiardo et al., 2013; Lindgren & Rue, 2015; Martins et al., 2013; Schrodle & Held, 2011a,
2011b), with comparable results to MCMC.

To summarize the posterior distributions of the model parameters, posterior means and
95% credible intervals are calculated. Three models specified in 2.2.1were examined. Model fit
and improvement is assessed between the models with the Deviance Information Criterion (DIC)
(Spiegelhalter, Best, Carlin, & van der Linde, 2002). The DIC measures the penalized deviance
of each model, with the penalty term representing the model’s estimated number of parameters.
DIC for the INLA models is described in Rue et al. (2009) and uses the model deviance

D(0)=-2log(p(y|0))+ pD

, plus a penalty component, pD, which is an approximate number of parameters in the model.
DIC is used, here as a measure of relative model performance, and models with lower DIC

values are preferred over those with higher DIC, analogous to the standard AIC criteria.

3. Results

3.1 Descriptive Results

Descriptive statistics for the dependent variable and the predictors are presented in Table 1.
[TABLE 1 HERE]

A gradual increase in the average number of cases per county is observed over the nine years of

data. Also, many more cases of both types of cancer (on average) occur to non-Hispanics than to

Hispanics. It should be noted that between 25% (2005) and 36% (2000) of counties had a zero

count for Hispanic digestive cancer cases and between 38% (2003) and 46% (2002) had a zero

count for Hispanic respiratory cancer cases’. Also presented in Table 1 are the observed average

2 The large number of zeros in the data suggests that a zero-inflated distribution be used as the
model likelihood. A zero-inflated Poisson model was considered for the analysis (results
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311 risk ratios for the state for each year. These are calculated as ratio of the observed SIR for

312 Hispanics (SIRy) and the observed SIR for non-Hispanics (SIRyy) for each year. For digestive
313 cancers, every year shows an elevated risk for Hispanics compared to non-Hispanics, and all
314 years except 2000 show an elevated risk of respiratory cancer for Hispanics. Likewise,

315 respiratory cancers show a consistent trend of higher risk in Hispanics, but not as high as for
316 digestive cancers. With respect to the predictor variables, in 2000 nearly 18 percent of the

317 population of Texas was in poverty, with a wide degree of variation as seen by the inter quartile
318 range. On average there were .66 hospitals per 10,000 people in each county in the state, and
319 there were sixty-five counties with no hospitals. Slightly over 8 percent of the work force was
320 employed in construction, and the USDA considered thirty percent of counties in the state to be
321 metropolitan.

322 3.2 Results of Bayesian models

323 Table 2 presents the posterior means of the regression effects for the fixed effects in the three
324 models described above. Also, 95% Bayesian credible intervals are provided for each parameter.
325 Model DIC values are also provided at the bottom of the table for each model. Lastly, summaries
326 for the model hyperparameters provided.

327 [Table 2 HERE]

328  Across the three models, some of the fixed predictors show similar patterns. For digestive

329 cancers, the poverty rate shows a negative association with overall cancer risk in Models 1

330 through 3. This suggests that in areas of higher poverty, the average cancer risk is lower.

331 Respiratory cancer incidence is affected consistently by two of the predictors. The proportion of

332 the work force in construction is positively associated with respiratory cancer risk in the three of

available from the author), but the DIC of said models suggested the Poisson model fit the data
better.
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the models, potentially suggesting an occupation-specific risk pattern. Likewise, a metropolitan
disadvantage is seen, with higher total cancer risk in metropolitan areas. Both of these variables
are in line with expectations in terms of respiratory cancer risk.

When the three models are compared using the DIC, Model 3 shows the best model fit
for each cancer type, with the DIC being lowest for this model. Strong evidence is present that
Model 1 is not adequate to describe the patterns of Hispanic/non-Hispanic disparities in either
cancer, as every other model shows large drops in DIC. When comparing Models 2 and 3, strong
evidence also exists for adding the spatially correlate random slope term temporal random effect
to Model 2, again with a large drop in DIC.

Turning to the Hispanic disparity parameters, in all models, there persists a disparity
between Hispanics and non-Hispanics, with the former consistently showing elevated risk for
both types of disease, net of the ecological factors, and the random effects. For digestive cancers,
we see an increase in risk (%) between 5.3 and 16.4 percent, on average and between 3.8 and 20
percent when considering the 95% credible intervals, depending on the model. For respiratory
cancers, we see an increase between 11.2 and 16.4 percent on average, and 9.1 and 21.1 percent
when examining the credible intervals. For Models 2 and 3, the coefficients of the models are
best presented graphically, as each county has an estimate for the disparity for each cancer type.
These estimates are presented in Figure 1 as posterior mean estimates of the Hispanic disparity in
relative risk (e°€) for each county for Models 2 and 3.

[Figure 1 Here]
The first column of Figure 1 shows the Hispanic disparity random effect from Model 2, for
respiratory and digestive cancers, respectively, when the disparity parameter was treated as

unstructured. The second column of the figure shows the same parameter, when it was treated as
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356 aspatially structured random effect (Model 3). For both respiratory and digestive system

357 cancers, Hispanics show elevated risk in the eastern portion of the state, but they also show

358 elevated risk in the central portion of the state for digestive system cancers, but not for

359 respiratory cancers. The value of these figures is that the actual disparity in risk is being

360 visualized, which shows us where within the state public health officials might try to focus

361 activities in order to reduce the disparity in risk between these two populations.

362 3.3 Spatio-temporal Relative Risk Estimation

363 Figure 2 displays the estimated Hispanic relative risk for digestive cancers (e?) for each year,
364 2000 to 2008, estimated from Model 3.

365 [Figure 2 Here]

366 The quantity being mapped is the linear predictor of the Poisson distribution (e?), with all

367 random effects included, which is interpreted as the model-based standardized incidence ratio
368 (SIR). Each panel in the figure shows the spatial distribution for each year between 2000 and
369 2008. We see a general concentration of elevated Hispanic digestive cancer risk in the eastern
370 portion of the state, as evidenced by relative risks greater than one (darker blue in color). This
371 pattern is consistent, if not increasing over time, with more counties showing greater Hispanic
372 relative risk over time. Lower risk (e? < 1) for Hispanics occurs in North and Western Texas, and
373 also along the border with Mexico, except for a few counties in extreme South Texas in the latter
374 time periods.

375 [Figure 3 Here]

376 Figure 3 provides the complementary space-time risk map for the respiratory cancer

377 outcome. Again, we see higher Hispanic risk in Eastern Texas, but perhaps a more concentrated

378 pattern, compared to the digestive cancer maps. Also present is the lower risk in North and West
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379 Texas, as seen in Figure 2 for digestive cancers. Figure 3 also highlights a consistent spatial
380 cluster of high risk in extreme East Texas for a cluster of three to five counties located North of
381 Harris county (city of Houston). These counties include Montgomery, Liberty, San Jacinto,

382 Walker, Polk and Orange. These counties are quite rural and have low proportions of Hispanic
383 residents (average of 9.3%, or about 8,900 Hispanic persons on average per county).

384 Finally, a sensitivity analysis of alternative priors for the model hyperparameters (all z’s)
385 showed very close agreement between the vague Gamma (.5, .0005) and the flat prior

386 distributions. Since Model 3 showed evidence of being the best fitting model, the sensitivity
387 analysis focused on its estimates. The precision point estimates for the temporal random effects
388 (z,) for the digestive and respiratory cancers, respectively were 478.0 and 1538.8 from the

389 Gamma prior and 441.5 and 1822.5 from the flat prior. The precisions for the uncorrelated

390 heterogeneity (z,) were 428.7 and 923.1 for the Gamma prior and 354.0 and 1095.8 for the flat
391 prior. The precisions for the correlated heterogeneity (z,) were 92.6 and 20.8 for the Gamma
392  prior and 92.5 and 19.9 for the flat prior. The precisions for the varying disparity parameter were
393 15.6 and 17.9 from the Gamma and 14.9 and 17.0 from the flat prior. The precisions for the
394  spatio-temporal random effect (z,) were 296.5 and 288.7 for the Gamma prior model and 298.3
395 and 283.8 for the flat prior model. While this is only one model, the overlap between the

396 precisions is strong enough to validate the results. The one notable difference is the random
397 effect for the unstructured heterogeneity (z,), which showed a lower precision (higher variance)
398 in the Gamma prior model, although the parameter’s 95% credible interval did show significant
399  overlap between the two prior specifications (Figure 4).

400 [Figure 4 Here]

401 4. Discussion

Peer] PeeRnwits| 02 5101108904 T PBN NP e 20A15)814v3 | CC-BY 4.0 Open Access | rec: 31 Aug 2015, publ: 31 Aug 2015



PeerJ

402 This paper illustrated the application of the Bayesian varying coefficient models to the
403 study of cancer incidence disparities between the Hispanic and non-Hispanic population of Texas
404  over the period 2000 to 2008. This paper adds to the literature in health disparities within the
405 state of Texas by using advanced Bayesian statistical methods to investigate the spatial non-

406 stationarity of health disparities in two major form of cancer incidence. The primary goal of the
407 analysis was to examine the usefulness of the spatially varying coefficient model (Banerjee et al.,
408 2004; Gelfand et al., 2003; Tassone et al., 2009; Wheeler et al., 2008) within the Bayesian

409 modeling framework using a variety of model specifications, including models that included

410 interactions between space and time. Alternative model specifications modeled the disparity in
411 incidence between the two subpopulations differently, from a fixed effect on the grand mean to a
412  spatially varying coefficient model for each county in the state. The flexibility of the Bayesian
413 framework also allowed for the models to be compared using standard model complexity criteria
414 (DIC).

415 The model that best fit the data was the space-time model with a spatially varying slope
416 for the disparity between Hispanics and non-Hispanics, according to the minimum DIC criteria.
417  This suggests that the disparity between Hispanics and non-Hispanics in these two cancer types
418 1is best modeled through a spatially structured model, which allows for spatially structured

419 variation in risk. This also suggests that there are counties within the state where the Hispanic
420 population is at higher risk for both of these cancers, and that these counties typically occur

421 closely to one another spatially.

422 Overall, a general disparity in terms of both cancers for Hispanics was found, where they
423  face higher risk for both digestive and respiratory cancers than the non-Hispanic population of

424  the state. Significant effects were found on cancer-specific risks consistently including the
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425 county poverty level, metropolitan status of the county and the proportion of the workforce in
426  construction. The labor force composition finding makes sense, as workers in construction

427 industries often face higher levels of exposure to airborne particulates that could increase cancer
428 risk. The finding for the county poverty rate was that in areas with higher poverty, the overall
429 relative risk of cancer was lower, and deserves more discussion. This effect was seen for both
430 cancer types, in all but the final model (Model 3), and is in stark contrast to findings from

431 national data (Singh, Miller, Hankey, & Edwards, 2003) for many types of cancer, which show
432  higher incidence and mortality in both Hispanics and non-Hispanics in areas with higher poverty.
433  Singh et. al. did not use data from Texas, and the time period for the present study is later than
434  those considered in their report. It is possible that the experience of the Texas population is

435 different from the data used in their study; such local variations are common in health research.
436 This study had one primary limitation; the cancer incidence data had no information on
437 residential histories of the individual cases. Any environmental exposure that could have

438 influenced cancer risk may have come from a previous residential location. Unfortunately, the
439  cancer registry data used in this study had no information on this subject.

440 Further research is needed to investigate the specifics of the counties identified in the
441 analysis as having excess Hispanic cancer risk. This can be done by a more localized analysis of
442  the individual-level data this analysis is derived, and by investigating housing conditions, access
443  to healthcare and potential environmental contaminants in these areas directly. Such ecological
444  analyses as that presented here are rarely truly informative for individual cancer diagnoses, but
445  they can be very influential in terms of public health activities to reduce cancer disparities at the
446  population level.

447
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630

631

632 Table 1. Descriptive statistics for dependent and independent variables used in the analysis.

Mean # Mean # Cases | Mean # Cases Mean
Cancer Type and Year Cases TQR | (on-Hispanic) | (Hispanic) | SIRy/SIRxg
Digestive Cancer
Cases per County
2000 30.9 18 49.9 12.0 0.87
2001 322 18 51.8 12.6 1.44
2002 329 19 52.6 13.2 1.18
2003 337 19.25 53.5 14.0 1.14
2004 344 22 54.0 14.8 1.31
2005 34.8 22 53.9 15.8 1.32
2006 35.2 21 54.3 16.1 1.30
2007 36.1 23 55.8 16.4 1.46
2008 36.1 20 55.1 17.0 2.06
155,652
total cases
Respiratory Cancer
Cases per County
2000 25.6 15 46.0 5.2 1.28
2001 26.5 17 47.2 5.8 1.42
2002 26.9 17 48.2 5.6 1.16
2003 27.8 17 49.4 6.1 1.62
2004 27.6 16.25 49.2 59 1.18
2005 28.1 17 49.9 6.4 1.48
2006 27.4 16 48.4 6.5 1.67
2007 27.8 16 48.7 6.8 1.61
2008 27.2 15 48.1 6.4 1.54
123,438
total cases
Predictors Mean IQR
% in Poverty 17.76 6.58
Hospitals/10,000 People 0.66 0.79
% in Construction 8.11 3.15
% Metro Counties 30.31 1.00
633 n=254 counties
634
635
636
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Table 2. Results for the alternative Bayesian model specification parameters.

Model 1 Model 2 Model 3
Parameter Posterior Mean Posterior Mean Posterior Mean
(95% Credible Interval) (95% Credible Interval) (95% Credible Interval)
Digestive Respiratory Digestive Respiratory Digestive Respiratory
u -.081 -.066 -.098 -.074 -.097 -.074
(-.119 - -.043) | (-.095--.037) | (-137--.059) | (-103 --.044) | (-.136 --.057) | (-.103 - -.044)
B
% in Poverty -.031 .002 -.034 .001 -.033 .001
(-.052 --.010) | (-.027-.033) | (-.057--.011) | (-.031-.032) | (-.057--.010) | (-.032-.030)
Hospitals per capita -.016 -.007 -.015 -.008 -.016 -.007
(-.037-.004) | (-.032-.016) | (-.037-.005) | (-.033-.016) | (-.037-.005) | (-.032-.018)
% in Constriction -.011 .050 -.009 050 -.001 .050
(-.027 - .005) (.028 - .072) (-.026 - .008) (.027 -.072) (-.026 —.008) (.028 - .073)
Metro County .023 052 .023 054 .021 054
J (-.009 - .056) (.007 - .095) (-.011 - .057) (.009 -.099) (-.011 - .056) (.009 - .099)
Hispanic 052 107 138 146 152 152
Disparity, 0 (.038 - .066) (.087 - .126) (.106 - .171) (.109 - .184) (122 -.183) (112 -.192)
Model Fit
Deviance (D) 21256.2 18625.7 20790.2 18462.5 20775.6 18436.8
DIC 21630.2 19004.4 21240.7 18888.5 21217.2 18859.9
pD 373.9 378.7 449.9 426.0 441.6 423.1
Hyperparameters
Et 477.8 1552.5 478.6 1546.5 478.0 1538.8
T“ 331.3 555.6 4323 898.1 428.7 923.1
T" 133.9 24.2 93.7 20.4 92.6 20.8
T“”’ - - 52.3 67.5 15.6 17.9
M 297.1 284.8 296.2 287.3 296.5 288.7

*Parameters in bold type represent estimates whose credible intervals do not contain 0.
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