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An examination of disparities in cancer incidence in Texas

using Bayesian random coefficient models

Corey Sparks

Disparities in cancer risk exist between ethnic groups in the United States. These

disparities often result from differential access to healthcare, differences in socioeconomic

status and differential exposure to carcinogens. This study uses cancer incidence data

from the population based Texas Cancer Registry to investigate the disparities in digestive

and respiratory cancers from 2000 to 2008. A Bayesian hierarchical regression approach is

used. All models are fit using the INLA method of Bayesian model estimation. Specifically,

a spatially varying coefficient model of the disparity between Hispanic and Non-Hispanic

incidence is used. Results suggest that a spatio-temporal heterogeneity model best

accounts for the observed Hispanic disparity in cancer risk. Overall, there is a significant

disadvantage for the Hispanic population of Texas with respect to both of these cancers,

and this disparity varies significantly over space. The greatest disparities between

Hispanics and Non-Hispanics in digestive and respiratory cancers occur in eastern Texas,

with patterns emerging as early as 2000 and continuing until 2008.
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41 1. Introduction

42 Disparities in cancer incidence and mortality exist between racial and ethnic groups in the 

43 United States and worldwide (Du et al., 2007; Elmore et al., 2005; Harper et al., 2009; Hun, 

44 Siegel, Morandi, Stock, & Corsi, 2009; McKenzie, Ellison-Loschmann, & Jeffreys, 2010; Siegel, 

45 Naishadham, & Jemal, 2012; Vainshtein, 2008).  The causes of these disparities have been 

46 suggested to be rooted in different levels of socioeconomic status (SES), access to medical care, 

47 differential exposure to carcinogenic materials and differential treatment by medical staff of 

48 racial and ethnic minorities (Krieger, 2005; Sarfati, Blakely, Shaw, Cormack, & Atkinson, 2006; 

49 Schootman et al., 2010). While these causes are often non-specific in their effects of how they 

50 directly influence cancer incidence, they do allow us to conceptualize and measure key factors 

51 related inequalities in health. Furthermore, understanding disparities in cancer risk and being 

52 able to visualize the place-based differences both in the determinants of cancer inequality can be 

53 a valuable tool to both scientist and policy maker alike. The goal of this paper is to identify 

54 geographic clusters of disparities in cancer risk between the Hispanic and non-Hispanic 

55 populations of the state of Texas using current incidence data from a population based cancer 

56 registry. 

57 Respiratory and digestive system cancers have been identified as often having direct and 

58 identifiable causal pathways associated with them, many of which are behavior or 

59 environmentally influenced. Lung cancer is perhaps the most widely recognized environmentally 

60 influenced cancer type, with strong evidence to support the effects of smoking, poor diet and 

61 direct inhalation of certain carcinogens including asbestos and other indoor air pollutants 

62 (Alberg, Ford, & Samet, 2007; Alberg & Samet, 2003; Ruano-Ravina, Figueiras, & Barros-Dios, 

63 2003). The exposure to these carcinogens generally leads to errors in somatic cell growth, such 
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64 as chromosomal abnormalities, cellular mutations, and alterations in tumor suppressor cells. 

65 Gastrointestinal system cancers also have a variety of causes, with some consistency between the 

66 types of cancer, but other types also have distinct know etiologies.  For example, hepatocellular 

67 carcinoma (primary liver cancer) has been directly linked with hepatitis infection, alcoholic 

68 cirrhosis and dietary aflotoxins (El-Serag, 2012; Stuver & Trichopoulous, 2008) while other 

69 digestive system cancers, such as colorectal cancers are heavily influenced by dietary and 

70 lifestyle factors (Chao et al., 2005).  While the specific etiologies of the cancers of these two 

71 body systems sometimes have direct causal paths, they are generally thought to be influenced by 

72 both behavioral and environmental circumstances, which interact with familial and genetic 

73 pathways in complicated ways. 

74 The state of Texas is the second most populous state in the United States, with a current 

75 population estimate of 25.7 million persons. Between 2000 and 2010, Texas was the sixth fastest 

76 growing state, and the highest in total numerical population gain (Makun & Wilson, 2011).  

77 Additionally, it is consistently in the top five fastest growing states in the nation.  The Hispanic 

78 population of Texas was estimated to be 10.1 million persons, or over 38% of the population in 

79 2013 and Texas has the second largest Hispanic population, behind only California (Makun & 

80 Wilson, 2011).  In addition to being a large part of the state�s population, the Hispanic 

81 population also faces socioeconomic disadvantages compared to other ethnic groups.  The 

82 poverty rate for Texas Hispanics was 25.8% according to the 2010 American Community 

83 Survey, while non-Hispanic whites only had an 8.8% poverty rate (United States Department of 

84 Commerce, 2012).  Likewise, Hispanics were are more likely to be employed in construction 

85 related activities (18.7% compared to 6.1% for non-Hispanic Whites), which could expose this 

86 population to more risk from air-born carcinogens.
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87 For such a large and dynamic state, little population-based cancer disparity research has 

88 been published for Texas. In a recent study of cancer disparities in Texas counties, Phillips et. al. 

89 (2011) found that an index of socioeconomic well-being was significantly associated with 

90 county-level ratios of metastatic to non-metastatic tumors in all-cause, female genital and lung 

91 cancers.  In a study of El Paso county, Collins et. al. (2011) found higher cancer risk for the 

92 Hispanic population of that area, and they go on to discuss how in El Paso, areas of the city that 

93 had the highest levels of Hispanic population who had low levels of education had six times the 

94 risk of the more educated areas, and  areas with the highest proportion of Hispanic renters had 

95 seven times the risk of cancer than other, more socioeconomically advantaged areas. Using a 

96 geographically weighted regression approach, (Tian, Wilson, & Zhan, 2011) on data from the 

97 Texas Cancer Registry, found not only that that Hispanics and non-Hispanic Blacks faced 

98 disparities in breast cancer mortality, but that these disparities varied over space within the state. 

99 These studies likewise point to the placed-based inequality and increased risks that minority 

100 groups, including the Hispanic population, face in certain areas within the state. This study will 

101 add to the literature on cancer disparities by employing a spatially oriented statistical analysis for 

102 the entire state over a more inclusive time period. 

103 With respect to access-based disparities related to cancer risk, Hispanics have been 

104 shown to have lower chances of seeking preventative care (Cristancho, Garces, Peters, & 

105 Mueller, 2008; Hosain, Sanderson, Du, Chan, & Strom, 2011; Lantz et al., 2006; Shih, Zhao, & 

106 Elting, 2006; Suther & Kiros, 2009) in general, and specifically cancer screening.  Reasons for 

107 not seeking care include lack of insurance, language barriers and the high cost of health care 

108 (Cristancho et al., 2008). In a study of colorectal cancer, Wan et. al. (Wan, Zhan, Lu, & 
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109 Tiefenbacher, 2012) found significant disparities for Hispanics and non-Hispanic Blacks in 

110 accessibility to care.

111 1.2 Visualizing disparities across space

112 From a methodological standpoint, testing for disparities in rates is a relatively 

113 straightforward task and a variety of statistical procedures are well suited for it. Specifically, a 

114 disparity in two rates can be measured as either a difference in total rates, or as a ratio of risks 

115 the groups being compared (Keppel et al., 2005). In terms of visualizing the disparities, this can 

116 be more of a challenge.  For measuring the disparity between population subgroups, the 

117 standardized risk ratio is a useful measure, but it is often subject to noise in the underlying rates, 

118 most notably in small populations or in cases of rare disease.  Maps of such relative risks, as a 

119 result of the noise caused by small populations, often lead to the reporting of unstable risk 

120 estimates. Tango (2010) describes a variety of methods for both visualizing and  detecting 

121 disease clusters.  Methods for mapping such risk ratios in a scan-statistic context have been 

122 described by Chen and co-authors (2008), and Bayesian disease mapping methods are also cited 

123 as being particularly good at mapping spatial disease risk (Anderson, Lee, & Dean, 2014; Choo 

124 & Walker, 2008; Earnest et al., 2010; Kim & Oleson, 2008; Lawson, 2013; Lawson et al., 2000; 

125 Lee & Mitchell, 2014; Lee & Shaddick, 2010). The Bayesian approach allows for smoothing of 

126 the relative risk by combining information across spatial units, as well as across time. 

127 It is the purpose of this paper to investigate the spatial variation in cancer incidence 

128 disparities between Hispanic and non-Hispanic populations of the state of Texas between 2000 

129 and 2008 using data from a population-based cancer registry.  This research adds to the literature 

130 in spatial epidemiology by examining the disparities in these two populations over time and 

131 space by using a Bayesian modeling methodology, which models the variation in cancer 
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132 disparities between these two populations within the state. The Bayesian modeling framework is 

133 used to specify a series of varying coefficient models as a method of both more accurately 

134 modeling the disparity between these two populations, but also for visualizing where the 

135 disparities between the populations exist. The goal of this process it to provide a locally accurate 

136 depiction of health disparities which state and local health officials could use in combating health 

137 inequalities. 

138 2. Data and methods

139 2.1 Data source

140 Data for this analysis come from the Texas Cancer Registry�s (www.dshs.state.tx.us/tcr/) 

141 Limited-Use data file from 2000 to 2008.  Access to these data was approved by the Texas 

142 Department of State Health Services IRB #12-030. These data consist of de-identified individual 

143 records of primary cancer diagnoses by oncologists in the state of Texas.  For the purposes of 

144 this study, relevant variables in the data include year of diagnosis, age, sex, Hispanic ethnicity, 

145 International Catalog of Disease for Oncology (ICD-O-3) codes for cancer diagnosis site and 

146 county of residence at the time of diagnosis.  Two main types of cancer were chosen: digestive 

147 system (ICD-O-3 codes C150 � C488) and respiratory system cancers (codes C300 � C399). 

148 These cancers were chosen because several of the sub-types of these cancers have been linked to 

149 environmental or behavioral influences, and several have also been shown to vary between 

150 ethnic groups in their incidence (Howe et al., 2006; Singh & Hiatt, 2006; Singh & Siahpush, 

151 2002; Wiggins, Becker, Key, & Samet, 1993; Willsie & Foreman, 2006).  These two cancers are 

152 selected for study, because they constitute 41% of all cancers in the state for this period. For the 

153 years of this study a total of n=155,652 digestive and n=124,438 respiratory system cases were in 

154 the data.  The most prevalent form of digestive system cancer was colorectal cancer, with 53% of 
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155 digestive cancers, and squamous cell carcinoma of the lung was the most prevalent respiratory 

156 cancer, representing 22% of all cases.

157 The dependent variable in the analysis is the count of either digestive or respiratory 

158 cancers in each of the 254 counties of Texas between 2000 and 2008. The data are stratified by 

159 ethnicity into two categories Hispanic and non-Hispanic.  The stratification of the cases is 

160 accomplished by using the Hispanic ethnicity variable in the registry.  Thus for each year, there 

161 are two separate counts for each cancer type and for each of the 254 counties in the state. Since 

162 the dependent variables are counts, they are generally expressed as a standardized ratio of counts 

163 to expected counts. This is typically called the standardized incidence ratio (SIR), and is 

164 expressed:

165 SIRijk = yijk/eijk

166 Where yijk is the count of cases in the ith county for the jth year for the kth ethnicity and eijk is the 

167 expected number of cases in the county for each group.  Here, to estimate the expected number 

168 of cases for each county, year and ethnicity, an assumption of equal risks is used. The expected 

169 number of cases in each county, year and ethnicity, eijk, is calculated by assuming each county 

170 has the average incidence rate for the whole state for the period 2000 to 2008, or:

171 eijk = Σnijk* r

172 , where nijk is the number of residents in each county for each ethnicity, and r is the average 

173 incidence rate for the state for the period 2000 to 2008.  This is repeated for each type of cancer: 

174 digestive and respiratory. This generates a set of expected values for the Hispanic and non-

175 Hispanic population of each county, using the statewide rate and the county population size for 

176 each group.
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177 To control for background characteristics of the counties, and to measure proxies for 

178 factors affecting cancer risk, four independent variables are constructed.  The first of these is the 

179 metropolitan status of the county, which is measured as a dummy variable indicating whether the 

180 United States Department of Agriculture�s Economic Research Service considers the county 

181 metropolitan. These counties are coded as 1, and non-metro counties are coded as 0.  The 

182 poverty rate in each county is calculated from the US Census Bureau�s Summary File 3 for 2000, 

183 and is expressed as the proportion of all residents living below the poverty line in 1999.  The 

184 proportion of the labor force in construction is used to measure a crude proxy for occupational 

185 exposure to certain carcinogens. This is again measured using the Census�s Summary File 3 and 

186 expressed as a proportion.  Finally, the Area Resource File (US Department of Health and 

187 Human Services, 2009) for 2008 is used to measure the number of hospitals in each county per 

188 10,000 residents.  This is used as a crude proxy for healthcare access in each county.  

189 2.2 Statistical methods

190 2.2.1 Model Specification

191 Since the dependent variable is a count, a Poisson distribution is used to model the outcome. To 

192 model this outcome, a log-linear Poisson hierarchical regression model for each county, i, year, j, 

193 ethnicity, k, and type of cancer, C, is specified as:

194

yCijk | θCijk ~ Poisson (eCijk * θCijk)

195

The relative risk function, θCijk, can be parameterized using a number of different models, the 

196

present paper considers a Bayesian model specification.  

197

In the Bayesian modeling paradigm all model parameters are considered to be random 

198

variables and are given a prior distribution and all inference about these parameters is made from 
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199

the posterior distribution of these parameters, given the observed data and the information given 

200

in the priors.  This is generally referred to as Bayes Theorem, and typically stated as:

201 p(θ|y) p(y|θ)p(θ)

202 Where p(θ|y) is the posterior distribution of the model parameter of interest, p(y|θ) is the model 

203 likelihood function, here defined as a Poisson likelihood, and p(θ) is the prior distribution for the 

204 parameters in the model. Inference for all parameters is done via their posterior distribution, 

205 which can be used to derive mean values, quantiles or other descriptive statistics. One useful 

206 method for summarizing these distributions is the Bayesian Credible Interval (BCI), not unlike 

207 frequentist confidence interval, which gives the values of the posterior density for each 

208 parameter that contain 100*(1-α)% of the posterior density. Inference on these BCI regions 

209 usually consists of examining if the null hypothesis value of the parameter, typically zero, is 

210 contained in the interval. 

211

Since the primary interest in this paper is the relative difference between the incidence of 

212

cancer in the Hispanic and non-Hispanic populations of each county, the simplest way to 

213

parameterize the model is as a linear difference in the incidence rates using a simple, 

214

unstructured linear predictor. This is the first model considered, and is parameterized as:

215
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216

 

 (Model 1)

 

ln( ) C C *ethCi  Ck

k

 xik  uCi  vCi  tCj  Cij

C ~ U( inf, inf)

C ~ N(0,.0001)

C k ~ N (0,.0001)

vCi ~ N (0,Cv )

uCi ∼  N (
1

n j

uCj

j~i

 ,Cu / ni )

tCj ~ N(0,Ct )

 Cij ~ N(0,C )

217 , which follows the standard form for spatio-temporal disease incidence models commonly used 

218 in the literature (Blangiardo & Cameletti, 2015; Blangiardo, Cameletti, Baio, & Rue, 2013; Held, 

219 Graziano, Frank, & Rue, 2006; Knorr-Held, 2000; Lawson, 2013; Lee & Mitchell, 2014; 

220 Schrodle & Held, 2011b; Ugarte, Goicoa, Ibanez, & Militino, 2009). This model specifies the 

221 relative risk as a linear function of a grand intercept for each cancer type, αC, a mean difference 

222 between the two ethnicities (eth) for each cancer type, δC, a linear predictor effect of the 

223 independent variables for each cancer type, Σ βkC xik, a �convolution� spatial prior, corresponding 

224 to the Besag, York and Mollie (Besag, York, & Mollie, 1991) model, which incorporates an 

225 unstructured heterogeneity term for each county and cancer type, vCi, and a correlated 

226 heterogeneity term as a conditionally autoregressive random effect, uCi, a temporally 

227 unstructured random effect for each year and cancer type, tCj
1
 and finally a spatio-temporal 

228 interaction random effect, ΨCij, which follows the Type 1 specification in Knorr-Held (Knorr-

229 Held, 2000).  In this model there is a single parameter for measuring the disparity between 

230 Hispanics and non-Hispanics for each cancer type, and this is done on average for the entire 

231 state.  This model additionally captures the underlying characteristics of the counties, the overall 

1 Other prior distributions, including a first order random walk (RW1) priors were used, but did 

not increase model fit in this case, so the simpler exchangeable random effect for time was used 

in the final model.
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232 spatial structure of cancer risk, and the temporal variation between years in the relative risk.  

233 Priors are assigned to all parameters in a minimally informative fashion, with an improper flat 

234 prior for αC, high variance Normal distribution priors for the δC and βC and vCi, a Normal 

235 distribution prior for tj and vague Gamma priors for the precisions of the unstructured 

236 heterogeneity, correlated heterogeneity, temporal and spatio-temporal components. For all 

237 models, the Normal distribution priors are specified in terms of their mean and precision, which 

238 is common in Bayesian modeling, with the precision being the inverse of the variance: τ = 1/σ2, 

239 such that low precisions equal high variances. 

240 A second model adds more flexibility to Model 1 by including a random slope for each 

241 county�s difference between Hispanic and non-Hispanic risk.  This model is specified as:

242 Model 2

 

ln( ) C C *ethCi  Ck

k

 xik  uCi  vCi  tCj  Cij

C ~ U( inf, inf)

C ~ C 0 Ci ,Ci ~ N(0,C )

C k ~ N (0,.0001)

vCi ~ N (0,Cv )

uCi ∼  N (
1

n j

uCj

j~i

 ,Cu / ni )

tCj ~ N(0,Ct )

 Cij ~ N(0,C )

243 which is similar to (1), but includes a δCi term which allows the differences between Hispanic 

244 and non-Hispanic risk to vary between counties, equivalent to an unstructured random-slopes 

245 model for the disparity. This is much like the spatially varying coefficient model discussed 

246 elsewhere (Banerjee, Carlin, & Gelfand, 2004; Gelfand, Kim, Sirmans, & Banerjee, 2003), 

247 except in this model, the random slope term is not spatially correlated. 

248 A final model adds a correlated slope for the disparity parameter to Model 2. This model 

249 follows the example of previous authors, who model the disparity between groups as a spatially 
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250 autoregressive random slope (Tassone, Waller, & Casper, 2009; Wheeler, Waller, & Elliott, 

251 2008). This model has the form:

252

Model 3

 

ln( ) C C *ethCi  Ck

k

 xik  uCi  vCi  tCj  Cij

C ~ U( inf, inf)

Ci  C 0 Ci ,Ci ∼ N(
1

n j

Cj

j~i

 ,C / ni )

C k ~ N (0,.0001)

vCi ~ N (0,Cv )

uCi ∼  N (
1

n j

uCj

j~i

 ,Cu / ni )

tCj ~ N(0,Ct )

 Cij ~ N(0,C )

253

, which smooths the disparity parameter over neighboring counties within the state. 

254 For geographic modeling, neighbors are identified using a first order Queen contiguity 

255 rule. Other neighbor specifications were examined, specifically a first order rook contiguity rule, 

256 and the results were substantively robust to this other neighbor specification. Also, since the 

257 precision terms for Bayesian hierarchical models have been shown to be sensitive to prior 

258 specifications, a sensitivity analysis is performed.  The models specified above all considered 

259 Uniform distributions for the standard deviation of each of the precision parameters. To examine 

260 the sensitivity of the models to alternative specifications, proper Gamma (.5, .0005) priors are 

261 also considered for all precision terms. This prior distribution has been used by other authors, 

262 and is thought of to be a sufficiently vague prior for the precision for these parameters.  

263 2.3 Computing - INLA

264 The software R (R  Development Core Team, 2015) and the R package R-INLA 

265 (Martins, Simpson, Lindgren, & Rue, 2013; Rue, Martino, & Chopin, 2009) were used to prepare 

266 data for analysis and parameter estimation.  The Integrated Nested Laplace Approximation, or 
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267 INLA, approach is a recently developed, computationally simpler method for fitting Bayesian 

268 models (Rue et al., 2009), compared to traditional Markov Chain Monte Carlo (MCMC) 

269 approaches. INLA fits models that are classified as latent Gaussian models, which are applicable 

270 in many settings (Martino & Rue, 2010).  In general, INLA fits a general form of additive 

271 models such as:

272  

273 , where η is the linear predictor for a generalized linear model formula , and is composed of a 

274 linear function of some variables u, β are the effects  of covariates, z, and ε is an unstructured 

275 residual (Rue et al., 2009). As this model is often parameterized as a Bayesian one, we are 

276 interested in the posterior marginal distributions of all the model parameters. Rue and Martino 

277 (2007) show that the posterior marginal for the random effects (x) in such models can be 

278 approximated as:

279  

280 via numerical integration (Rue & Martino, 2007; Schrodle & Held, 2011a, 2011b). The 

281 posterior distribution of the hyperparameters (θ) of the model can also be approximated 

282 as:

283  

284

285 , where G is a Gaussian approximation of the posterior and x*(θ) is the mode of the conditional 

286 distribution of p(x|θ,y). Thus, instead of using MCMC to find an iterative, sampling-based 

287 estimate of the posterior, it is arrived at numerically. This method of fitting the spatio-temporal 

288 models specified above has been presented by numerous authors (Blangiardo & Cameletti, 2015; 
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289 Blangiardo et al., 2013; Lindgren & Rue, 2015; Martins et al., 2013; Schrodle & Held, 2011a, 

290 2011b), with comparable results to MCMC.

291 To summarize the posterior distributions of the model parameters, posterior means and 

292 95% credible intervals are calculated.  Three models specified in 2.2.1were examined. Model fit 

293 and improvement is assessed between the models with the Deviance Information Criterion (DIC) 

294 (Spiegelhalter, Best, Carlin, & van der Linde, 2002). The DIC measures the penalized deviance 

295 of each model, with the penalty term representing the model�s estimated number of parameters. 

296 DIC for the INLA models is described in Rue et al. (2009) and uses the model deviance 

297  D( )  2log(p(y | )) pD

298 , plus a penalty component, pD, which is an approximate number of parameters in the model. 

299 DIC is used, here as a measure of relative model performance, and models with lower DIC 

300 values are preferred over those with higher DIC, analogous to the standard AIC criteria. 

301

302 3. Results

303 3.1 Descriptive Results

304 Descriptive statistics for the dependent variable and the predictors are presented in Table 1. 

305 [TABLE 1 HERE]

306 A gradual increase in the average number of cases per county is observed over the nine years of 

307 data. Also, many more cases of both types of cancer (on average) occur to non-Hispanics than to 

308 Hispanics.  It should be noted that between 25% (2005) and 36% (2000) of counties had a zero 

309 count for Hispanic digestive cancer cases and between 38% (2003) and 46% (2002) had a zero 

310 count for Hispanic respiratory cancer cases2. Also presented in Table 1 are the observed average 

2 The large number of zeros in the data suggests that a zero-inflated distribution be used as the 

model likelihood. A zero-inflated Poisson model was considered for the analysis (results 

PeerJ reviewing PDF | (2015:01:3904:1:0:NEW 22 Jul 2015)

Reviewing Manuscript

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.814v3 | CC-BY 4.0 Open Access | rec: 31 Aug 2015, publ: 31 Aug 2015

P
re
P
ri
n
ts



311 risk ratios for the state for each year. These are calculated as ratio of the observed SIR for 

312 Hispanics (SIRH) and the observed SIR for non-Hispanics (SIRNH) for each year. For digestive 

313 cancers, every year shows an elevated risk for Hispanics compared to non-Hispanics, and all 

314 years except 2000 show an elevated risk of respiratory cancer for Hispanics. Likewise, 

315 respiratory cancers show a consistent trend of higher risk in Hispanics, but not as high as for 

316 digestive cancers. With respect to the predictor variables, in 2000 nearly 18 percent of the 

317 population of Texas was in poverty, with a wide degree of variation as seen by the inter quartile 

318 range.  On average there were .66 hospitals per 10,000 people in each county in the state, and 

319 there were sixty-five counties with no hospitals. Slightly over 8 percent of the work force was 

320 employed in construction, and the USDA considered thirty percent of counties in the state to be 

321 metropolitan.

322 3.2 Results of Bayesian models

323 Table 2 presents the posterior means of the regression effects for the fixed effects in the three 

324 models described above. Also, 95% Bayesian credible intervals are provided for each parameter.  

325 Model DIC values are also provided at the bottom of the table for each model. Lastly, summaries 

326 for the model hyperparameters provided.

327 [Table 2 HERE]

328 Across the three models, some of the fixed predictors show similar patterns.  For digestive 

329 cancers, the poverty rate shows a negative association with overall cancer risk in Models 1 

330 through 3. This suggests that in areas of higher poverty, the average cancer risk is lower. 

331 Respiratory cancer incidence is affected consistently by two of the predictors.  The proportion of 

332 the work force in construction is positively associated with respiratory cancer risk in the three of 

available from the author), but the DIC of said models suggested the Poisson model fit the data 

better.
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333 the models, potentially suggesting an occupation-specific risk pattern. Likewise, a metropolitan 

334 disadvantage is seen, with higher total cancer risk in metropolitan areas. Both of these variables 

335 are in line with expectations in terms of respiratory cancer risk. 

336 When the three models are compared using the DIC, Model 3 shows the best model fit 

337 for each cancer type, with the DIC being lowest for this model.  Strong evidence is present that 

338 Model 1 is not adequate to describe the patterns of Hispanic/non-Hispanic disparities in either 

339 cancer, as every other model shows large drops in DIC. When comparing Models 2 and 3, strong 

340 evidence also exists for adding the spatially correlate random slope term temporal random effect 

341 to Model 2, again with a large drop in DIC. 

342 Turning to the Hispanic disparity parameters, in all models, there persists a disparity 

343 between Hispanics and non-Hispanics, with the former consistently showing elevated risk for 

344 both types of disease, net of the ecological factors, and the random effects. For digestive cancers, 

345 we see an increase in risk (eδ) between 5.3 and 16.4 percent, on average and between 3.8 and 20 

346 percent when considering the 95% credible intervals, depending on the model. For respiratory 

347 cancers, we see an increase between 11.2 and 16.4 percent on average, and 9.1 and 21.1 percent 

348 when examining the credible intervals. For Models 2 and 3, the coefficients of the models are 

349 best presented graphically, as each county has an estimate for the disparity for each cancer type.  

350 These estimates are presented in Figure 1 as posterior mean estimates of the Hispanic disparity in 

351 relative risk (eδC) for each county for Models 2 and 3.

352 [Figure 1 Here]

353 The first column of Figure 1 shows the Hispanic disparity random effect from Model 2, for 

354 respiratory and digestive cancers, respectively, when the disparity parameter was treated as 

355 unstructured. The second column of the figure shows the same parameter, when it was treated as 
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356 a spatially structured random effect (Model 3). For both respiratory and digestive system 

357 cancers, Hispanics show elevated risk in the eastern portion of the state, but they also show 

358 elevated risk in the central portion of the state for digestive system cancers, but not for 

359 respiratory cancers. The value of these figures is that the actual disparity in risk is being 

360 visualized, which shows us where within the state public health officials might try to focus 

361 activities in order to reduce the disparity in risk between these two populations.

362 3.3 Spatio-temporal Relative Risk Estimation

363 Figure 2 displays the estimated Hispanic relative risk for digestive cancers (eθ) for each year, 

364 2000 to 2008, estimated from Model 3. 

365 [Figure 2 Here]

366 The quantity being mapped is the linear predictor of the Poisson distribution (eθ), with all 

367 random effects included, which is interpreted as the model-based standardized incidence ratio 

368 (SIR).  Each panel in the figure shows the spatial distribution for each year between 2000 and 

369 2008. We see a general concentration of elevated Hispanic digestive cancer risk in the eastern 

370 portion of the state, as evidenced by relative risks greater than one (darker blue in color). This 

371 pattern is consistent, if not increasing over time, with more counties showing greater Hispanic 

372 relative risk over time. Lower risk (eθ < 1) for Hispanics occurs in North and Western Texas, and 

373 also along the border with Mexico, except for a few counties in extreme South Texas in the latter 

374 time periods. 

375 [Figure 3 Here]

376 Figure 3 provides the complementary space-time risk map for the respiratory cancer 

377 outcome. Again, we see higher Hispanic risk in Eastern Texas, but perhaps a more concentrated 

378 pattern, compared to the digestive cancer maps.  Also present is the lower risk in North and West 
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379 Texas, as seen in Figure 2 for digestive cancers. Figure 3 also highlights a consistent spatial 

380 cluster of high risk in extreme East Texas for a cluster of three to five counties located North of 

381 Harris county (city of Houston). These counties include Montgomery, Liberty, San Jacinto, 

382 Walker, Polk and Orange. These counties are quite rural and have low proportions of Hispanic 

383 residents (average of 9.3%, or about 8,900 Hispanic persons on average per county).

384 Finally, a sensitivity analysis of alternative priors for the model hyperparameters (all τ’s) 

385 showed very close agreement between the vague Gamma (.5, .0005) and the flat prior 

386 distributions. Since Model 3 showed evidence of being the best fitting model, the sensitivity 

387 analysis focused on its estimates. The precision point estimates for the temporal random effects 

388 (τt) for the digestive and respiratory cancers, respectively were 478.0 and 1538.8 from the 

389 Gamma prior and 441.5 and 1822.5 from the flat prior. The precisions for the uncorrelated 

390 heterogeneity (τu) were 428.7 and 923.1 for the Gamma prior and 354.0 and 1095.8 for the flat 

391 prior. The precisions for the correlated heterogeneity (τv) were 92.6 and 20.8 for the Gamma 

392 prior and 92.5 and 19.9 for the flat prior. The precisions for the varying disparity parameter were 

393 15.6 and 17.9 from the Gamma and 14.9 and 17.0 from the flat prior. The precisions for the 

394 spatio-temporal random effect (τψ) were 296.5 and 288.7 for the Gamma prior model and 298.3 

395 and 283.8 for the flat prior model. While this is only one model, the overlap between the 

396 precisions is strong enough to validate the results. The one notable difference is the random 

397 effect for the unstructured heterogeneity (τu), which showed a lower precision (higher variance) 

398 in the Gamma prior model, although the parameter�s 95% credible interval did show significant 

399 overlap between the two prior specifications (Figure 4). 

400 [Figure 4 Here]

401 4. Discussion
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402 This paper illustrated the application of the Bayesian varying coefficient models to the 

403 study of cancer incidence disparities between the Hispanic and non-Hispanic population of Texas 

404 over the period 2000 to 2008. This paper adds to the literature in health disparities within the 

405 state of Texas by using advanced Bayesian statistical methods to investigate the spatial non-

406 stationarity of health disparities in two major form of cancer incidence. The primary goal of the 

407 analysis was to examine the usefulness of the spatially varying coefficient model (Banerjee et al., 

408 2004; Gelfand et al., 2003; Tassone et al., 2009; Wheeler et al., 2008) within the Bayesian 

409 modeling framework using a variety of model specifications, including models that included 

410 interactions between space and time.  Alternative model specifications modeled the disparity in 

411 incidence between the two subpopulations differently, from a fixed effect on the grand mean to a 

412 spatially varying coefficient model for each county in the state.  The flexibility of the Bayesian 

413 framework also allowed for the models to be compared using standard model complexity criteria 

414 (DIC).  

415 The model that best fit the data was the space-time model with a spatially varying slope 

416 for the disparity between Hispanics and non-Hispanics, according to the minimum DIC criteria. 

417 This suggests that the disparity between Hispanics and non-Hispanics in these two cancer types 

418 is best modeled through a spatially structured model, which allows for spatially structured 

419 variation in risk.  This also suggests that there are counties within the state where the Hispanic 

420 population is at higher risk for both of these cancers, and that these counties typically occur 

421 closely to one another spatially. 

422 Overall, a general disparity in terms of both cancers for Hispanics was found, where they 

423 face higher risk for both digestive and respiratory cancers than the non-Hispanic population of 

424 the state.  Significant effects were found on cancer-specific risks consistently including the 
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425 county poverty level, metropolitan status of the county and the proportion of the workforce in 

426 construction. The labor force composition finding makes sense, as workers in construction 

427 industries often face higher levels of exposure to airborne particulates that could increase cancer 

428 risk. The finding for the county poverty rate was that in areas with higher poverty, the overall 

429 relative risk of cancer was lower, and deserves more discussion.  This effect was seen for both 

430 cancer types, in all but the final model (Model 3), and is in stark contrast to findings from 

431 national data (Singh, Miller, Hankey, & Edwards, 2003) for many types of cancer, which show 

432 higher incidence and mortality in both Hispanics and non-Hispanics in areas with higher poverty. 

433 Singh et. al. did not use data from Texas, and the time period for the present study is later than 

434 those considered in their report.  It is possible that the experience of the Texas population is 

435 different from the data used in their study; such local variations are common in health research. 

436 This study had one primary limitation; the cancer incidence data had no information on 

437 residential histories of the individual cases. Any environmental exposure that could have 

438 influenced cancer risk may have come from a previous residential location. Unfortunately, the 

439 cancer registry data used in this study had no information on this subject.

440 Further research is needed to investigate the specifics of the counties identified in the 

441 analysis as having excess Hispanic cancer risk.  This can be done by a more localized analysis of 

442 the individual-level data this analysis is derived, and by investigating housing conditions, access 

443 to healthcare and potential environmental contaminants in these areas directly. Such ecological 

444 analyses as that presented here are rarely truly informative for individual cancer diagnoses, but 

445 they can be very influential in terms of public health activities to reduce cancer disparities at the 

446 population level.

447

PeerJ reviewing PDF | (2015:01:3904:1:0:NEW 22 Jul 2015)

Reviewing Manuscript

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.814v3 | CC-BY 4.0 Open Access | rec: 31 Aug 2015, publ: 31 Aug 2015

P
re
P
ri
n
ts



448 References

449 Alberg, A. J., Ford, J. G., & Samet, J. M. (2007). Epidemiology of lung cancer: ACCP evidence-

450 based clinical practice guidelines (2nd edition). Chest, 132(3 Suppl), 29S-55S. doi: 

451 132/3_suppl/29S [pii]

452 10.1378/chest.07-1347

453 Alberg, A. J., & Samet, J. M. (2003). Epidemiology of lung cancer. Chest, 123(1 Suppl), 21S-

454 49S. 

455 Anderson, C., Lee, D., & Dean, N. (2014). Identifying clusters in Bayesian disease mapping. 

456 Biostatistics, 15(3), 457-469. doi: 10.1093/biostatistics/kxu005

457 Banerjee, S, Carlin, B. P., & Gelfand, A. E. (2004). Hierarchical modeling and analysis for 

458 spatial data. Boca Raton: CRC/ Chapman & Hall.

459 Besag, J., York, J. , & Mollie, A. (1991). Bayesian image restoration, with two applications in 

460 spatial statistics. Annals of the Institute of Statistical Mathetmatics, 43, 1-59. 

461 Blangiardo, M., & Cameletti, M. (2015). Spatial and Spatio-temporal Bayesian Models with R-

462 INLA: Wiley.

463 Blangiardo, M., Cameletti, M., Baio, G., & Rue, H. (2013). Spatial and spatio-temporal models 

464 with R-INLA. Spat Spatiotemporal Epidemiol, 7, 39-55. 

465 Chao, A., Thun, M. J., Connell, C. J., McCullough, M. L., Jacobs, E. J., Flanders, W. D., . . . 

466 Calle, E. E. (2005). Meat consumption and risk of colorectal cancer. JAMA, 293(2), 172-

467 182. doi: 293/2/172 [pii]

468 10.1001/jama.293.2.172

469 Chen, J., Roth, R. E., Naito, A. T., Lengerich, E. J., & MacEachren, A. M. (2008). Geovisual 

470 analytics to enhance spatial scan statistic interpretation: an analysis of US cervical cancer 

471 mortality. International Journal of Health Geographics, 7. 

472 Choo, L., & Walker, S. G. (2008). A new approach to investigating spatial variations of disease. 

473 Journal of the Royal Statistical Society Series a-Statistics in Society, 171, 395-405. 

474 Collins, T. W., Grineski, S. E., Chakraborty, J., & McDonald, Y. J. (2011). Understanding 

475 environmental health inequalities through comparative intracategorical analysis: 

476 Racial/ethnic disparities in cancer risks from air toxics in El Paso County, Texas. Health 

477 & Place, 17(1), 335-344. 

478 Cristancho, S., Garces, D. M., Peters, K. E., & Mueller, B. C. (2008). Listening to rural Hispanic 

479 immigrants in the midwest: A community-based participatory assessment of major 

480 barriers to health care access and use. Qualitative Health Research, 18(5), 633-646. 

481 Du, X. L., Fang, S., Vernon, S. W., El-Serag, H., Shih, Y. T., Davila, J., & Rasmus, M. L. 

482 (2007). Racial disparities and socioeconomic status in association with survival in a large 

483 population-based cohort of elderly patients with colon cancer. Cancer, 110(3), 660-669. 

484 Earnest, A., Beard, J. R., Morgan, G., Lincoln, D., Summerhayes, R., Donoghue, D., . . . 

485 Mengersen, K. (2010). Small area estimation of sparse disease counts using shared 

486 component models-application to birth defect registry data in New South Wales, 

487 Australia. Health & Place, 16(4), 684-693. 

488 El-Serag, H. B. (2012). Epidemiology of Viral Hepatitis and Hepatocellular Carcinoma. 

489 Gastroenterology, 142(6), 1264-1273. 

490 Elmore, J. G., Nakano, C. Y., Linden, H. M., Reisch, L. M., Ayanian, J. Z., & Larson, E. B. 

491 (2005). Racial inequities in the timing of breast cancer detection, diagnosis, and initiation 

492 of treatment. Medical Care, 43(2), 141-148. 

PeerJ reviewing PDF | (2015:01:3904:1:0:NEW 22 Jul 2015)

Reviewing Manuscript

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.814v3 | CC-BY 4.0 Open Access | rec: 31 Aug 2015, publ: 31 Aug 2015

P
re
P
ri
n
ts



493 Gelfand, A. E., Kim, H., Sirmans, C. F., & Banerjee, S. (2003). Spatial modeling with spatially 

494 varying coefficient processes. Journal of the American Statistical Association, 98, 387-

495 396. 

496 Harper, S., Lynch, J., Meersman, S. C., Breen, N., Davis, W. W., & Reichman, M. C. (2009). 

497 Trends in Area-Socioeconomic and Race-Ethnic Disparities in Breast Cancer incidence, 

498 Stage at Diagnosis, Screening, Mortality, and Survival among Women Ages 50 Years 

499 and Over (1987-2005). Cancer Epidemiology Biomarkers & Prevention, 18(1), 121-131. 

500 Held, L., Graziano, G., Frank, C., & Rue, H. (2006). Joint spatial analysis of gastrointestinal 

501 infectious diseases. Stat Methods Med Res, 15(5), 465-480. doi: Doi 

502 10.1177/0962280206071642

503 Hosain, G. M. M., Sanderson, M., Du, X. L. L., Chan, W. Y., & Strom, S. S. (2011). 

504 Racial/Ethnic Differences in Predictors of Psa Screening in a Tri-Ethnic Population. 

505 Central European Journal of Public Health, 19(1), 30-34. 

506 Howe, H. L., Wu, X. C., Ries, L. A. G., Cokkinides, V., Ahmed, F., Jemal, A., . . . Edwards, B. 

507 K. (2006). Annual report to the nation on the status of cancer, 1975-2003, featuring 

508 cancer among US Hispanic/Latino populations. Cancer, 107(8), 1711-1742. 

509 Hun, D. E., Siegel, J. A., Morandi, M. T., Stock, T. H., & Corsi, R. L. (2009). Cancer risk 

510 disparities between hispanic and non-hispanic white populations: the role of exposure to 

511 indoor air pollution. Environ Health Perspect, 117(12), 1925-1931. doi: 

512 10.1289/ehp.0900925

513 Keppel, K., Pamuk, E., Lynch, J., Carter-Pokras, O., Kim, Insun, Mays, V., . . . Weissman, J. S. 

514 (2005). Methodological issues in measuring health disparities. Vital Health Stat 2(141), 

515 1-16. 

516 Kim, H., & Oleson, J. J. (2008). A Bayesian dynamic spatio-temporal interaction model: An 

517 application to prostate cancer incidence. Geographical Analysis, 40(1), 77-96. 

518 Knorr-Held, L. (2000). Bayesian modelling of inseparable space-time variation in disease risk. 

519 Statistics in Medicine, 19(17-18), 2555-2567. doi: 10.1002/1097-

520 0258(20000915/30)19:17/18<2555::AID-SIM587>3.0.CO;2-# [pii]

521 Krieger, N. (2005). Defining and investigating social disparities in cancer: critical issues? 

522 Cancer Causes & Control, 16(1), 5-14. 

523 Lantz, P. M., Mujahid, M., Schwartz, K., Janz, N. K., Fagerlin, A., Salem, B., . . . Katz, S. J. 

524 (2006). The influence of race, ethnicity, and individual socioeconomic factors on breast 

525 cancer stage at diagnosis. American Journal of Public Health, 96(12), 2173-2178. 

526 Lawson, A. B. (2013). Bayesian Disease Mapping: Hierarchical Modeling in Spatial 

527 Epidemiology, Second Edition. Boca Raton: CRC Press.

528 Lawson, A. B., Biggeri, A. B., Boehning, D., Lesaffre, E., Viel, J. F., Clark, A., . . . Grp, Dis 

529 Mapping Collaborative. (2000). Disease mapping models: an empirical evaluation. 

530 Statistics in Medicine, 19(17-18), 2217-2241. 

531 Lee, D., & Mitchell, R. (2014). Controlling for localised spatio-temporal autocorrelation in long-

532 term air pollution and health studies. Stat Methods Med Res, 23(6), 488-506. doi: 

533 10.1177/0962280214527384

534 Lee, D., & Shaddick, G. (2010). Spatial modeling of air pollution in studies of its short-term 

535 health effects. Biometrics, 66(4), 1238-1246. doi: 10.1111/j.1541-0420.2009.01376.x

536 Lindgren, F., & Rue, H. (2015). Bayesian Spatial Modelling with R-INLA. Journal of Statistical 

537 Software, 63(19), 1-25. 

PeerJ reviewing PDF | (2015:01:3904:1:0:NEW 22 Jul 2015)

Reviewing Manuscript

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.814v3 | CC-BY 4.0 Open Access | rec: 31 Aug 2015, publ: 31 Aug 2015

P
re
P
ri
n
ts



538 Makun, P., & Wilson, S. (2011). Population Distribution and Change: 2000 to 2010. Washington 

539 D.C.: U.S. Department of Commerce.

540 Martino, S., & Rue, H. (2010). Case studies in Bayesian computation using INLA. In P. 

541 Mantovan & P. Secchi (Eds.), Complex Data Modeling and Computationally Intensive 

542 Statistical Methods (pp. 99-114). Milan: Springer-Verlag.

543 Martins, T. G., Simpson, D., Lindgren, F., & Rue, H. (2013). Bayesian computing with INLA: 

544 New features. Computational Statistics & Data Analysis, 67, 68-83. doi: Doi 

545 10.1016/J.Csda.2013.04.014

546 McKenzie, F., Ellison-Loschmann, L., & Jeffreys, M. (2010). Investigating reasons for 

547 socioeconomic inequalities in breast cancer survival in New Zealand. Cancer 

548 Epidemiology, 34(6), 702-708. 

549 Philips, B. U., Gong, G., Hargrave, K. A., Belasco, E., & Lyford, C. P. (2011). Correlation of the 

550 ratio of metastatic to non-metastatic cancer cases with the degree of socioeconomic 

551 deprivation among Texas counties. International Journal of Health Geographics, 10. 

552 R  Development Core Team. (2015). R: A language and environment for statistical computing 

553 (Version 3.2.0). Vienna, Austria: R Foundation for Statistical Computing. Retrieved from 

554 http://www.r-project.org

555 Ruano-Ravina, A., Figueiras, A., & Barros-Dios, J. M. (2003). Lung cancer and related risk 

556 factors: an update of the literature. Public Health, 117(3), 149-156. doi: S0033-

557 3506(02)00023-9 [pii]

558 10.1016/S0033-3506(02)00023-9

559 Rue, H., & Martino, S. (2007). Approximate Bayesian inference for hierarchical Gaussian 

560 Markov random field models. Journal of Statistical Planning and Inference, 137(10), 

561 3177-3192. doi: Doi 10.1016/J.Jspi.2006.07.016

562 Rue, H., Martino, S., & Chopin, N. (2009). Approximate Bayesian inference for latent Gaussian 

563 models by using integrated nested Laplace approximations. Journal of the Royal 

564 Statistical Society Series B-Statistical Methodology, 71, 319-392. doi: Doi 

565 10.1111/J.1467-9868.2008.00700.X

566 Sarfati, D., Blakely, T., Shaw, C., Cormack, D., & Atkinson, J. (2006). Patterns of disparity: 

567 ethnic and socio-economic trends in breast cancer mortality in New Zealand. Cancer 

568 Causes & Control, 17(5), 671-678. 

569 Schootman, M., Lian, M., Deshpande, A. D., Baker, E. A., Pruitt, S. L., Aft, R., & Jeffe, D. B. 

570 (2010). Temporal trends in area socioeconomic disparities in breast-cancer incidence and 

571 mortality, 1988-2005. Breast Cancer Research and Treatment, 122(2), 533-543. 

572 Schrodle, B., & Held, L. (2011a). A primer on disease mapping and ecological regression using 

573 INLA. Computational Statistics, 26(2), 241-258. doi: Doi 10.1007/S00180-010-0208-2

574 Schrodle, B., & Held, L. (2011b). Spatio-temporal disease mapping using INLA. 

575 Environmetrics, 22(6), 725-734. doi: Doi 10.1002/Env.1065

576 Shih, Y. C. T., Zhao, L. R., & Elting, L. S. (2006). Does Medicare coverage of colonoscopy 

577 reduce racial/ethnic disparities in cancer screening among the elderly? Health Affairs, 

578 25(4), 1153-1162. 

579 Siegel, R., Naishadham, D., & Jemal, A. (2012). Cancer statistics for Hispanics/Latinos, 2012. 

580 CA Cancer J Clin, 62(5), 283-298. doi: 10.3322/caac.21153

581 Singh, G. K., & Hiatt, R. A. (2006). Trends and disparities in socioeconomic and behavioural 

582 characteristics, life expectancy, and cause-specific mortality of native-born and foreign-

PeerJ reviewing PDF | (2015:01:3904:1:0:NEW 22 Jul 2015)

Reviewing Manuscript

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.814v3 | CC-BY 4.0 Open Access | rec: 31 Aug 2015, publ: 31 Aug 2015

P
re
P
ri
n
ts

http://www.r-project.org/


583 born populations in the United States, 1979-2003. International Journal of Epidemiology, 

584 35(4), 903-919. 

585 Singh, G. K., Miller, B. A., Hankey, B. F., & Edwards, B. K. (2003). Area Socioeconomic 

586 Variations in U.S. Cancer Incidence, Mortality, Stage, Treatment, and Survival, 1975�

587 1999. NCI Cancer Surveillance Monograph Series (Vol. 4). Bethesda, MD: National 

588 Cancer Institute.

589 Singh, G. K., & Siahpush, M. (2002). Ethnic-immigrant differentials in health behaviors, 

590 morbidity, and cause-specific mortality in the United States: An analysis of two national 

591 data bases. Human Biology, 74(1), 83-109. 

592 Spiegelhalter, D. J., Best, N., Carlin, B. P., & van der Linde, A. (2002). Bayesian measures of 

593 model complexity and fit (with discussion). Journal of the Royal Statistical Society Series 

594 B-Methodological, 64, 583-639. 

595 Stuver, S., & Trichopoulous, D. (2008). Cancer of the liver and biliary tract. In H. Adami, D. 

596 Hunter & D. Trichopoulous (Eds.), Textbook fo Cancer Epidemiology (pp. 308-332). 

597 Oxford: Oxford University Press.

598 Suther, S., & Kiros, G. E. (2009). Barriers to the use of genetic testing: A study of racial and 

599 ethnic disparities. Genetics in Medicine, 11(9), 655-662. 

600 Tango, T. (2010). Statistical Methods for Disease Clustering. New York: Springer.

601 Tassone, E. C., Waller, L. A., & Casper, M. L. (2009). Small-area racial disparity in stroke 

602 mortality: an application of bayesian spatial hierarchical modeling. Epidemiology, 20(2), 

603 234-241. doi: 10.1097/EDE.0b013e3181935aee

604 Tian, N., Wilson, J. G., & Zhan, F. B. (2011). Spatial association of racial/ethnic disparities 

605 between late-stage diagnosis and mortality for female breast cancer: where to intervene? 

606 International Journal of Health Geographics, 10, 24. doi: 1476-072X-10-24 [pii]

607 10.1186/1476-072X-10-24

608 Ugarte, M. D., Goicoa, T., Ibanez, B., & Militino, A. R. (2009). Evaluating the performance of 

609 spatio-temporal Bayesian models in disease mapping. Environmetrics, 20(6), 647-665. 

610 doi: 10.1002/env.969

611 United States Department of Commerce. (2012). American Factfinder 2.  Retrieved January 27, 

612 2012 http://factfinder2.census.gov

613 US Department of Health and Human Services. (2009). Area Resource File (ARF) 2008-2009. 

614 Vainshtein, J. (2008). Disparities in breast cancer incidence across racial/ethnic strata and 

615 socioeconomic status: A systematic review. Journal of the National Medical Association, 

616 100(7), 833-839. 

617 Wan, N., Zhan, F. B., Lu, Y., & Tiefenbacher, J. P. (2012). Access to healthcare and disparities 

618 in colorectal cancer survival in Texas. Health & Place, 18(2), 321-329. doi: S1353-

619 8292(11)00204-8 [pii]

620 10.1016/j.healthplace.2011.10.007

621 Wheeler, D. C., Waller, L. A., & Elliott, J. O. (2008). Modeling epilepsy disparities among 

622 ethnic groups in Philadelphia, PA. Stat Med, 27(20), 4069-4085. doi: 10.1002/sim.3261

623 Wiggins, C. L., Becker, T. M., Key, C. R., & Samet, J. M. (1993). Cancer Mortality among 

624 New-Mexico Hispanics, American-Indians, and Non-Hispanic Whites, 1958-1987. 

625 Journal of the National Cancer Institute, 85(20), 1670-1678. 

626 Willsie, S. K., & Foreman, M. G. (2006). Disparities in lung cancer: Focus on Asian Americans 

627 and Pacific Islanders, American Indians and Alaska Natives, and Hispanics and Latinos. 

628 Clinics in Chest Medicine, 27(3), 441-+. 

PeerJ reviewing PDF | (2015:01:3904:1:0:NEW 22 Jul 2015)

Reviewing Manuscript

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.814v3 | CC-BY 4.0 Open Access | rec: 31 Aug 2015, publ: 31 Aug 2015

P
re
P
ri
n
ts

http://factfinder2.census.gov/


629

630

631

632 Table 1. Descriptive statistics for dependent and independent variables used in the analysis.

Cancer Type and Year
Mean # 

Cases
IQR

Mean # Cases 

(non-Hispanic)

Mean # Cases 

(Hispanic)

Mean 

SIRH/SIRNH

Digestive Cancer 

Cases per County

2000

2001

2002

2003

2004

2005

2006

2007

2008

Respiratory Cancer 

Cases per County

2000

2001

2002

2003

2004

2005

2006

2007

2008

30.9

32.2

32.9

33.7

34.4

34.8

35.2

36.1

36.1

155,652 

total cases

25.6

26.5

26.9

27.8

27.6

28.1

27.4

27.8

27.2

123,438 

total cases

18

18

19

19.25

22

22

21

23

20

15

17

17

17

16.25

17

16

16

15

49.9

51.8

52.6

53.5

54.0

53.9

54.3

55.8

55.1

46.0

47.2

48.2

49.4

49.2

49.9

48.4

48.7

48.1

12.0

12.6

13.2

14.0

14.8

15.8

16.1

16.4

17.0

5.2

5.8

5.6

6.1

5.9

6.4

6.5

6.8

6.4

0.87

1.44

1.18

1.14

1.31

1.32

1.30

1.46

2.06

1.28

1.42

1.16

1.62

1.18

1.48

1.67

1.61

1.54

Predictors Mean IQR

% in Poverty 17.76 6.58

Hospitals/10,000 People 0.66 0.79

% in Construction 8.11 3.15

% Metro Counties 30.31 1.00

633 n=254 counties

634

635

636
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1 Table 2. Results for the alternative Bayesian model specification parameters.
Model 1 Model 2 Model 3

Parameter
Posterior Mean

(95% Credible Interval) 

Posterior Mean

(95% Credible Interval)

Posterior Mean

(95% Credible Interval)

Digestive Respiratory Digestive Respiratory Digestive Respiratory

α -.081

(-.119 - -.043)

-.066

(-.095 - -.037)

-.098

(-.137 - -.059)

-.074

(-.103 - -.044)

-.097

(-.136 - -.057)

-.074

(-.103 - -.044)

β

% in Poverty
-.031

(-.052 - -.010)

.002

(-.027 - .033)

-.034

(-.057 - -.011)

.001

(-.031 - .032)

-.033

(-.057 - -.010)

.001

(-.032 - .030)

Hospitals per capita
-.016

(-.037 - .004)

-.007

(-.032 - .016)

-.015

(-.037 - .005)

-.008

(-.033 - .016)

-.016

(-.037 - .005)

-.007

(-.032 - .018)

% in Construction
-.011

(-.027 - .005)

.050

(.028 - .072)

-.009

(-.026 - .008)

.050

(.027 - .072)

-.001

(-.026 � .008)

.050

(.028 - .073)

Metro County
.023

(-.009 - .056)

.052 

(.007 - .095)

.023

(-.011 - .057)

.054

(.009 - .099)

.021

(-.011 - .056)

.054

(.009 - .099)

Hispanic

Disparity, δ
.052

(.038 - .066)

.107

(.087 - .126)

.138

(.106 - .171)

.146

(.109 - .184)

.152

(.122 - .183)

.152

(.112 - .192)

Model Fit

Deviance (D )

DIC

pD

21256.2

21630.2

373.9

18625.7

19004.4

378.7

20790.2

21240.7

449.9

18462.5

18888.5

426.0

20775.6

21217.2

441.6

18436.8

18859.9

423.1

Hyperparameters

τt

τu

τv

τδ
τψ

477.8

331.3

133.9

-

297.1

1552.5

555.6

24.2

-

284.8

478.6

432.3

93.7

52.3

296.2

1546.5

898.1

20.4

67.5

287.3

478.0

428.7

92.6

15.6

296.5

1538.8

923.1

20.8

17.9

288.7

2 *Parameters in bold type represent estimates whose credible intervals do not contain 0.

3

4
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Hispanic Relative Risk Estimated from Models 2 and 3
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Hispanic Fitted SIR 2000 to 2008 for Digestive Cancers

PeerJ reviewing PDF | (2015:01:3904:1:0:NEW 22 Jul 2015)

Reviewing Manuscript

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.814v3 | CC-BY 4.0 Open Access | rec: 31 Aug 2015, publ: 31 Aug 2015

P
re
P
ri
n
ts



PeerJ reviewing PDF | (2015:01:3904:1:0:NEW 22 Jul 2015)

Reviewing Manuscript

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.814v3 | CC-BY 4.0 Open Access | rec: 31 Aug 2015, publ: 31 Aug 2015

P
re
P
ri
n
ts



3

Hispanic Fitted SIR 2000 to 2008 for Respiratory Cancers
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4

Marginal Densities for Model Hyperparameter
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