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Improvement of enzymatic saccharification in Arabidopsis

thaliana by ectopic expression of the rice SUB1A-1

transcription factor.

Lizeth N��ez-L�pez, Andr�s Aguirre-Cruz, Blanca Estela Barrera-Figueroa, Julian Mario Pe�a-Castro

Saccharification of polysaccharides releases monosaccharides that can be used by

ethanol-producing microorganisms in biofuel production. To improve plant biomass as a

raw material for saccharification, factors controlling the accumulation and structure of

carbohydrates must be identified. Rice SUB1A-1 is a transcription factor that represses the

turnover of starch and postpones energy-consuming growth processes under submergence

stress. Arabidopsis was employed to test if heterologous expression of SUB1A-1 or SUB1C-

1 (a related gene) can be used to improve saccharification. Cellulolytic and amylolytic

enzymatic treatments confirmed that SUB1A-1 transgenics had better saccharification

yield than wild-type (Col-0), mainly from accumulated starch. This high saccharification

yield was developmentally controlled since juvenile transgenic plants yielded 200-300%

more glucose than Col-0. We measured photosynthetic parameters, starch granule

microstructure, and transcript abundance of genes involved in starch degradation (SEX4,

GWD1), juvenile transition (SPL3-5) and meristematic identity (FUL, SOC1) but found no

differences to Col-0, indicating that starch accumulation may be controlled by down-

regulation of CONSTANS and FLOWERING LOCUS T by SUB1A-1 as previously reported.

SUB1A-1 transgenics also offered less resistance to deformation than wild-type

concomitant to up-regulation of AtEXP2 expansin and BGL2 glucan-1,3,-beta-glucosidase.

We conclude that heterologous SUB1A-1 expression can improve saccharification yield and

softness, two traits needed in bioethanol production.
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1. Introduction

Ethanol produced by yeast and bacteria through fermentation of plant-synthesized 

carbohydrates is one of the oldest biotechnological applications, especially for beverage and 

food. Production of biological ethanol has emerged as an important means for substitution of 

traditional hydrocarbon-based fuels (Henry, 2010). Key to successful biofuel production is a net 

output of energy (Vanholme et al., 2013). The process of bioethanol production is currently under

intense research to improve microbial fermentation efficiency, available microbial strains, 

industrial down- and upstream operations, plant stress tolerance and plant biomass quality 

(Chundawat et al., 2011; Karnaouri et al., 2013; Vanholme et al., 2013; Ribeiro et al., 2014). 
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A main goal of plant biomass improvement for biofuel production is an increase in a new 

trait called saccharification. It is defined as the solubilization of plant carbohydrate reservoirs, 

mainly starch, cell wall and free sugars (Fig. 1) through physical or enzymatic treatments to yield

fermentable carbohydrates (Chuck et al., 2011; Chundawat et al., 2011). In this way, 

saccharification yield is the amount of fermentable sugars released from starch or cell walls after 

solubilization per unit of plant biomass (Petersen et al., 2012; Nigorikawa et al., 2012).

Many agricultural relevant plants have high saccharification yields with limited energy 

input. For example, sugarcane (Saccharum sp.) and sugar beet (Beta vulgaris) release a sucrose-

rich juice after simple mechanical treatments, which is readily fermentable by microorganisms 

(Waclawovsky et al., 2010). Potato tubers and maize seeds require chemical or enzymatic 

hydrolysis of starch by amylase and amyloglucosidase to release glucose-rich extracts (Bahaji et 

al., 2013). These two processes are the core of first generation bioethanol production. However, 

each of these plants has a specific geographical growth range, limited saccharificable tissues 

(stems, tubers or seeds) and are traditionally employed as food staples, thus raising social and 

economical concerns (Henry, 2010; Stamm et al., 2012).

Second generation bioethanol production aims to use the abundant cellulose reserves 

present in agroindustrial waste, grasses and trees to increase plant saccharification yields (Stamm 

et al., 2012). Drawbacks found in this technology are poor enzymatic saccharification because of 

complex cell wall architecture, energy-consuming chemical and physical pretreatments for cell 

wall disruption and multiple genes involved in cell wall synthesis (Chundawat et al., 2011). 

Different biotechnological strategies have been tested to change carbon allocation and 

improve raw plant biomass saccharification in the context of first and second generation 

bioethanol production. Maize and Arabidopsis plants with inducible silencing of genes encoding 

phosphate-metabolism enzymes glucan water dikinase (GWD) and phosphoglucan phosphatase 

(SEX4) increased starch saccharification yield by 50-300% when compared to WT (Weise et al., 

2012). Increased cellulose saccharification yields of 20-250% have been achieved in different 

plant models by expressing peptide inhibitors of pectin synthesis (Lionetti et al., 2010), changing 

expression patterns of glycosyltransferases involved in xylan synthesis (Petersen et al., 2012), or 

over-expression of endogenous exoglucanases (Nigorikawa et al., 2012). Mutagenesis has also 

been applied to isolate Arabidopsis mutants with improved saccharification; while some 

remained uncharacterized, others were unexpectedly related to disrupted auxin transport 

(Stamaieu et al., 2013). Starch saccharification yield was increased by over-expressing 
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miRNA156 (Chuck et al., 2011), a factor downstream of the trehalose-6-phosphate (T6P) carbon 

flux sensing machinery (Wahl et al., 2013). 

A plant abiotic stress in which carbohydrate consumption and signaling are crucial for 

survival is submergence stress. An excess of water around root and aerial organs excludes oxygen

from cells, forcing an adjustment from aerobic to anaerobic metabolism (Bailey-Serres and 

Voesenek, 2008; Lee et al., 2011; Fukao and Xiong, 2013). Plants must finely control the 

consumption of starch to generate ATP and fuel energy demanding cellular processes because 

when this reserve is depleted, homeostasis is lost and cell death occurs (Bailey-Serres, Lee and 

Brinton, 2012). 

In rice, the response in cultivars that have an increased tolerance to flooding stress is 

mediated by the SUBMERGENCE1 locus (SUB1). SUB1 contains three transcription factors from

the Ethylene Response Factor (ERF) Group VII gene family, namely SUB1A-1, SUB1B-1 and 

SUB1C-1; the main genetic factor for tolerance is SUB1A-1 (Xu et al., 2006). SUB1A-1 mRNA is

rapidly induced when plants sense ethylene or low-oxygen conditions and redirects transcription 

relative to near-isogenic genotypes lacking SUB1A-1 (Jung et al., 2010; Mustroph et al., 2010). 

Apparent roles of SUB1A-1 include the repression of gibberellin-promoted starch consumption 

(Fukao et al., 2006; Fukao, Yeung and Bailey-Serres, 2012), inhibition of cell elongation (Fukao 

and Bailey-Serres, 2008) and delay of the progression to flowering (Peña-Castro et al., 2011). 

When floodwaters recede, SUB1A-1 is down-regulated and normal growth processes resume. 

Collectively, these molecular and physiological activities leading to effective carbon and energy 

conservation under submergence to prolong survival are called the Low-Oxygen Quiescence 

Strategy (LOQS; Bailey-Serres and Voesenek, 2008). When compared to WT, rice plants 

ectopically expressing SUB1A-1 have a delayed progression to flowering (Fukao and Bailey-

Serres, 2008), and constitutive higher free sugars concentration in aerial tissue (mixed stem and 

leaves) but only show differential starch concentrations under dark-starvation stress (Fukao, 

Yeung and Bailey-Serres, 2012).

Evolutionary analyses indicate that SUB1A-1 is a descendent of gene duplication and 

neofunctionalization of SUB1C (Fukao, Harris and Bailey-Serres, 2009; Niroula et al., 2012; 

Pucciariello and Perata, 2013). However, SUB1C-1 is repressed by SUB1A-1 expression and its 

presence in rice is not associated with the LOQS. Its up-regulation by submergence, ethylene and 

GA led to the suggestion that it may be involved in promotion of carbohydrates consumption and 

cell elongation to enable submerged leaf tissue to grow to the surface of floodwaters (Fukao et 

al., 2006; Fukao and Bailey-Serres, 2008).
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We previously employed Arabidopsis thaliana plants transformed with N-terminal 

FLAG-tagged 35S:SUB1A-1 (OxSUB1A) to evaluate the recapitulation of LOQS phenotypes 

observed in SUB1 rice. This confirmed OxSUB1A confers abscisic acid (ABA)-mediated 

inhibition of growth and other traits, and exposed inhibition of flowering as a new integral trait of

LOQS (Peña-Castro et al., 2011).  In this work, we employed Arabidopsis as a functional 

prototype to explore if SUB1A-1 over-expression can improve plant biomass saccharification. 

The rationale was that Arabidopsis plants constitutively expressing SUB1A-1 may also display 

the LOQS low-starch consumption trait. We also included in the analysis 35S:SUB1C-1 plants 

(OxSUB1C) to gain further insight on its function. 

2. Materials and Methods

2.1 Plant material

Arabidopsis thaliana Col-0 accession was used as the wild-type (WT). Transgenic 

genotypes were described previously (Peña-Castro et al., 2011). Briefly, SUB1A-1 or SUB1C-1 

cDNAs from Oryza sativa cv M202(SUB1) were expressed under Cauliflower Mosaic Virus 35S 

promoter with a N-terminal immunogenic FLAG-tag in Col-0. Two independent single-copy T4 

generation transgenics were used for each transgene: OxSUB1A-L5 and -L12 and OxSUB1C-L6 

and -L10. 

2.2 Plant growth conditions

Arabidopsis seeds were surface sterilized (70% v/v EtOH for 5 min followed by 6% v/v 

hypochlorite for 2 min and six 1-min rinse steps with ddH2O) and germinated in half-strength 

Murashige and Skoog agar medium (MS, salts 0.215% w/v, 1% w/v sucrose, 1% w/v agar, pH 

5.7) in vertical plates. Seedlings were transferred when 7-day-old to substrate (Sunshine Mix #3 

plus 1:4 volume perlite:substrate, autoclaved for 2 h and mixed with 2% w/w slow liberation 

fertilizer NPK 12:12:17) and watered every 2 days. Germination and growth was under long-day 

conditions (16 h light / 8 h dark, 150 µE m-2 s-1, 60% humidity) in a growth chamber (Conviron 

CMP6010). ZT0 (Zeitgeber Time) was the start of the light cycle (day). Genotypes were grown 

side-by-side in a randomized manner to minimize experimental noise. 

2.3 Reducing sugars, cell wall digestibility and starch content.
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Rosette leaves were harvested at the time described in each experiment, frozen in liquid 

nitrogen and stored at -80°C. For all experiments, leaves were ground to a fine powder in liquid 

nitrogen with mortar and pestle, weighted and further stored or processed. An experimental 

strategy was designed to quantify the three main components of saccharification yield, namely 

free reducing sugars, cell wall digestibility and starch content (Fig. 1). 

To measure free reducing sugars, 100-120 mg FW of powdered leaves were incubated 

with ddH20 for 5 min and centrifuged (13,000 rpm for 5 min) to remove debris. The supernatant 

(100 µl) was mixed 1:1 with DNS reagent (1% w/v 3,5-dinitrosalicilate, 30% w/v sodium 

potassium tartrate, 1.6% w/v NaOH) and incubated in a boiling water bath for 5 min, then diluted

with 1 ml ddH20 and absorbance was determined at 545 nm in a spectrophotometer (Miller, 

1959). A glucose standard curve (0.1 to 5 mg Glucose / ml, R=0.985) was analyzed and used as 

reference.

Cellulose digestibility and starch content were enzymatically assayed as previously 

described (Chuck et al., 2011). To test cellulose saccharification yield, commercial cellulase 

enzyme complex Accellerase 1500 (Genencor, Cedar Rapids, USA) composed of proprietary 

exoglucanase, endoglucanase, hemicellulase and beta-glucosidase was used. Powdered leaves 

were weighted in 15 ml capped plastic tubes (100-125 mg FW) and 200 µl of 80% ethanol were 

added, and the sample vortexed. Next, 3 ml of acetate buffer plus 0.74% w/v CaCl2 (pH 5.0) with 

1.7% v/v Accellerase 1500 were added, mixed by inversion and incubated at 50°C for 24 h with 

rotation (11 rpm) in an oven. Saccharification was stable from 12-36 h as determined in a 

preliminary kinetics assay (Supplemental Figure 1). Reactions were stopped by incubation at 

70°C for 15 min with rotation in an oven. To measure starch content, samples were treated as 

described above and further hydrolyzed using the manufacturer’s instructions for the Total Starch 

K-TSTA kit (Megazyme, Bray, Ireland), which includes a thermostable α-amylase digestion in 

boiling water for 12 min with vigorous stirring every 4 min, and an amyloglucosidase digestion 

in a 50°C water bath for 30 min. 

Glucose from cellulose and starch was quantified by glucose oxidase/peroxidase at 510 

nm in a spectrophotometer as indicated in the commercial kit Total Starch K-TSTA kit. In 

parallel, Accellerase buffer (blank), carboximethylcellulose and soluble starch (efficiency probes)

were processed. The blank was subtracted from calculations and only experiments with efficiency

>93% based on the two probes were employed.
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2.4 Iodine staining

Starch was visualized in rosette leaves by iodine staining as previously described (Bahaji 

et al., 2011; Ovecka et al., 2012) with the following modifications. Whole plants were harvested 

and immediately infiltrated under vacuum with 3.7% v/v formaldehyde in 0.1 M potassium 

phosphate buffer (pH 6.6) for ∼10 min. Plants were incubated with hot 80% ethanol for 30 min 

under constant agitation, stained with iodine solution (KI 2% w/v, I2 1% w/v) for 30 min in the 

dark and rinsed until the blue precipitate of starch was distinguishable from the yellowish 

background. 

2.5 Hardness tests

To measure leaf mechanical strength, a texture analyzer was employed (Brookfield 

CT325k). The three largest rosette leaves from 23-day-old plants were stacked and placed in a 

fixture base and perforated in the middle of the left blade (avoiding the central vein) with a 

puncture test probe for fine films (TA-FSF). Resistance was expressed as the force (Newton) 

applied to break through the tissue.

2.6 Starch granule isolation and scanning electron microscopy.

Rosette tissue pulverized in liquid nitrogen (2.5 g) was hydrated in 40 ml of water, 

sonicated for 10 min (100% power, 20% amplitude, 50% intensity, Hielscher Ultrasonic 

Processor UP200ST) and centrifuged for 5 min at 4750 x g. The pellet was washed twice with 50 

ml of water, resuspended and filtered through a 100 µm and then a 20 µm membrane. The filtrate 

was centrifuged again at 4750 x g and the pellet washed with 20 ml of 100% ethanol. Granules 

were covered with a gold coat and observed in a scanning electron microscope (Helios Nanolab 

600).

2.7 Quantitative Reverse Transcription Polymerase Chain Reaction (qRT-PCR)

Total RNA was extracted from Arabidopsis seedlings and qRT-PCR was performed as 

previously described (Peña-Castro et al., 2011). Primers for TUBULIN2 (TUB2, At1g65480) 

were previously reported (Wenkel et al., 2006). Primers for EXPANSIN2 (AtEXP2, At5g05290, 
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5’-TTACACAGCCAAGGCTATGGGCTA-3’ and 5’-GCCAATCATGAGGCACAACATCGT-3’)

and GLUCAN-1,3,-BETA-GLUCOSIDASE (BGL2, AT3G57260, 5’-

TCCTTCTTCAACCACACAGCTGGAC-3’ and 5’-CCAACGTTGATGTACCGGAATCTGA-

3’) were obtained from the AtRTPrimer database (Han and Kim, 2006). Primers for GLUCAN 

WATER-DIKNASE 1 (GWD1, At1g10760) and STARCH EXCESS 4 phosphoglucan phosphatase 

(SEX4, At3g52180) were previously reported (Weise et al., 2013). Primers for SQUAMOSA 

PROMOTER BINDING PROTEIN-LIKE 3 to 5 (SPL3-5, At2g33810 At1g53160 At3g15270), 

SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1, At2g45660) and FRUITFUL 

(FUL, At5g60910) were previously reported (Wahl et al., 2013).

3. Results and Discussion

Rice varieties that posses SUB1A-1 are more tolerant to flooding stress than plants lacking

this gene (Xu et al., 2006), the biochemical mechanism underling this tolerance is that plants 

express SUB1A-1 during stress and conserve starch and free sugars reserves for longer periods 

improving survival (Fukao et al., 2006; Fukao, Yeung and Bailey-Serres, 2012).

In our previous work (Peña-Castro et al., 2011), Arabidopsis plants overexpressing 

SUB1A-1 constitutively conserved several LOQS traits like hypersensitivity to ABA, reduced 

petiole cell elongation associated with hyponastic growth, decreased sensitivity to GA, increased 

lipid mobilization, and delayed flowering. In this work, we explored if SUB1A-1 can allow 

Arabidopsis to preserve and accumulate starch and free sugars under normal growth conditions.

3.1 Improved production of fermentable sugars in OxSUB1A plants.

We analyzed two independent Arabidopsis over-expressing transgenic lines for each 

SUB1 gene, OxSUB1A-L5 and OxSUB1C-L6 are weak over-expressing lines while OxSUB1A-

L12 and OxSUB1C-L10 are strong over-expressing lines (Peña-Castro et al., 2011). As an 

experimental starting point for analysis of rosette leaves, we selected Col-0 (Wild-Type, WT) 

bolting time (22-day-old) since OxSUB1A lines have a late flowering-genotype (Peña-Castro et 

al., 2011). We hypothesized that flowering inhibition allows OxSUB1A plants to accumulate more

carbohydrates at ZT16 (end of day). 

To determine starch content and cell wall digestibility in rosette leaves of OxSUB1A and 

OxSUB1C transgenics, we followed a protocol reported to evaluate saccharification efficiency in 
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switchgrass (Panicum virgatum), where plant tissue is digested in two sequential steps (Chuck et 

al., 2011). In the first reaction, the plant material is used as substrate in a cellulolytic enzymatic 

cocktail (Accellerase 1500) to breakdown cellulose and hemicellulose into glucose and measure 

cell wall digestibility. In the second reaction, the tissue is digested with α-amylase and 

amyloglucosidase to quantify starch. For both digestions, saccharification is expressed as released

glucose (Fig. 1).

The compartment that yielded most glucose in WT Arabidopsis was starch (8.5 mg of 

glucose g-1 FW), and then free reducing sugars (0.4 mg of glucose equivalents g-1 FW) followed 

by cell walls (0.1 mg of glucose g-1 FW).

When only free reducing sugars were determined (no enzymatic treatment), OxSUB1A-L5

had 37% more than WT whereas OxSUB1A-L12 did not show a significant difference (Table 1). 

If only cellulolytic treatment was applied, an improvement in cell wall saccharification was 

detected: OxSUB1A-L5 and OxSUB1A-L12 generated 16% and 23% higher yields than WT, 

respectively (Table 1, Supplemental Figure 1). OxSUB1A-L5 and OxSUB1A-L12 rosette tissue 

generated 88% and 36% more glucose from starch than WT, respectively (Table 1). These results 

indicate that ectopic expression of SUB1A-1 allows plants to conserve carbohydrates, mainly 

starch, under non-stress conditions. 

It has been reported similar saccharification improvement in switchgrass that over-express

miRNA156, a strong inhibitor of the progression to flowering (Chuck et al., 2011). Weak 

miRNA156 over-expressing lines of switchgrass had better saccharification yield from starch 

than strongly expressing lines, probably because their growth was less impaired. 

These data is consistent with previous research where rice UBI:SUB1A-1 plants had a 

higher free sugar concentration when measured in aerial tissue (Fukao, Yeung and Bailey-Serres, 

2012 ). However, these rice transgenics do not show a constitutive starch accumulation but the 

development is severely delayed. The effects of SUB1A-1 on starch accumulation in rice and 

Arabidopsis may be due to different carbon allocation strategies among monocots and dicots 

(monocots use stems as storage organ), wild and cultivated plants, environmental cues and 

development stages (Bennett, Roberts and Wagstaff, 2012; Streb and Zeeman, 2013; Slewinski, 

2012; Wang et al., 2013). For example, sex1-1 (gwd) mutants in Arabidopsis accumulate starch 

and have severe developmental defects since they cannot efficiently match growth and anabolism

(Weise et al., 2012; Paparelli et al., 2013), whereas development of rice gwd mutants is normal 

and only impacts grain yield even when they accumulate up to 400% more starch than WT 
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(Hirose et al., 2013). Overexpression of miRNA156 promoted starch accumulation in switchgrass

but not in Arabidopsis, maize or tobacco (Chuck et al., 2011). 

When the weak over-expressing line OxSUB1C-L6 was analyzed, it did not show a 

significant saccharification yield improvement in starch, cell wall or free reducing sugars (Table 

1). The strong over-expressing line OxSUB1C-L10 showed decreased saccharification yield for 

starch and cell wall (-38% and -17%, respectively; Table 1) and lower free reducing sugars levels 

(-17%; Table 1). These data support the hypothesis that SUB1A-1 and SUB1C-1 control opposing 

biochemical mechanisms, despite belonging to the same ERF-VII gene family (Fukao et al., 

2006; Fukao, Yeung and Bailey-Serres, 2012).

To visualize starch accumulation, we used iodine staining of 14-day-old plants of all 

transgenic lines and WT. ZT24 was selected as testing point to increase contrast and observe if 

accumulation was distinct at the end of night. The staining showed that both OxSUB1A lines 

leaves retained more starch in leaves. By contrast, the OxSUB1C lines retained less starch at 

ZT24 than WT (Fig. 2). Together these biochemical and histological data indicate that 

maintenance of significantly higher leaf starch is the main contributor to the improved 

saccharification yield of OxSUB1A plants. Differences in cell wall saccharification and free-sugar

content are also distinct from WT but are less determining factors.

 

3.2 Diurnal and developmental starch accumulation patterns of OxSUB1A plants.

Leaf starch accumulation has a diurnal pattern with a peak at the end of day and 

consumption during the night (Bahaji et al., 2013; Ortiz-Marchena et al., 2014). To quantify if 

starch content could be maintained during the diurnal oscillations as suggested by iodine staining 

(Fig. 2), we collected 21-day-old OxSUB1A and WT plants at the start and middle of both day 

and night. WT plants accumulated starch in an expected pattern for transitory starch (Ortiz-

Marchena et al., 2014) with a peak at the end of day (Fig. 3).  OxSUB1A lines had the same 

normal accumulation pattern but conserved more starch than WT at all points tested. As 

previously observed at the end of the day, the weakly over-expressing OxSUB1A-L5 significantly 

doubled starch content relative to WT whereas the strongly overexpressing OxSUB1A-L12 had 

only 13-30% more (Fig. 3).

Plant development and starch accumulation are genetically coordinated, especially during 

floral transitions (Chuck et al., 2011, Ortiz-Marchena et al., 2014). To investigate the 

developmental stages where SUB1A-1 can influence starch conservation improvement, we 
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collected leaves at ZT16 at two WT pre-flowering points (18 and 21-day-old) and two WT post-

flowering points (27 and 31-day-old). In WT plants, starch increased as plants reached bolting 

time and decreased and stabilized after flowering time when cauline leaves begin to contribute to 

photosynthetic carbon gain (Early et al., 2009).  Interestingly, starch content was higher in both 

juvenile OxSUB1A-L5 and -L12 lines (278% ± 23 S.E. and 189% ±9 S.E.). This difference 

decreased until all plants had the same starch content after flowering (Fig. 4A). Iodine starch 

staining at ZT24 of 14, 21 and 28-day-old rosette leaves matched the pattern of improved starch 

content (Fig. 4B-D).

This evaluation of diurnal and developmental kinetics further supports the conclusion that

starch accumulation is responsible for the improved saccharification yield of OxSUB1A plants. 

The data also indicate that SUB1A-1 is responsible for the starch conservation trait of the LOQS 

and that this phenotype is regulated in a developmental manner. Two factors involved in this 

developmental process are likely the flowering transcription factor CONSTANS (CO) and the 

florigen gene FLOWERING LOCUS T (FT); both transcripts are significantly down-regulated in 

OxSUB1A rice and Arabidopsis plants leading to a late transition to maturity even under an 

inductive flowering photoperiod (Peña-Castro et al., 2011).

 Until recently an involvement of CO/FT in starch metabolism was not evident because ft 

and co mutants accumulate similar levels of starch as WT when grown under continuous light; 

however, mutants of GIGANTEA (GI), an upstream circadian regulator of CO, are strong starch 

hyperaccumulators (up to 300% of WT levels) (Eimert et al., 1995). Recently, the role of 

photoperiod in starch accumulation during the floral transition was studied and demonstrated that 

CO controls starch granule structure via differential diurnal DNA-binding patterns and 

developmental and diurnal regulation of GRANULE BOUND STARCH SYNTHASE (GBSS; Ortiz-

Marchena et al., 2014). Through these events, CO promotes accumulation of starch granules with

a higher amylose:amylopectin ratio that can be readily digested proposed to enable a 

carbohydrate burst that create an optimum metabolic state for flowering. With these results we 

hypothesize that down-regulation of CO/FT by SUB1A-1 allows OxSUB1A transgenics to 

conserve starch that would be otherwise employed for developing inflorescence structures. 

3.3 The mechanism of starch content improvement mediated by SUB1A-1.

Late flowering has been related to improved starch saccharification by mechanisms other 

than those directly regulated by CO. For example, in switchgrass engineered to over-express 
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miRNA156, young nodes accumulated more starch than WT mature nodes (Chuck et al., 2011). 

However, miRNA156 is a repressor of juvenile-maturity transition through a CO parallel 

pathway that was recently shown to be connected to T6P (Wahl et al., 2013; Yang et al., 2013), a 

repressor of starch catabolism through KIN10 signaling (Baena-González et al., 2007; Delatte et 

al., 2011). Defects in enzymatic starch mobilization also lead to late flowering, starch 

accumulation and size defects (Streb and Zeeman, 2012; Paparelli et al., 2013).

To obtain insight into mechanisms that are different or parallel to CO regulation of starch 

accumulation in OxSUB1A transgenics, we measured polyphasic fluorescence rise (OJIP 

kinetics). This method has been used to detect photosynthetically-improved plants with increased 

carbohydrate accumulation (Gururani et al., 2012). However, no significant differences were 

detected between the five genotypes analyzed in this study (Table S1), indicating that neither 

OxSUB1A nor OxSUB1C transgenics posses photosystem efficiency that differs from WT. 

Although starch granule architecture and biosynthesis is not a well-understood process 

(Fettke et al., 2011; Stren and Zeeman, 2012), altered shape and size have been reported in some 

mutants (Zeeman et al., 2002; Zhang et al., 2008). We isolated and examined starch granules 

architecture by scanning electron microscopy and found that starch from OxSUB1A 21-day-old 

rosette leaves had the same size and characteristic ellipsoid-like shape of those of WT leaves of 

the same age (Supplemental Figure 2).

In our previously reported microarray studies at ZT8 of OxSUB1A and OxSUB1C 

seedlings (Peña-Castro et al., 2011), we did not detect a significant change in accumulation of 

mRNAs related to starch biosynthesis or catabolism. However, since these genes have a circadian

oscillation, mostly peaking after midday (Smith et al., 2004) we searched our datasets for 

statistical outliers associated with this biological process that were up- or down-regulated and 

evaluated them in RNA from seedlings samples collected at ZT16 (end of day). We tested 

transcripts encoding starch degrading enzymes GWD1 and SEX4 between WT and OxSUB1A or 

OxSUB1C but found not significant difference in expression. 

Recently, it was demonstrated that in parallel to CO, transcription factors of the 

SQUAMOSA PROMOTER BINDING PROTEIN gene family (SPL3-5) connect carbohydrate 

metabolism to the juvenile transition and also lead to late flowering phenotypes (Wahl et al., 

2013). In switchgrass, down-regulation of SPL3-5 by miRNA156 promotes late flowering and 

improvement of saccharification yield by both amylolytic and cellulolytic treatments, without 

modulation of CO/FT ortholog transcripts (Chuck et al., 2011), supporting the idea that CO and 

SPL/miRNA156 are parallel pathways in leaves that impact flowering time (Wahl et al., 2013). 
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To test if delayed juvenile-maturity transition in OxSUB1A is related to SPL3-5, we measured 

transcripts of SPL3-5 and downstream genes SOC1 and FUL in 7-d-old seedlings at ZT16. These 

transcripts were also statistical outliers down-regulated in our microarrays. The expression of all 

these transcripts was similar to that of WT plants suggesting independent activity from 

SPL/miRNA156.

In addition to CO and SPL/miRNA156, post-translational regulation of starch synthesis 

enzymes by reactive oxygen species (Lepisto et al., 2013) and T6P signaling through the stress 

integrating kinase SnRK1 regulate starch levels (Baena-González et al., 2007; Mattos et al., 

2013). T6P is of particular interest for further research since microarray studies of submergence 

stress response in different plants indicate there is a dynamic change in the transcripts of 

trehalose-6-phosphate synthase and trehalose phosphate phosphatase (Jung et al., 2010; Lee et 

al., 2011; Narsai and Whelan, 2013; van Veen et al., 2013; Tamang et al., 2014).

3.4 Hardness of OxSUB1A leaves.

In earlier transcriptome analysis we found that SUB1A-1 promoted in Arabidopsis the up-

regulation of 17 genes associated with modification of the cell wall and/or biotic stress response, 

including endotransglycosylase (XTR3, XTR6), expansin (AtEXP2) and glucan-1,3,-beta-

glucosidase (BGL2, Peña-Castro et al., 2014). This latter gene was the most up-regulated 

transcript relative to WT in 7-d-old seedlings. In addition to their biological importance, cell wall 

associated proteins are also of technological interest for the development of bioethanol fuel. They

consist of enzymes and proteins that can change the mechanical properties of cell wall polymers 

(cellulose, hemicellulose, lignin and callose) improving cell wall digestibility and 

saccharification yields (Arantes and Saddler, 2010). 

To evaluate if the expression of cell wall associated genes in our transgenics was 

correlated with a phenotype with modified mechanical properties, we employed a texture 

analyzer to measure leaf resistance to puncture in 23-day-old rosette leaves. Both OxSUB1A-L5 

and OxSUB1A-L12 leaves offered significantly less resistance to puncture stress than WT (67% 

±18 S.D. and 70% ±11% S.D., respectively). OxSUB1C lines were not statistically different from 

WT (Fig. 5A). To confirm expression of BGL2 and AtEXP2 in OxSUB1A and OxSUB1C, RNA 

from 7-day-old seedlings at ZT8 were tested by qRT-PCR. OxSUB1A-L5 and OxSUB1A-L12 

expressed more BGL2 (Fig. 5B) and AtEXP2 transcripts (Fig. 5C). WT and OxSUB1C 
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accumulated similar BGL2 mRNA levels, whereas OxSUB1C-L6 had 3-fold more AtEXP2 than 

WT; however this was not replicated in OxSUB1C-L10 (Fig. 5C).

BGL2 belongs to a multigene family of hydrolytic enzymes involved in fungal pathogen 

defense and developmental processes related to callose, a transitory β-1,3-glucan relevant for cell 

wall maturation (Dokey et al., 2007; Park et al., 2014). The rice response during submergence 

stress includes the expression of genes associated to pathogen stress, and the presence of SUB1A-

1 improves this induction (Jung et al., 2010). In Arabidopsis, SUB1A-1 also promoted the 

constitutive expression of these genes (Peña-Castro et al., 2011). The biotic stress component of 

the submergence stress response primes plants to resist the pathogens that may increase their 

access to plant tissue during submergence (Hsu et al., 2013). 

When rice plants are submerged, plants encoding SUB1A-1 induce EXPANSIN transcripts 

early in the stress and restrict them in later stages to conserve energy (Fukao et al., 2006). 

Expansins are cell wall morphogenic proteins that allow non-enzymatic loosening of cellulose 

and make it more accessible for enzymes during cell expansion (Arantes and Saddler, 2010). Our 

expression analysis indicates that EXPANSIN induction is conserved in OxSUB1A transgenics in 

non-stress growth conditions (Fig. 5C). AtEXP2 is a GA-responsive EXPANSIN normally active 

during seed germination (Yan et al., 2014). 

Together, these data provide evidence that the expression of cell wall and biotic response 

associated genes mobilized by SUB1A-1 is correlated to a phenotype with decreased mechanical 

strength and improved cellulose digestibility.

3.5 Further optimization of SUB1A-1 saccharification yield improvement

Strong constitutive starch conservation in plants is frequently accompanied with a growth 

penalty derived from their inability to efficiently use this energy reserve (Chuck et al., 2011; 

Weise et al., 2012; Paparelli et al., 2013); we could observe in our OxSUB1A transgenics such 

penalty, especially after flowering time (Fig. 4C-D). Weak cell walls also risk the plant to suffer 

pathogen attacks or suboptimal biomechanics (Nigorikawa et al., 2012; Petersen et al., 2012).  

These negative features would compromise the development of industrial applications based on 

plants with improved saccharification traits. A proposed solution to these drawbacks is the use of 

inducible promoters (Weise et al., 2012) or tissue-specific promoters (Petersen et al., 2012). 

Additional research focusing on these point is needed to further optimize and implement a 
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biotechnological strategy to improve biomass saccharification yield based on the promising 

SUB1A-1 mediated starch conservation and cell wall digestibility. 

4. Conclusion

The economies of both industrialized and developing nations are currently based on fuels 

obtained from petroleum and other hydrocarbon reserves. Plant biotechnology can help the 

transition towards renewable sources and make energy extraction a more sustainable activity. In 

this work we demonstrated that ectopic overexpression of the rice SUB1A-1 gene in Arabidopsis 

confers phenotypes with desirable traits for bioethanol production (Supplemental Figure 3). 

SUB1A-1 maintained the starch conservation phenotype of LOQS under normal growth 

conditions, improving the amylolytic saccharification yield. Additionally, up-regulation of cell 

wall associated transcripts associated with cell wall loosening by SUB1A-1 improved cell walls 

deconstruction. With this information, we propose heterologous SUB1A-1 expression as a new 

alternative for plant biomass improvement as raw material for bioethanol production. 
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Table 1. Free reducing sugars, cell wall digestibility and starch content of 22-day-old rosette

leaves Arabidopsis WT and transgenics expressing rice SUB1A-1 or SUB1C-1.  

Free reducing sugar1

(mg of reducing 

sugars g-1 FW) / % of 

WT

Cell wall digestibility2

(mg of glucose g-1 FW)

/ % of WT

Starch content3

(mg of glucose g-1 

FW) / % of WT

Col-0 WT4 0.40 ±  0.01 a 0.100 ± 0.004  a 8.5 ± 2.7 a

OxSUB1A L5 0.54 ± 0.02  / +37 b 0.116 ± 0.008 / + 16 b 15.9 ± 0.7 / +88 b

OxSUB1A L12 0.44 ± 0.03  / +10 a 0.123 ± 0.010 / +23 b 11.6 ± 0.8 / + 36 c

OxSUB1C L6 0.42 ± 0.02  / +6 a 0.101 ± 0.012 / +1 a 10.6 ± 1.1 / + 25 ac

OxSUB1C L10 0.33 ± 0.01  / -17 c 0.062 ± 0.005 / - 38 c 7.05 ± 0.5 / -17 d
1 As measured by Miller's reagent (dinitrosalicylic acid).

2 After 24 h saccharification with Accellerase enzyme mix

3 After amylase/amyloglucosidase digestion.

4 Different letters indicate a significant difference between genotypes (P<0.05, means 

comparison, Student’s t test). Values are means ±S.E. of three independent experimental 

replicates, each with n=5 plants. 
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Figure 1.  Experimental strategy followed to quantify the contribution of three different plant

carbohydrates compartments to saccharification yield. 

Figure 2. Iodine staining of 14-day-old rosette leaves at the end of night. (A) Formaldehyde 

infiltrated plants. (B) 80% hot ethanol destained plants. (B) Stained plants show starch as a dark-

blue precipitate. Black bar is 1cm.
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Figure 3.  Diurnal oscillation of starch content of 21-day-old Arabidopsis plants expressing rice 

SUB1A-1. Upper bar indicates day (open) and night (black) time (16 h day / 8 h night). Asterisks 

indicate a significant difference between genotypes (P<0.05, Student’s t test). Data were 

normalized to Col-0 maximum value at the end of the day ZT16 (6.6 mg of glucose g-1 FW). 

Values are means of three independent experimental replicates, each with n=5 plants. Error bars 

are ±S.E. 
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Figure 4. Developmental progression of starch accumulation of Arabidopsis plants expressing 

SUB1A-1. (A) Plants were grown (16 h day / 8 h night) and collected at ZT16. Black and white 

arrows indicate Col-0 and OxSUB1A budding day, respectively. Different letters indicate a 

significant difference between genotypes on the same day (P<0.05, Student’s t test). Data were 

normalized to 18-day-old Col-0 value at ZT16 (6.1 mg of glucose g-1 FW). Values are means of 

three independent experimental replicates, each with n=5 plants. Error bars are ±S.E. 

(B-D) Iodine staining of Col-0 and OxSUB1A rosette leaves at (B) 14 day, (C) 21 day and (D) 28 

day after germination. Black bar is 1cm.
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Figure 5. Leaf hardness phenotype of OxSUB1A and OxSUB1C transgenics. (A) Hardness 

comparison of rosette leaves from Arabidopsis Col-0 and plants expressing rice SUB1A-1 and 

SUB1C-1 genes was determined by a puncture resistance test on 23-day-old plants. Different 

letters indicate significant difference with Col-0 (P<0.01, Student’s t test). Values are means of 

n=7 to 13 plants. Error bars are ±S.D.

(B-C) Transcript accumulation in 7-day-old seedlings at ZT8 (middle of the day) of Col-0, 

OxSUB1A and OxSUB1C transgenics. (A) BGL2 transcript, (B) AtEXP2 transcript. Transcript 
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abundance was determined by quantitative RT-PCR and normalized to abundance in Col-0. 

Experiments were performed twice with similar results. Values are means ± S.E. 
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