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Abstract
This thesis describes the work that has been carried out in connection with my Masters at the
University of Copenhagen. This work has led to new dispersion and hydrogen bond corrections to
the PM6 method, PM6-D3H+, and its implementation in the GAMESS program. The method
combines the DFT-D3 dispersion correction by Grimme et al. with a modified version of the H+
hydrogen bond correction by Korth. This work also included the implementation of the new HF-3c
method in GAMESS and its interface with the fragmentation method FMO.

Overall, the interaction energy of PM6-D3H+ is very similar to PM6-DH2 and PM6-DH+, with
RMSD and MAD values within 0.02 kcal/mol of one another. HF-3c also shows interaction energies
within the same order of accuracy as the PM6 based methods. The main difference is that the
geometry optimizations of 88 complexes result in 82, 6, 0, and 0 geometries with 0, 1, 2, and 3 or
more imaginary frequencies using PM6-D3H+ implemented in GAMESS, while the corresponding
numbers for PM6-DH+ implemented in MOPAC are 54, 17, 15, and 2. PM6-D3H+ and FMO2-HF-
3c in GAMESS was used to optimize two small proteins which resulted in a much more reliable
structure compared to the reference structures, than PM6-DH+ in MOPAC, most likely due to the
different optimization algorithms associated with the programs.

The PM6-D3H+ method as implemented in GAMESS offers an attractive alternative to PM6-DH+
in MOPAC in cases where the LBFGS optimizer must be used and a vibrational analysis is needed,
e.g., when computing vibrational free energies. While the GAMESS implementation is up to 10
times slower for geometry optimizations of proteins in bulk solvent compared to MOPAC, it is
sufficiently fast to make geometry optimizations of small proteins practically feasible.
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Chapter 1

Introduction

The ability to produce accurate quantum mechanical (QM) predictions for large-scale bio-molecular
systems has the potential to bring new insight into several scientific fields such as enzyme-design
and protein-ligand docking. The field is but still confronted with serious challenges. We can get
numerically exact solutions with high-level correlated methods (such as CCSD(T)/CBS)[1], but
this is currently too computationally costly for any real bio-chemical relevant systems, such as
enzymes. Using classical force-fields one can get very fast results, however, force-fields lack the
proper treatment of electron behavior and therefore cannot simulate most chemical reaction.

If you want to move quantum chemistry into bio-chemistry you will need to focus on fast methods,
which involves either the standard Hartree-Fock (HF) approach or the semi-empirical quantum
methods (SQM) formalism introduced by John Pople, such as NDDO and later PM6[2]. For
bio-chemical systems non-covalent interactions are the key to getting good results, however both the
HF and PM6 approach, with their many approximations, are in most cases incapable of simulating
such interaction, and purely empirical correction terms are introduced.

Dispersion and hydrogen bonded corrections to the PM6 method such as PM6-DH2[3], PM6-D3H4[4]
and PM6-DH+[5] yield interaction energies that in many cases rival in accuracy those computed
with Density Functional Theory (DFT)[6, 7]. The computational efficiency of the underlying PM6
method allows for calculations that are not practically possible with DFT or HF, such as geometry
optimizations of proteins or vibrational analyses of large systems. For example, recent studies
by Gilson[8] and Grimme[9] have used dispersion and hydrogen bonded PM6 (PM6-DH+ and
PM6-D3H respectively) to compute the vibrational free energy contribution to the standard binding
free energy for host-guest systems and have demonstrated that they make a crucial contribution.

However, computing this vibrational free energy contribution can be complicated by the presence
of one or more imaginary frequencies in the vibrational analysis[10]. The source of these imaginary
frequencies are usually numerical errors amplified by a flat potential energy surface and the imagi-
nary frequencies often correspond to low lying frequencies that make a significant contribution to
the vibrational entropy. Thus, these numerical problems can introduce a significant error in the
binding free energy. Preliminary calculations suggested that one of the sources of the imaginary
frequencies in PM6-DH+ calculations using MOPAC could be solved by using different geometry
optimization algorithms.

The work presented in this thesis is a new variant of the MOPAC based method PM6-DH+, called
PM6-D3H+[11], in the GAMESS program[12] to allow us to test the use of the optimization
algorithms implemented therein. As well as implementation of the newly developed corrected
Hatree-Fock model called HF-3c[13], introduced by Sure and Grimme. PM6-D3H+ differs from
PM6-DH+ in that the dispersion term is the third generation dispersion model developed by
Grimme et al.[14] rather than the Jurecka-type model developed by Jurecka et al.[15]. In that
respect, PM6-D3H+ is identical to the PM6-D3H model developed by Grimme[9] which has not yet
been incorporated into a quantum chemistry program. This dispersion model was mainly chosen
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for convenience (as it was already implemented in GAMESS) and has little effect on the average ac-
curacy compared to PM6-DH+ (although the maximum errors observed for the training set decrease).

The rest of the thesis is concerned with introduction of the underlying methodology for approxi-
mation used in these semi-empirical methods, and how these QM methods are so fast. Chapter 2
is a short introduction to the regular electronic problem. Chapter 3 is a introduction to various
correction schemes that corrects the electronic models. Chapter 4 presents results of the methods
and a discussion of the results obtained using the new SQM methods. Chapter 5 presents a short
summary of the work, as well as discussion about the outlook and direction for these type of methods.
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Chapter 2

Calculating the Electronic Energy

Solving the behavior of electrons in a molecule is a difficult task. However, the alternative, to
calculate properties without electrons, such as force fields which purely classical, is not an option
for most chemical cases as no electronic treatment leads to no bond-breaking and therefore no
chemical reactions. We need a way to describe the behavior of the electrons, if we want to simulate
chemical reactions. The purpose of the following derivations is to obtain the theoretical background
and the approximations necessary to understand the different approaches, level of accuracy and
computational speed of which the electrons of molecules are treated.

2.1 The Schrödinger Equation
We can describe the behavior of the molecules by calculating the kinetic and potential energy of
the electrons and nuclei. This is done by the Schrödinger equation

Ĥ |Ψ〉 = Ei |Ψ〉 (2.1)

where Ĥ is the Hamiltonian describing a system of N electrons and M nuclei, E is the energy of
the stationary state described by the corresponding wave function |Φ〉. The Hamiltonian for N
electrons and M nucleus is defined as

Ĥ = −
N∑
i

1
2∇̂

2
i −

N∑
i

M∑
A

ZA
riA

+
N∑
i

N∑
j>i

1
rij

+
M∑
A

M∑
B>A

ZAZB
rAB

−
M∑
A

1
2MA

∇̂2
A (2.2)

where the first term is the kinetic energy operator, with the Laplace operator which is a second
order differential operator. The second term is the Coulomb attraction between electrons and
nuclei, here ZA is the atomic charge of nucleus A and riA the distance |ri − rA| between electron
i and nucleus A. The third and fourth term is Coulomb repulsion between electron-electron and
nuclei-nuclei, respectively. Here rij is the distance |ri − rj | between electron i and electron j and
rAB the distance |rA − rB | between nuclei A and nuclei B. The fifth term is the kinetic energy of
the nuclei, where MA is the mass of nuclei A.

In the above Hamiltonian the movement of nuclei have been neglected, because we work within
the Born-Oppenheimer approximation, which states that because electrons are much lighter
than the nuclei, the nuclei appears stationary from the electrons perspective. This means we can
approximately treat the movement of electrons and nuclei separately. This means we will also leave
out the nuclear-nuclear repulsion term (last term) in eq. 2.2, because it can be considered constant.
And thus the electronic Hamiltonian can be written as

Ĥelec = −
N∑
i

1
2∇̂

2
i −

N∑
i

M∑
A

ZA
riA

+
N∑
i

N∑
j>i

1
rij

(2.3)

which is the Hamiltonian we use from here on, and thus remove the subscript. This equation
for the electrons is impossible to solve analytically for a many-electron system, and thus more
approximations are needed.
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2.2 Hartree-Fock Theory
Solving the Schrördinger equation for a many-electron system is practically impossible, and thus
we need to approximate the model. For this we use the Hatree-Fock theory. Almost all ab initio
computational quantum-chemistry methods are based on Hartree-Fock (HF) theory, also called
the self-consistent field (SCF) method. In closed-shell HF theory the unperturbed many-electron
wave function |Ψ〉 is approximated by a single anti-symmetric orbital-based wave function, called a
Slater determinant.

|Ψ〉 ≈
∣∣ΦSCF〉 (2.4)

From the expression of the Slater determinant and the electronic Hamiltonian (eq. 2.3) it is possible,
by use of the variation principle and by integrating out the spin functions[16, 17, 18] to arrive at
the closed-shell Hartree-Fock equation, also known as restricted Hartree-Fock (RHF).

f̂(r1)φi(r1) = εiφi(r1) (2.5)

where εi is the energy of the i’th orbital φi. The problem is now reduced to finding a set of unknown
spatial orbitals {φ} under the constraints that the orbitals are orthonormal

〈φp|φq〉 = δpq (2.6)

where δpq is the Kronecker delta function. The operator f̂ is the Fock operator and is given as

f̂(r1) = ĥ(r1) + Ĝ(r1) (2.7)

Here ĥ is the operator of the kinetic energy of an electron plus its attraction to the nuclei (one-
electron operator) and Ĝ is the two electron repulsion (two-electron operator). ĥ is the one-electron
part of the electronic Hamiltonian (eq. 2.3) for one electron and is given as

ĥ(r1) = −1
2∇

2
1 −

M∑
k

Zk
|r1 −Rk|

(2.8)

The two electron repulsion part of eq. 2.3 is then described by the operator Ĝ, which is the electron
in the mean-field of all the other electrons. The two electron repulsion term is given as

Ĝ(r1) =
N/2∑
a

[
2Ĵa(r1)− K̂a(r1)

]
(2.9)

Here Ĵa(r1) and K̂a(r1) are the closed-shell Coulomb and exchange operators, respectively. The
exchange operator K̂ permutes electron 1 with 2. The total potential operator Ĥ is the potential
that an electron experiences when it moves in the averaged field of all the other electrons. In order
to calculate this averaged field of the other electrons one needs molecule orbitals that describe the
other electrons. The Fock operator thus depends on its own eigenfunctions and the Hartree-Fock
equations have to be solved iteratively until self-consistency of the Hartree-Fock potential is obtained,
hence the name self-consistent field method. The two operators operating on a wave function is
given as

Ĵa(r1)φb(r1) =
[∫

dr2φ
∗
a(r2) 1

|r1 − r2|
φa(r2)

]
φb(r1) (2.10)

K̂a(r1)φb(r1) =
[∫

dr2φ
∗
a(r2) 1

|r1 − r2|
φb(r2)

]
φa(r1) (2.11)

where integration is carried out only over spatial coordinates, since we are within the restricted
Hartree-Fock approximation. The Coulomb operator Ĵa represents the average local potential at
a position r1 arising from an electron in the orbital φa at position r2. When one integrates and
sums over all the other electrons, the average potential that one electron feels of the other N − 1
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electrons is obtained. The exchange operator, having no classical interpretation, can be seen as the
exchange of electron 1 and electron 2 on the right hand side of the eq. 2.11.
If we want to find the orbitals {Φ} we have to do another approximation, introduced by Roothaan,
who showed how one could introduce a spatial basis set {χ} and convert the HF equations to
be in this known spatial basis space. Using this, we can expand the unknown spatial molecular
orbitals (MO) in a known basis of atomic orbitals (AO). This approximation is know as the linear
combination of atomic orbitals LCAO.

φi =
K∑
µ

Cµiχµ i = 1, 2, ... ,K (2.12)

where K is the number of AO functions we have chosen to include and Cµi is the MO coefficient.
Following ref. [19, 18] by inserting eq. 2.12 into eq. 2.7 one ends up with the Roothaan equation
which is written in a compact form of a single matrix equation

FC = SCε (2.13)

where F is the Fock matrix, C the coefficient matrix, S the overlap matrix and ε the orbital energy
matrix in the basis secψµ. Having expanded everything in the basis {χµ} the individual elements
of the Fock matrix are written as

Fµν = 〈χµ| f̂(r1) |χν〉 (2.14)

= 〈χµ| ĥ(r1) |χν〉+
N/2∑
a

〈χµ| 2Ĵa(r1)− K̂a(r1) |χν〉 (2.15)

= Hµν +
N/2∑
a

K∑
λσ

CλaCσa [2〈χµχν |χλχσ〉 − 〈χµχσ|χλχν〉] (2.16)

By calculating the appropriate overlap integrals Sµν , the core-Hamiltonian integrals Hµν and the
two electron integrals it is possible to setup the matrix eq. 2.13 and solve for the coefficient matrix.
Because the Fock matrix depends on the coefficient we try to find we need to guess on a set of
coefficient and then solve iteratively until the convergence on the density matrix (product of the
coefficients) is obtained. Which means the coefficient we get from solving the Fock matrix and the
coefficient we insert is the same. The procedure is called the self consistent field (SCF) procedure.
In practise the extended Hückel[20] method is often used for the initial guess for the density. The
total energy is then the sum of the Hatree-Fock energy and the nuclei-nuclei repulsion term from
eq. 2.2

Etotal = Eelec +
M∑
A

M∑
B>A

ZAZB
rAB

(2.17)

2.3 The Semi-empirical Way
The most difficult and time-consuming part of LCAO self-consistent molecular orbital calculations
is the evaluation and handling of large a number of electron repulsion integrals, and the associated
computational cost. For Hartree-Fock calculations the Coulomb and exchange integrals involving
molecular orbitals scales in the order of N2 for N orbitals, but the integrals when using the LCAO
approximation, scales in the order of K4 for K basis functions, as seen in the elements of the Fock
matrix eq. 2.16.

There are different approaches to reduce the amount of integrals we need to evaluate. The first step
is of course to keep the number of basis functions K small, essentially all semi-empirical models
adapt an AO basis functions that cover only the valence electrons and only has one function per
orbital. The basis functions themselves are taken to be Slater-type orbital (STO).
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Even though the overlap between any two STO’s can be computed analytically (based on the
exponents and position) the overlap matrix S for semi-empirical methods are set to a unit matrix.

Sµν = δµν (2.18)

which means the overlap matrix becomes only non-zero for diagonal terms and simplifies the
computation when solving the Roothaan equation (eq. 2.13).

The next approximation is to consider all the electron repulsion integrals needed when building up
the Fock matrix, as some of the repulsion integrals have values close to zero. Especially those that
includes the overlap χµχν where µ 6= ν, or when the basis functions are centered far apart. The
most aggressive approximation for neglect Fock matrix integrals is the zero-differential overlap
(ZDO) approximation, whereby electron repulsion integrals involving the overlap distribution of
two different basis functions is assumed negligibly small.

〈χµχν |χλχσ〉 = δµνδλσ〈χµχµ|χλχλ〉 (2.19)

where δ is the Kronecker delta. The core integrals Ĥµν are not neglected but may be treated in a
semi-empirical manner to accommodate the possible bonding effect of the overlap. Computationally
this brings the integrals down to scale like K2, but at the cost of a lot of integrals and therefore a
lot of electron repulsion.

The most elementary theory retaining the main features of electron repulsion is the complete
neglect of differential overlap method (CNDO). Only valence electrons are treated explicitly,
the inner shells being treated as part of a rigid core, so that they modify the nuclear potential in
the one-electron part of the Hamiltonian. The atomic orbital basis set {χµ} is then a valence basis
set. E.g. 1s for Hydrogen and 2s, 2px, 2py, 2pz for Carbon. The basic approximation is that the
zero-differential overlap approximation is used for all products of different atomic orbitals, however
it also includes the additional approximation of making the remaining two-electron integrals depend
only on the nature of the atoms A and B to which χµ and χν belong and not on the actual type of
orbital.

〈χµχµ|χλχλ〉 = γAB

{
all µ on atom A
all λ on atom B

(2.20)

γAB is then an average electrostatic repulsion between any electron on A and any electron on B. For
large distances rAB between A and B, γAB will go towards the limit of r−1

AB. This approximation does
not distinguishing between different electron repulsions. That is to distinguish between different
orbitals located on the same atom, as the integral would be the same.

The CNDO approximation introduced electron-electron repulsions in the simplest possible manner.
However QM requires that electrons of parallel spin may not occupy the same small region of
space and that consequently, two electron in different atomic orbitals on the same atom will have
a smaller average repulsion energy if they have parallel spin. Mathematically, this difference
shows up as a two-electron exchange integral of the type 〈χµχν |χµχν〉, where µ and ν are on
the same atom. In CNDO theory such integral are neglected and all interactions between two
electrons on atom A are replaced by γAA. Intermediate neglect of differential overlap (INDO) theory
fixes this by taking exchange terms into account by retaining mono-atomic differential overlap
but only in one-center integrals, which are then parameterized to account for the remaining repulsion.

In Neglect of Diatomic Differential Overlap (NDDO)[21] there are a number of additional
bicentric integrals to be considered, which involve one-center differential overlap which are neglected
in CNDO and INDO. The NDDO approximation is primarily defined as:

〈χA
µχ

B
ν |χC

λχ
D
σ 〉 = δABδCD〈χµχν |χλχσ〉 (2.21)

where the indices A, B, C and D represents atoms in the molecule, which means the overlap
matrix is neglected if the two basis functions are centered on different atoms. While a number
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of semi-empirical methods had been based on the CNDO and INDO formalisms, little attention
had been paid to the more rigorous NDDO approximation before the expansion of the integrals in
terms of multipole-multipole interactions[21] and the Modified Neglect of Differential Overlap
MNDO[22, 23] by Walter Thiel and co-workers. The diatomic integrals are not easily evaluated
and so instead, the NDDO methods model the integrals as classical multipole interaction between
the two atoms. Whether the multipole is a point charge (ss), a dipole (sp) or a quadrupole (pp)
depends on the nature of the orbitals. The magnitude of the dipoles and quadrupoles depends on
the exponents of the Slater-type basis functions. The non-zero NDDO repulsion integrals thus are
either one-center (A = B) or two-center (A 6= B) integrals. The two-center integrals represent the
electrostatic interactions between the charge distributions at atom A and at atom B. For one-center
electron repulsion integrals the same type of values as INDO are retained.

In the next equations we shall assume that the basis functions χµ, and χν , are centered at atom A,
and the basis functions χλ and χσ at atom B (A 6= B). In this notation, a diagonal element of the
NDDO Fock matrix elements is given by:

Fµµ = Uµµ −
∑
B6=A

ZB〈χµχµ|sBsB〉+
∑
ν∈A

Pνν

(
〈χµχµ|χνχν〉 −

1
2 〈χµχν |χµχν〉

)
+
∑
B6=A

∑
λ∈B

∑
σ∈B

Pλσ〈χµχµ|χλχσ〉
(2.22)

where χµ is located on atom A. One-center one-electron energies Uµµ represents the sum of the
kinetic energy of an electron in χµ at atom A and its potential energy due to the attraction by the
core of atom A, is a atom-specific quantity that is used as an empirical parameter. The second term
represents the Coulomb attraction for electrons on atom A and the other nuclei. In the third and
fourth term represents the electron-electron repulsion. In the third term, both basis function are on
atom A, and the integral overlap are independent of the molecule of interest. There are a fixed
set of integrals involving the overlap of the different atomic basis functions, such as 〈sAsA|sAsA〉,
〈sAsA|pApA〉, and so on. The values of these integrals are obtained by empirical fitting. In the
fourth term, only Coulomb integrals remain, and these are further approximated using point charges
and classical Coulomb charge repulsion (Coulomb’s law).

Similar considerations were made to the off-diagonal Fock matrix element Fµλ, where µ 6= λ.
However, it is also assumed that the overlap of the kinetic energy 〈χµ| − 1

2∇
2 |χλ〉 is zero if χµ and

χλ are on different atoms (A and B).

Fµλ = 1
2(βµ + βλ)Sµλ −

1
2
∑
ν∈A

∑
σ∈B

Pνσ〈χµχν |χλχσ〉 (2.23)

The two-electron integrals are approximated as before (multipole) while the 1-electron terms are
approximated by the extended Hükel approach, where the βs are empirical parameters (resonance
integrals). The Fock matrix is then used the same way as regular restricted Hatree-Fock theory, to
obtain the orbitals that correspond to the variational energy minimum.

To determine the parameters for semi-empirical methods, it is necessary to have experimental data
to fit the parameters (ab initio data is also sometimes used). For MNDO, the experimental values
is the heat of formation, due to the amount of known experimental data for a lot of known systems.
The heat of formation is defined as the amount of energy needed to shape the molecule formation
for the atoms (e.g. the heat of formation of water is the energy difference of H2 + 1

2 O2 and H2O).
The heat of formation can be written as:

∆Hf = Eele + Enuc −
∑

A
EA

ele +
∑

A
∆HA

f (2.24)

where Eele is the electronic SCF energy, Enuc is the core-core repulsion term, EA
ele is the electronic

energy for atom A, and ∆HA
f is the experimental heat of formation for atom A. The nuclear
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repulsion term can be described as purely monopol charge-charge interaction, and so the interaction
between core A and B is the same as two s-orbitals

EAB
nuc = ZAZB〈sAsA|sBsB〉 (2.25)

The total repulsion is then a sum of all individual interactions. Since we know the structure and
the experimental heat of formation for a given molecule, we can then fit our parameters to best
reproduce that heat of formation.

During the parametrization it was found that the MNDO method tended to give covalent bonds
that were too short, and it was difficult to adjust the existing parameters to fix this. Therefore,
additional parameters were introduced in the nuclear repulsion energy. The additional parameters
makes the core-core repulsion larger, and there by the bonds, as seen

Enuc =
∑

A

∑
B>A

ZAZB〈sAsA|sBsB〉
(
1 + e−αArAB + e−αBrAB

)
(2.26)

where the atomic specific parameter α are adjusted to give correct bond lengths. Except for OH
and NH bonds, where the nuclear repulsion was scaled with the covalent bond distance[22].

All parameters was subsequently refitted against a larger data set and more parameters was added
to give the Austin Model 1 (AM1)[24] and yet again the Parameterization Model 3 (PM3)[25],
which are the two methods most commonly used, whereas MNDO is rarely used[17]. The main
difference between AM1 and PM3 is that AM1’s parameters were fitted with chemical intuition
by Dewar and PM3 by Stewart was fitted with a more statistical approach with an error function
summing over observables and taking the difference between calculated and experimental values.
The chemical properties used consist of heats of formation, dipole moments, ionization potentials,
and molecular geometries.

The MNDO method was again re-parameterized by Stewart to give the Parameterization Model 6
(PM6)[2], this time the training set of reference data used was considerably larger than that used
in parameterizing PM3 where approximately 800 discrete species were used. In the optimization of
the parameters for PM6, over 9,000 separate species were used. Thiel et al have shown[23] that a
large increase in accuracy results when d-orbitals are added to the main-group elements that have
the potential to be hypervalent, which was added to the NDDO formalism for PM6. Also, use of
other types of reference data was found to be necessary[2], such as ab initio calculations, which
provided a convenient source of reference data. The PM6 method included even more parameters
in the core-core repulsion term:

Enuc =
∑

A

∑
B>A

ZAZB〈sAsA|sBsB〉
(

1 + xABe
−αAB(rAB+3·10−4r6

AB)
)

(2.27)

where the main difference is instead of having the parameter αA for each atom type, we have
the parameter αAB for each atom-atom pair, which increases the amount of parameters greatly.
Core-core specific terms was also included for OH, NH, CH and CC bonds.
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Chapter 3

Correcting the Electronic Energy

The Hatree-Fock model can typically account for approximately 99% of the total energy, however the
remaining energy is where most chemical reaction lies. With increasing number of basis functions
the HF model should converge to what is called the Hatree-Fock limit which is always higher than
the exact energy (Eexact). The difference between the exact and the HF limit is what is known
as the correlation energy. The correlation interaction between the electrons is described by the
deviations from the Hatree-Fock approximation due to the instantaneous interaction between the
electrons, rather than only the average repulsion[16, 19, 17]. The goal of correlated methods (such
as Møller Plesset Pertubation theort and Coupled Cluster) for solving the electronic energy is to
calculate the remaining correlation due to the electron-electron interaction, which is especially
important for non-covalent interactions.

However, these correlated methods are computationally costly and will not scale well to the system
sizes of bio-chemical importance. Instead the trend is to use fitted empirical models to correct the
energy for correlation energy effects such as hydrogen bonds and dispersion effects. Such methods
as PM6-DH2[3], PM6-DH+[5], PM6-D3H4[4] and HF-3c[13]. The last being the new corrected
Hartree-Fock method by Sure and Grimme, which consists of 3 empirical correction to the HF
energy.

3.1 Correcting for Dispersion
Dispersion interaction (also called London interaction) is the intermolecular attraction due to
correlated fluctuations in the electron density on neighbouring molecules. The dispersion interaction
is present for all molecules and is dominant for non-polar molecules. It is a contribution to the
van der Waals interaction, and those that vary with separation as 1/r6. The strength of the
dispersion interaction interaction is closely related to the polarizability of the molecule, which
arises from coupling of instantaneous fluctuations in the charge distribution on two neighbouring
molecules. These fluctuations can give rise to an instantaneous dipole, which may induce a dipole
back to the neighbouring molecule and given the orientations of the two dipole can give rise to an
attractive interaction between the two molecules[16, 26].

The most popular way to correct for dispersion interaction in a semi-empirical way, i.e. without
running expensive ab initio calculations, is to use the third-generation dispersion correction (DFT-
D3) by Stefan Grimme and co-workers[14]. The dispersion term consist of a two-body and a
three-body term:

ED3
disp = E

(2)
disp + E

(3)
disp (3.1)

With the most dominant contribution to the interaction energy being the two-body term, which is
given by

E
(2)
disp =

∑
A6=B

∑
n=6,8

sn
CAB
n

rnAB
fdamp,n (3.2)
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here the first sum is over all atom pairs in the system and the second sum is over the nth-order
dispersion coefficient CAB

n . In the third-generation these coefficients are calculated in a ab initio
way, instead of empirically derived, as the previous versions[14]. s6 and s8 is a scaling factors
(fitted parameters), for the specific method or functional. Usually s6 is set to unity. rAB is the
internuclear distance. In order to avoid near singularities for small rAB, the damping function
fdamp,n is introduced which determines the range of the dispersion correction. The damping function
can be either zero-damping (ZD) or Becke and Johnson (BJ) type damping.

The role of the fdamp function is to damp the dispersion contribution to zero for short ranges. The
zero-damping function is chosen because Grimme et al. found it to be numerically stable and
convenient also for higher dispersion orders.

fZD,n = 1
1 + 6(rAB/(sr,nRAB

0 ))−αn
(3.3)

where sr,n is the order-dependent scaling factor of the cutoff radii R0
AB. The cutoff radii is defined

as

RAB
0 =

√
CAB

8
CAB

6
(3.4)

The other possibility is to use the rational damping as proposed by Becke and Johnson

fBJ,n = 1
(a1RAB

0 + a2)n
(3.5)

where RAB
0 is the cutoff radii. a1 and a2 are fitted parameters. The three-body contribution has a

small effect on medium-sized molecules. The three-body energy term E
(3)
disp for the atoms A, B and

C is defined as

E
(3)
disp = −1

6
∑

A6=B6=C

CABC
9 (3 cos θa cos θb cos θc + 1)

(rABrBCrCA)3 f
(3)
damp (3.6)

where θa, θb and θc are the internal angles of the triangle formed by rAB, rBC and rCA. The C9
dispersion coefficient is approximated by

CABC
9 ≈ −

√
CAB

6 CBC
6 CCA

6 (3.7)

The damping function f
(3)
damp is similar to the zero-damping function, eq. 3.3.

3.2 Correcting for Hydrogen Bonds
Hydrogen bonds are the electrostatic attractive interaction between molecules in which a hydrogen
is bound to a electronegative atom (donor) and is in the vicinity of another electronegative atom
(accepter) with a lone pair of electrons. Just like dispersion, there exists different empirical correction
schemes for correcting hydrogen bond interaction energies[5, 3, 4]. Most notably is the H+[5], H2[3]
and H4[4] introduced by Korth, Hobza and co-workers. Common for all the hydrogen bonding
schemes is the inclusion of penalty/reward functionality of the hydrogen bonding angles of the
configuration.

We will only focus on the methodology of the third-generation hydrogen bonding correction H+.
As part of this master thesis the H+ module was implemented in GAMESS. The correction energy
E(H+) is given by:

E(H+) =
∑
AB

CA + CB
2r2
AB

· fgeom · fbond · fdamp (3.8)
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where the sum runs over all hydrogen bonds involving N and O atoms. rAB is the donor-acceptor
distance for the given hydrogen bond geometry, with A and B being the two possible acceptor/donor
electronegative atoms, either oxygen or nitrogen. CA and CB are adjustable parameters and refer
to either CN and CO.

The geometrical term fgeom is defined as

fgeom = cos2 θ · cos2 φA · cos2 ψA · cos2 φB · cos2 ψB (3.9)

where θ is the angle defined by atom A, atom B and the hydrogen (see Figures 3.1a and 3.1b).
The angle φ, and torsion angle ψ are both defined by the hydrogen bonding geometry. The angles
φ are calculated from the difference between the target angle φtarget and the present bond angle
in the complex ΦX. The target angle φtarget is the optimum angle for hydrogen bonds. Target
angles are defined in a complicated heuristic fashion, please see the source code posted on GitHub
for more details[27]. The torsion angles ψ are defined similarly and calculated as the difference
between target dihedral angle and the structural angle Ψ. Where ΨX is the dihedral angle between
R1R2X· · ·H, which is used for both the donor and acceptor as seen in Figures 3.1a and 3.1b. Here
R1 is defined as the Rx closest to the hydrogen.

Θ ΦBΦA

HA B

RB
1

RB
2

RA
1

RA
2

(a)

ΘΦA ΦB

.

ΨA

HA B

RB
1

RB
2

RA
1

RA
2

(b)

Figure 3.1: Illustrating the angles of the H+ model when the hydrogen bond acceptor is sp3 (a) and sp2

(b) hybridized. Θ is the angle between atoms A and B. ΦX is the angle between the hydrogen and the R1
atom, H··X-R1, where R1 is the atom closest to the H atom. ΨX is the dihedral angle between R1R2X· · ·H.

The bond damping function fbond is defined as:

fbond = 1− 1
1 + exp[−60 · (rXH/1.2− 1)] (3.10)

where rXH is the distance between the hydrogen atom and the donor atom, which is defined as the
shorter one of the distances rAH and rBH. The damping function fdamp is defined as:

fdamp =
(

1
1 + exp[−100 · (rAB/2.4− 1)]

)(
1− 1

1 + exp[−10 · (rAB/7.0− 1)]

)
(3.11)

where rAB is the distance between the two electronegative atoms A and B.

The E(H+) implementation differs slightly from the one originally proposed by Korth[5]. Changes
were made to avoid problems with optimization of hydrogen bond complexes involving particular
configurations, including especially ketone (C=O) groups interacting with amide-like (NR3) groups.
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In the original implementation, optimization problems can originate from target angle calculation
based on the torsion angle of the NR3 group. Target angles are the optimal (text-book) angles
for a given H-bond arrangement. H-bond energies are computed based on the deviation of all
angular coordinates from their respective target (optimal) angles, see reference [28] for a detailed
explanation. The target angle would switch during optimization steps as the definition of the torsion
angle would switch, and never find a minimum, as the torsion angle is defined as seen in Figure
3.1a. The model was updated with new target angles for tetragonal NR3 configuration case, and
the estimation of target angles for NR3 groups now based on the hydrogen bonding configuration
(with a double bond indicating a planar structure).

The H+ model is implemented including the analytical derivative. The analytical gradient is done
using internal coordinates, angles, torsions and distances, from the energy model eq. 3.8, which is
then converted to Cartesian atomic coordinates by a conversion algorithm. The source code for
this module has been sent to the official GAMESS version, which will be available soon and is also
available as a stand-alone module on GitHub[27].

3.3 Correcting for Basis Set Size
Using the restricted Hartree-Fock (i.e. without NDDO approximation) with a small basis, overbind-
ing between a dimer will occur, which is a general phenomenon known as Basis Set Superposition
Error (BSSE). For small basis sets each monomer uses basis functions located on the other monomer
in the dimer. This is due to the decrease in internal energy, which in turn leads to an overes-
timation of the interaction strength. Counterpoise correction is a method to limit the error
that results when studying an intermolecular reaction using an incomplete basis set. To get the
corrected energy, calculations are done for each monomer with added basis functions localized
on the other monomers location, but without including the nuclei or the electron of the other
monomer. That way we can correct the energy by subtracting the overbinding effect for the basis set.

An adaptation of this method has been created, by Kruse and Grimme, the geometrical counterpoise
correction (gCP)[29], in a semi-empirical way. The method depends only on the molecular geometry,
i.e., no input from the electronic wave-function is required and hence is applicable to large molecules.
The gCP empirical correction term for counterpoise correction is defined as

EgCP
BSSE = σ

N∑
A

N∑
A6=B

Emiss
A

exp
(
−α(RAB)β

)√
SABNvirt

B
(3.12)

where α, β and σ are fitting parameters, SAB is a Slater-type overlap integral and Nvirt
B is the

number of virtual orbitals on B in the target basis. The SAB is evaluated over a single s-type
orbital centered on each atom and using optimized Slater exponents. The gCP parameters were
fitted in a least-square sense against counterpoise correction data[29].

To further correct the electronic energy for basis set deficiencies when using small basis sets another
correction term is introduced by Sure and Grimme[13], for systematically overestimated covalent
bond lengths for electronegative elements and is again calculated as a sum over all atom pairs. The
correction term is defined as ESRB:

ESRB = −s
N∑
A

N∑
A6=B

(ZAZB)3/2 exp
(
−γ(RAB

0 )3/4RAB

)
(3.13)

Where RAB
0 is the default cutoff radii (eq. 3.4) as determined by ab initio for D3 dispersion

correction scheme[14], Z is the nuclear charge, and s and γ are fitted parameters which are set to
0.03 and 0.7 respectively for the HF-3c method. The parameters s and γ were fitted to produce
the missing atomic forces of the HF-3c method for the B3LYP-D3(BJ)/def2-TZVPP equilibrium
structures of 107 small organic molecules[13]. The other correction (ED3 and EgCP) terms were
included in the fitting procedure of ESRB, which was carried out by minimizing the HF-3c RMS
gradient for the reference geometries.
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Chapter 4

Checking the Electronic Energy

We have introduced the methodology of two approaches, namely the standard restricted Hartree-
Fock and the approximately Hartree-Fock approach, NDDO (PM6). As explained earlier, these
methods are lacking in calculating non-covalent interactions, which was why we introduced several
correction schemes. Now that we have corrected the original energy, we want to check if it gives
the correct energy. Usually we do not care about the absolute electronic energy, but rather relative
energies, such as energy barriers or interaction energies. To check if the energy model we use is
accurate enough to explain interactions other than the average electron-electron repulsion, we
compare interaction energies calculated with a high-level correlated method, such as CCSD(T)/CBS.
A very nice database has been created for just this reason, which contains geometries optimized at
the MP2/cc-pVTZ level and single point calculation at the CCSD(T)/CBS level[30]. Different sets
exists, but primarily semi-empirical models use the S22 and the S66 complex set, where we can find
different complexes with focus on bio-chemical interaction, e.g. dispersion and hydrogen-bonding,
e.g. Figure 4.1 where both dispersion and hydrogen-bonding takes place.

Figure 4.1: Complex no. 13 of the S22 set, an Uracil dimer in stack formation, showing both dispersion
and hydrogen bond interaction.

4.1 Computational Details

During this study we primarily work with two different quantum packages, namely GAMESS[12]
and MOPAC[31]. It is important to know which one are used for the different methods, as the
methods are very much coupled with the way it is implemented and the associated algorithms
for geometrical optimizations. MOPAC is close-sourced which is what prompted the motivation
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to re-implement PM6 in GAMESS, as GAMESS has several ways to control optimizations that
MOPAC does not have.

As part of this study we present new dispersion and hydrogen bond corrections to the PM6 method,
PM6-D3H+[11], and its implementation in the GAMESS program. The method combines the
DFT-D3[14] dispersion correction (eq. 3.1) with zero-damping (eq. 3.3) with a modified version of
the H+ hydrogen bond correction[5] (eq. 3.8).

EPM6−D3H+ = EPM6 + ED3 + EH+ (4.1)

All NDDO based methods (including the newly implemented PM6) in GAMESS is currently only
implemented with numerical gradients. The gradient of the dispersion correction is evaluated nu-
merically, by using a centered finite difference scheme, for three-body calculations, and analytically
for two-body calculations. The analytical three-body gradient is published but not yet implemented
in GAMESS. For the hydrogen bond term the analytical gradient is used. For Hessian calculations
in GAMESS we use double displacement (NVIB=2 in the $force group in the GAMESS input file).

The HF-3c method[13] is the recent developed semi-empirical corrected Hartree-Fock method,
introduced by Sure and Grimme, using a very small basis set (MINIX), and using three of the
correction terms introduced earlier, namely dispersion (eq. 3.1), BSSE (eq. 3.12) and a short range
term (eq. 3.13).

EHF−3c = EMINIX
HF + ED3 + EgCP + ESRB (4.2)

The Hartree-Fock method is, as mentioned earlier, much slower than the NDDO based PM6,
however as part of this work the HF-3c method has been implemented in GAMESS and coupled
with the Fragment Molecular Orbital (FMO)[32] scheme, FMO-HF-3c (unpublished). This makes
the method able to scale well to large system sizes. For the FMO-HF-3c calculations we used only
the two-body scheme of FMO.

All PM6-D3H+, HF-3c, and FMO-HF-3c calculations were done with a locally modified version
of GAMESS. The source-code for the method PM6-D3H+ has been formatted and sent to the
official GAMESS group in Iowa, and will be available in the official version later this year. The
FMO-HF-3c interface will soon be pushed to GAMESS as well.

The semi-empirical methods PM6[2], PM6-DH2[3] and PM6-DH+[5] are used as implemented in
the closed-sourced program MOPAC. All MOPAC calculations were done with MOPAC2012[31, 33]
version of MOPAC. Geometry optimizations were done with the LBFGS optimizer for reasons
described later, unless noted otherwise. The COSMO model[34] were used to model bulk solvation
for the protein calculations.

To benchmark and test our implementations, we performed various calculations on the S22[35]
and S66[36] set of complexes from the Benchmark Energy and Geometry Database (BEGDB)[30].
The BEGDB database contains structures and corresponding interaction energies calculated at the
MP2/cc-pVTZ and estimated CCSD(T)/CBS level of theory, respectively.

Geometry optimizations of the complexes in S22 and S66 were done with a variety of convergence
criteria which will be discussed in detail later. Geometry optimizations of Chignolin (PDB: 1UAO)
and the Tryptophan-cage (PDB: 1L2Y) using PM6-DH+, PM6-D3H+ and FMO-HF-3c were also
carried out. We used the first structure available in each of the downloaded structure files. For
comparison, we performed two-body Fragment Molecular Orbital (FMO)[32] geometry optimizations
using RHF/6-31G(d)[37, 38, 39, 40] and the D3 dispersion correction[14, 41].

Calculations were performed in the gas phase and in bulk solvent using a polarizable contin-
uum to model the solvent.[42] For solvated PM6-D3H+ calculations, we used a recent C-PCM
implementation[43] for SQM methods in GAMESS. For the FMO calculations, we used the re-
cent completely analytical RHF/C-PCM gradient[44]. All PCM calculations were done using the
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FIXPVA[45] tesselation scheme with 60 tesserae per sphere. All geometry optimizations used a
convergence criterion of 5.0× 10−4 Hartree/Bohr, unless noted otherwise.

Timings was carried out on either a 8 core Intel(R) Xeon(R) CPU X5560 @ 2.80GHz or 24 core
AMD Opteron(tm) Processor 6172 @ 2.1 GHz machine.

4.2 Parameterization
For the new method in GAMESS, PM6-D3H+, new parameters was needed for the two correction
terms, dispersion and hydrogen-bonding. ED3 is the third generation dispersion correction developed
by Grimme et al., DFT-D3[14] and implemented in GAMESS by R. Peverati. Unless otherwise
noted ED3 refers to the pair-wise additive dispersion correction as proposed in reference [14]. Only
the zero-damping version was used, with dispersion order 6 and 8. The fitting parameters are those
obtained by Grimme for PM6[9]. As described by Grimme, the parameter s6 is set to unity, α
was set to its default value. s8 and the scaling parameter sr,6 of the atomic cut-off radii used in
the dispersion damping function are fitted parameters as in standard DFT-D3 (see Table 4.1 for
parameters). Thus only s8 and sr,6 are optimized by Grimme for PM6-D3H, which is also used for
PM6-D3H+.

Because we use a different dispersion energy function than in the previous DH+ model and make
modification to the original hydrogen bonding correction model, it is necessary to determine new
optimum values for the CN and CO parameters. The parameters for H+ are parameterized to
minimize the root-mean-square deviation (RMSD) between the interaction energies for PM6 with
dispersion correction only (PM6-D3) for a subset of complexes from the S22 and S66 data sets (1-7
and 1-23, respectively), plus the H+ term and the estimated CCSD(T)/CBS reference interaction
energy. The CN and CO parameters are then scanned in ranges from -0.2 to 0.0, around the original
optimum. A global optimum was found at CN = -0.11 and CO = -0.12, with a RMSD of 1.11
kcal/mol, as seen in Figure 4.2 and Table 4.2.

This was done using both two and three-body dispersion, but including three-body dispersion did
not make any substantial difference in the resulting optimum, and the default was set to two-body
for PM6-D3H+, because of the extra computational time associated with three-body gradient
calculations. The computational cost becomes a time consuming issue for optimizing protein-sized
molecules. The final set of parameters for both dispersion and hydrogen bond correction terms can
be seen in Table 4.1.

Figure 4.2: Scan of the two parameters for the H+ correction term, nitrogen (CN) and oxygen (CO) in
the hydrogen bond dominant complexes of the S22 and S66 noncovalent complexes. A optimum was found
at CN = −0.11 and CO = −0.12.
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Table 4.1: The final parameters for the dispersion and hydrogen bond correction terms of PM6-D3H+.

H+
CN -0.110
CO -0.120

D3
α 14.000
s6 1.000
sr,6 1.560
s8 1.009

4.3 Interaction Energies
Table 4.2 shows results of PM6, PM6-DH+, PM6-D3H+ and HF-3c for the full, dispersion and
hydrogen bond dominant complexes sets of the S22 and S66 from BEGDB. Root-mean-square devia-
tion (RMSD), mean absolute deviation (MAD) and maximum error span (Max) with respect to the
benchmark estimated CCSD(T)/CBS interaction energies are given in kcal/mol. The PM6-D3H+
method was tested using both two and three-body dispersion.

Overall, the accuracy of PM6-D3H+ is very similar to PM6-DH2 and PM6-DH+, with RMSD
and MAD values within 0.02 kcal/mol of one another. The main difference is that the maximum
error for PM6-D3H+ is 1.42 and 0.36 kcal/mol smaller than for PM6-DH2 and PM6-DH+, re-
spectively. The accuracy of HF-3c is consistently better, but in the same order of magnitude as
the NDDO based methods. The maximum error for PM6-DH2, -DH+, and -D3H+ were observed
for the S66-19, S66-60, and S66-65 dimer, respectively and, in general, we did not notice any
particular dimer that resulted in unusually large errors for all four corrections. All interaction
energies can be found in supplementary information. The differences in RMSD and MAD between
PM6 corrected methods are slightly larger (up to 0.13 kcal/mol) for subsets where dispersion and
hydrogen-bonding dominate. The HF-3c method seems to be more consistent with reference energies,
especially for hydrogen bond dominant complexes, with a RMSD of 0.5 kcal/mol smaller than -DH2,
-DH+ and -D3H+, as well as a smaller max error. Including three-body dispersion correction for
the PM6-D3H+ method had no substantial effect on accuracy, but might play a role for large systems.

Next, we test the methods on two sets of molecules not in the training set. Table 4.3 lists computed
interaction energies for formamide dimer, pentamer-monomer, and trimer-trimer (Figure 4.3) com-
puted with various methods. Compared to MP2/TZVP PM6-DH2 performs best for this particular
system, while PM6-DH+ and PM6-D3H+ appear to perform roughly similarly, with mean absolute
deviations (MAD) of 0.8 and 1.3 kcal/mol, respectively. However, it is interesting to note that the
decrease in interaction energy on going from the dimer to the pentamer-monomer predicted by
PM6-DH+ (3.6 kcal/mol) is somewhat lower than that predicted by other methods corrections and
MP2/TZV (4.1 - 4.6 kcal/mol). This decrease comes primarily from cooperative polarization effects
that are accounted for by the underlying PM6 method, and PM6, PM6-DH2, and PM6-D3H+ all
predict similar decreases. It is not clear why the DH+ terms leads to an underestimation of the
cooperative effect. Similarly, the HF-3c methods underestimates the binding consistently when
going from dimer to trimer.

Table 4.4 contains RMSD, MAD, mean-deviation (MD) and maximum deviation relative to estimated
CCSD(T)/CBS// MP2/cc-pVTZ interaction energies computed for 12 hydrogen bonded base pair
complexes (List in supplementary information) from the JSCH-2005[48] set from BEGDB. The 12
complexes represent all the complexes in the JSCH-2005 set with hydrogen bonds involving N and
O atoms and for which interaction energies have been computed at a level similar to that used in
the parameterization of PM6-D3H+ [i.e. CCSD(T)/CBS// MP2/pVTZ]. For this set all three PM6
corrected models offer very significant increases in accuracy (e.g. a ca 8 kcal/mol decrease in the
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Table 4.2: Root-mean-square deviation (RMSD), mean absolute deviation (MAD), as well as the maximum
error (Max) with respect to the estimated CCSD(T)/CBS interaction energies from the S22 and S66 sets
are presented. Hydrogen bond and dispersion subsets are complexes from S22 and S66 with a dominant
factor of the interaction energy being hydrogen bond or dispersion interaction. All values are in kcal/mol.

a,bPM6 bDH2 bDH+ a,cD3H+ a,dD3H+ aHF-3c
Full set

RMSD 3.34 0.83 0.80 0.82 0.83 0.53
MAD 2.85 0.58 0.61 0.60 0.61 0.39
MAX 7.99 3.53 2.47 2.11 2.09 1.80

Dispersion subset
RMSD 3.15 0.49 0.49 0.48 0.54 0.63
MAD 2.79 0.42 0.42 0.36 0.39 0.48
MAX 7.29 0.92 0.92 1.11 1.43 1.80

Hydrogen bond subset
RMSD 4.29 1.05 0.98 1.11 1.11 0.58
MAD 3.65 0.70 0.80 0.92 0.91 0.47
MAX 7.99 3.53 2.10 1.85 1.84 1.36

a The calculations have been done using the GAMESS software.
b The calculations have been done using the MOPAC software.
c The calculation has been done using two-body dispersion.
d The calculation has been done using three-body dispersion.

Table 4.3: Hydrogen bond interaction energies, with various methods, from formamide dimer, pentamer-
monomer, and trimer-trimer, as well as MP2/TZVP reference data. All values are in kcal/mol.

PM6a,b DH2b DH+b D3H+a HF-3ca MP2/TZVPd

dimer -5.36 -6.71 -7.81 -8.12 -6.03 -6.65
pentamer-monomer -7.17 -8.82 -9.56 -10.06 -7.74 -8.66
trimer-trimer -9.27 -11.33 -11.45 -12.23 -9.67 -11.26

a The calculations have been done using the GAMESS software.
b The calculations have been done using the MOPAC software.
d From ref [46, 47].

MAD) compared to PM6. The HF-3c model also offers very similar order of accuracy in this model
set compared to the other correction methods. As for the training set (Table 4.2) the accuracy of
PM6-DH2, PM6-DH+, PM6-D3H+ and HF-3c are very similar, with MADs between 0.7 and 1.1
kcal/mol.

4.4 Molecule Geometry Optimization
All structures from the S22 and S66 data sets were optimized with PM6, and PM6-DH+ using
MOPAC or PM6, PM6-D3H+ and HF-3c using GAMESS to test how well the methods reproduce
the reference MP2/cc-pVTZ geometries and to compare the optimization algorithms in GAMESS
and MOPAC.

For the GAMESS optimizations we used the default (quasi Newton-Raphson) geometry optimizer
and defined convergence as having a maximum gradient component less than 5×10−4 Hartree/Bohr
and an RMS gradient less than 5/3 × 10−4 Hartree/Bohr. These convergence criteria are five
times higher than the default and are chosen because we have found that for large systems these
criteria can lead to significantly faster convergence without affecting the structure or final energy
significantly. For complex 58 in the S66 set it was necessary to re-compute the Hessian every
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Figure 4.3: Illustrating the formamide trimer-trimer (a), hexamer (b) and pentamer-monomer (c).

20 steps to obtain convergence and in the case of complex 22, 51, and 58 it was necessary to
skip the projection of translational and rotational degrees of freedom from the gradient to obtain
convergence, which was done by settings the keyword PROJCT=.F. in the $Force group. For 11 of
the complexes (see supplementary information) it was necessary to decrease convergence criterion
to 10−4 Hartree/Bohr in order to remove imaginary frequencies. In the case of complex 4 and 5
from S22 PM6-D3H+ predicted that the minimum has C1 symmetry rather than Cs as predicted
by MP2, and a deviation in the planarity structure of 0.1 Å was needed (added to the first atom).
This is not the case for PM6 and thus a result of the D3H+ energy correction.

For HF-3c three structures failed to optimize because of Hessian corruption in the first optimization
step. This happened for 22, 51 and 58 of the S66 set.

For the MOPAC optimization we used the LBFGS geometry optimizer because we found that this

Table 4.4: Root-mean-square deviation (RMSD), mean absolute deviation (MAD), mean deviation (MD),
as well as the maximum error (Max) with respect to the estimated CCSD(T)/CBS interaction energies
from selected complexes from JSCH-2005 dataset.

Method RMSD MAD MD Max
PM6a,b 8.24 7.98 7.98 10.71
PM6-DH2b 1.45 1.09 0.21 3.97
PM6-DH+b 0.94 0.69 0.46 1.90
PM6-D3H+a 1.18 0.95 0.37 2.45
HF-3ca 1.26 1.11 0.25 2.03

a The calculations have been done using the
GAMESS software.

b The calculations have been done using the
MOPAC software.
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is the only optimization algorithm that can be practically applied to optimization of large systems.
Using eigenvector following leads to termination of the geometry optimization and the following
error message: ”trust radius now less than 0.00010 optimization terminating”. Based on the output
the convergence criterion for the LFBGS optimizer appears to be a change heat of formation of less
than ca. 0.1 kcal/mol during several consecutive optimization steps. For PM6, this convergence test
was not passed after ca 200 geometry optimization steps for complex 10 and 17 from the S22 set
and 29, 53, and 54 from the S66 set. For PM6-DH+, this convergence failed after ca 140 geometry
optimization steps for complex 11 from the S22 set and 53, 54 and 60 from the S66 set. In all these
cases MOPAC terminates the geometry optimization after the mentioned number of steps with the
message: ”a failure has occurred”

The results are summarized in Table 4.5. The average RMSD between the MP2/cc-pVTZ and
semi-empirical structures are below 0.28 Å for all methods and a factor of two lower for the GAMESS
optimizations. The RMSD was calculated using the Kabsch algorithm[49, 50], for all the atoms,
including hydrogens. For the hydrogen bonding subset RMSD was calculated for the hydrogen
bond lengths, which are much lower with GAMESS, and with PM6-D3H+ being the lowest with a
RMSD of 0.08 Å. The GAMESS optimizations converge, on average, in 30 steps, while the MOPAC
optimization takes 10 times more steps.

Table 4.5: Geometry optimization of equilibrium conformations of the S22 and S66 datasets in gas phase.
Root-mean-square-deviation was calculated between the optimized structures and the original structure
from S22 and S66, as well as the hydrogen bond lengths. The average number of steps (N̄S), average of the
final root-mean-squared gradient (RMS) in Hartree/Bohr, and average number of imaginary frequencies
(N̄i) was noted for the different methods.

avg. RMSD [Å] HB RMSD [Å] N̄S avg. Gradient RMS N̄i (max)
PM6a 0.11 0.13 30 1.0×10−4 0.02 (1)
PM6-D3H+a 0.12 0.08 31 1.0×10−4 0.07 (1)
PM6b,c 0.28 0.24 229 1.4×10−3 0.71 (6)
PM6-DH+b,d 0.21 0.24 376 2.3×10−3 0.79 (9)
HF-3ca,e 0.10 0.05 32 1.1×10−4 0.51 (3)

a The calculations have been done using the GAMESS software.
b The calculations have been done using the MOPAC software.
c Averages computed without complexes 10 and 17 from S22 and 29, 53 and 54 from

S66, as they did not converge.
d Averages computed without complexes 11 from S22 and 53, 54, 60 and 63 from S66, as

they did not converge.
e Averages computed without complexes 22, 51, and 58 from S66, as they did not

converge.

Furthermore, MOPAC optimized geometries tend to have a significantly larger RMS gradient,
compared to GAMESS. This leads to significantly more imaginary frequencies in a subsequent
vibrational analyses compared to those obtained with GAMESS. In the case of MOPAC/PM6-DH+
54, 17, 15, and 2 geometries result in 0, 1, 2, and ≥ 3 imaginary frequencies, while the corresponding
numbers for GAMESS/PM6-D3H+ are 82, 6, 0, and 0 and 56, 23, 6, 3 for GAMESS/HF-3c.
Re-optimizations with a higher convergence criteria for HF-3c has not yet been done, but optimizing
the complexes with higher criteria, as with PM6-D3H+, could remove a lot of the imaginary
frequencies. Using the (default) eigenvector following algorithm in MOPAC for comparison results
in 60, 19, 5, and 4 geometries with 0, 1, 2, and ≥ 3 imaginary frequencies, respectively, with
complexes 1 and 3 from S22 and 1 and 20 from S66 failing the optimization.

For four of the six cases where a PM6-based GAMESS optimization leads to a structure with a
single imaginary frequency a convergence criterion of 10−4 Hartree/Bohr is used, but lowering the
convergence criterion further does not remove the imaginary frequencies. In the sixth case, complex
16 in the S66 set (water hydrogen bonded to an amide group - Figure 4.4), the optimization stalls,
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when setting convergence criterion to 10−4 Hartree/Bohr, with the maximum gradient oscillating
between 3× 10−4 and 2× 10−4 Hartree/Bohr. This is due to the dihedral angle ψ (Eq. 3.9) which
is defined as R1R2X · · ·H (cf. Figures 3.1a and 3.1b), where R1 is defined as the atom closest to
the H atom. In the case of the amide-water hydrogen bond, R1 and R2 are the two water H atoms,
which are approximately equidistant from the amide proton. The oscillation in the maximum
gradient is caused by the oscillation between two different definitions of ψ, which has an effect on
the gradient direction. The normal mode associated with the imaginary frequency for the structure
converged with a convergence criterion of 5 × 10−4 corresponds to a motion between these two
structures, so this is likely the explanation for the imaginary frequency. Similarly, in the case of the
complex 1 in the S22 set (ammonia dimer), we believe the imaginary frequency is due to highly
symmetric hydrogen configuration, with switching torsion angles (atomic definition of ψ). Since
this only affects structures with highly symmetric hydrogen bonds it is unlikely to cause problems
in most applications. We note that the PM6-DH+ method has the same problem.

In the remaining four cases where a GAMESS optimization leads to a structure with an imaginary
frequency the cause is most likely an extremely flat potential energy surface for the corresponding
degrees of freedom: all imaginary frequencies are < 31i cm−1. Similarly, the lowest real frequencies
for these five cases are all < 40 cm−1.

In summary, the PM6-D3H+ method as implemented in GAMESS offers an attractive alternative
to PM6-DH+ in MOPAC in cases where the default geometry optimizer fails to find a converged
structure and the LBFGS optimizer must be used and a vibrational analysis is needed e.g. when
computing vibrational free energies.

Figure 4.4: Hydrogen bond configuration of complex 16 of the S66 set.

4.5 Fragmenting the Energy

The HF-3c method was interfaced to the fragment molecular orbitals (FMO) method in GAMESS.
For all FMO calculations the RCORSD and RESDIM keywords are set to 1.75 Å(default is 2.0),
which is the cutoff for approximating the SCF energy by electrostatic interaction. However, as
seen in table 4.6, this also affects the correction terms in HF-3c, and not only the SCF energy.
This is because the implementation of 3c in GAMESS is based on already implemented interface
between the DFTDx method and FMO, as the two extra corrections are called through the DFDx
subroutine (for easy FMO interfacing). The semi-empirical correction terms should not be cut of for
any cutoff distance, as the electrostatic interaction is an approximation to the HF energy, and does
not include the energy of dispersion interaction of the correction term. Disabling the RCORSD and
RESDIM keywords (setting them to zero) resets the correction energy to be exactly the same as
with a standard HF-3c calculation. All FMO calculation was done using RCORSD and RESDIM.
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Table 4.6: The total, SCF and correction energy of the HF-3c method and FMO2-HF-3c interface, as
printed in the GAMESS log file on a cluster of 5 water molecules. Energies are in Hartree.

Method Etotal ESCF E3c

FMO2-HF-3c -377.559431948 -377.525994904 -0.033437044
FMO2-HF-3ca -377.559531754 -377.525995106 -0.033536648
HF-3c -377.559523999 -377.525987351 -0.033536648

a Calculations was done with RCORSD and RESDIM disabled.

4.6 Protein Structure Refinement
In this section we test the applicability of the PM6-D3H+ and the FMO2-HF-3c methods, combined
with the PCM for bulk solvation as implemented in GAMESS, to geometry optimization of large
systems such as proteins and compare to corresponding calculations performed using MOPAC.

We optimize the proteins Chignolin (1UAO) and Trp-Cage (1L2Y), which are two small proteins
with 138 and 304 atoms, respectively. The optimized semi-empirical structures are compared to
the reference structure optimized at the RHF/6-31G(d) level of theory using dispersion correction
(DFTD3) and two-body Fragment Molecular Method (FMO2). Previous calculations by Nagata
et al.[44] have shown that this level of theory yields protein structures in good agreement with
corresponding MP2 calculations. Optimized reference structures are available on GitHub[51].

The results are summarized in Table 4.7. The RMSD values are about 1 Å in the gas phase for
both PM6 methods, with PM6-DH+ being slightly smaller. The RMSD values for the structures in
solution are slightly larger compared to the corresponding gas phase values for PM6-DH+, and
slightly smaller for PM6-D3H+. For Trp-cage both PM6 methods converge in about half the number
of steps in solvent compared to gas phase. The structural overlap between FMO2-HF-3c/PCM,
PM6-D3H+/PCM and PM6-DH+/COSMO optimizations and the reference structure can been
seen in Figures 4.5 and 4.6.

MOPAC requires significantly more optimization steps than GAMESS to converge, but the overall
time for optimization of the structures is by far faster than GAMESS. The difference in CPU time
per geometry optimization step is significantly larger for optimization in bulk solvent, which indi-
cates that it is the difference in the COSMO and PCM interfaces that differ most in terms of CPU
requirements. Despite being significantly slower than PM6-DH+/COSMO, the PM6-D3H+/PCM
implementation in GAMESS is sufficiently fast to make geometry optimizations of small proteins
feasible. The FMO2-HF-3c method is more computational demanding than the PM6 based methods
and even though the Trp-Cage structure converges in 100 less steps than for the Chignolin, the time
it takes is still significantly more. However the calculations for HF-3c was only done on 8 cores, and
the FMO methods makes it possible to have great scaling over large numbers of CPUs. However,
spite being the slowest, the FMO2-HF-3c finds the structures closets to reference structure with a
RMSD of 0.5Å lower than PM6-D3H+ in solvent.

The number of imaginary frequencies computed for the optimized protein geometries (Ni) are
listed in Table 6, using the PM6 methods. Hessian calculations was not done for the FMO2-HF-3c
method. Again, the GAMESS optimization leads to significantly fewer imaginary frequencies: 3
and 2 using PM6-D3H+/PCM implemented in GAMESS, compared to 5 and 12 for Chignolin and
Trp-cage using PM6-DH+/COSMO implemented in MOPAC. In the case of GAMESS the number of
imaginary frequencies can be reduced to 0 for both proteins by decreasing the geometry optimization
criterion (OPTTOL) to 1× 10−4 aus. This required 205 and 298 additional optimization steps for
Chignolin and Trp-cage, respectively.
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(a) FMO2-HF-3c/PCM (b) PM6-D3H+/PCM

(c) PM6-DH+

Figure 4.5: Trp-cage (1L2Y) optimized with FMO2-RHF-D3/6-31G(d)/PCM (black), compared to (a)
FMO2-HF-3c/PCM (red), (b) PM6-D3H+/PCM (blue) and (c) PM6-DH+/COSMO (green). This figure
was made with PyMol[52].
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(a) FMO2-HF-3c/PCM (b) PM6-D3H+/PCM

(c) PM6-DH+

Figure 4.6: Chignolin (1UOA) optimized with FMO2-RHF-D3/6-31G(d)/PCM (black), compared to (a)
FMO2-HF-3c/PCM (red), (b) PM6-D3H+/PCM (blue) and (c) PM6-DH+/COSMO (green). This figure
was made with PyMol[52].
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Table 4.7: Optimized proteins Chignolin with 138 atoms and Trp-Cage with 304 atoms, in gasphase and
implicit solvent, using PM6-DH+, PM6-D3H+ and HF-3c with COSMO, PCM and PCM respectively
for solvent polarization. RMSD (in Å) are calculated with reference to the protein structures optimized
at FMO2-RHF-D3/6-31G(d) level of theory and FMO2-RHF-D3/6-31G(d)/PCM level for solvent effects.
Time in hours and number of optimization steps were noted. Calculations was run on a single core, except
for HF-3c which was run on 8 cores.

Solvent Gasphase
System PDB RMSD [Å] Time [h] Steps Ni

a RMSD [Å] Time [h] Steps Ni
a

PM6-DH+
Chignolin 1UAO 1.14 0.1 941 5 0.90 0.1 739 4
Trp-Cage 1L2Y 1.23 0.6 882 12 1.89 1.1 1774 2

PM6-D3H+
Chignolin 1UAO 0.56 0.6 128 3 (0) 0.98 0.2 204 0 (0)
Trp-Cage 1L2Y 0.83 5.2 174 2 (0) 1.61 5.4 481 2 (0)

FMO2-HF-3c
Chignolin 1UAO 0.83 27.7b 186 n/a 1.07 28.1b 262 n/a
Trp-Cage 1L2Y 0.35 44.1b 88 n/a 1.09 104.5b 248 n/a

a Number of imaginary frequencies for OPTTOL = 5× 10−4 (1× 10−4) aus.
b Calculations was done using 8 cores.
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The relative speedup from running in parallel in solvent is shown on Figure 4.7, where no improvement
is observed beyond 8 cores for all PM6-based methods. The timings were done on 24 core AMD
Opteron(tm) Processor 6172 @ 2.1 GHz machine for GAMESS and 8 core Intel(R) Xeon(R) CPU
X5560 @ 2.80GHz for MOPAC, because we were unable to get MOPAC running on the AMD ones.
Using the dispersion correction and hydrogen bond correction on the PM6 method in GAMESS
reduces the relative speedup from 4 to about 2. The correction terms to the PM6 energy only
runs in serial, and a modest speedup could be gained by parallelizing them. Here we note that
the poor scaling of run times with regards to the number of CPUs used is an inherent problem
for semi-empirical since the matrix diagonalization in the SCF procedure cannot be efficiently
parallelized[33].

Figure 4.7: Speedup by using multiple cores with solvent enabled for single point energy and gradient
evaluation of the proteins Trp-Cage (1L2Y) with 304 atoms and Chignolin (1UAO) with 138 atoms, using
(A) PM6 and (B) PM6-D3H+ in GAMESS and (C) PM6 and (D) PM6-DH+ in MOPAC. The evaluation
was done using implicit solvent models COSMO and PCM for respectively MOPAC and GAMESS. a The
calculations have been done using the GAMESS software. b The calculations have been done using the
MOPAC software.
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Chapter 5

Conclusion

Recent studies by Gilson[8] and Grimme and co-workers[9] have used dispersion and hydrogen
bonded corrected PM6 to compute the vibrational free energy contribution to the standard binding
free energy for host-guest systems. However, computing this vibrational free energy contribution
can be complicated by the presence of one or more imaginary frequencies in the vibrational analysis,
as these frequencies will be ignored in thermodynamic calculations, and these numerical problems
can introduce a significant error in the binding free energy.

In this thesis we address this problem by developing the PM6-D3H+ method and implementing it in
the GAMESS program. The method combines the D3 dispersion correction developed by Grimme
and co-workers with a modified version of the H+ hydrogen bond correction developed by Korth.
The HF-3c method has recently also been used to calculate binding free energy[53] with good
results. This method was also implemented in GAMESS and coupled with the fragmenting scheme
of FMO to be able to have Hartree-Fock scale to protein sized systems. Overall, the accuracy of
PM6-D3H+ and HF-3c is very similar to PM6-DH2 and PM6-DH+, with RMSD and MAD values
within 0.1 kcal/mol of one another.

The ability to reproduce the hydrogen bond lengths of the S22 and S66 dataset was lacking in the
MOPAC optimizers, but the optimization using GAMESS with the empirical corrected models,
PM6-D3H+ and HF-3c the hydrogen bond lengths was close to MP2 with a RMSD of 0.08 Å.
While the HF-3c method is much slower than PM6-D3H+, the ability to reproduce good hydrogen
bonding without having specific hydrogen bond configuration terms in the model as with H+
is impressive. Geometry optimizations of the 88 complexes result in 82, 6, 0, and 0 geometries
with 0, 1, 2, and ≥ 3 imaginary frequencies using PM6-D3H+ implemented in GAMESS, and 56,
23, 6, 3 for HF-3c in GAMESS, while the corresponding numbers for PM6-DH+ implemented in
MOPAC are 54, 17, 15, and 2. This decrease for the PM6 methods is mainly due to differences in
geometry optimization algorithms and convergence criteria. Furthermore, the numerical stability of
the method could be further increased by changing the definition of some of the dihedral angles
used in the hydrogen bond correction term. However, this appears only to be an issue for very
symmetric gasphase systems which is unlikely to occur in large heterogenous systems such as proteins.

The PM6-D3H+ method as implemented in GAMESS offers an attractive alternative to PM6-DH+
in MOPAC in cases where the LBFGS optimizer must be used and a vibrational analysis is needed,
e.g. when computing vibrational free energies. While the GAMESS implementation is up to 10
times slower for geometry optimizations of proteins in bulk solvent, it is sufficiently fast to make
geometry optimizations of small proteins practically feasible. The HF-3c method is many times
slower than PM6, however the interface with FMO makes HF-3c able to scale to large system sizes,
as the fragment scheme has an almost linear scaling with CPUs.

To further improve these methods the first step would to extend the PM6 method with d-integrals,
primarily to include Sulfur in the calculations, as most protein structures has it. This requires
some work as presently this code is not included in GAMESS, but some code from an old version
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of MNDOd by Thiel. PM6 with d-integrals is included in the source code of AMBER, which we
have presently not worked with.

To give PM6 a chance to calculate the electronic structure of full-size proteins, an interface with
FMO or similar methods is needed. Very recently an interface between FMO and the semi-empirical
methods DFTB[54] has been made by Nishimoto et al and which definitely would be interesting to
test out.

It would be interesting to see the 3c correction term from HF-3c be interface and parameterised with
PM6, as the 3c corrections does not have any HB geometric correction and would therefor likely be
better for geometry optimizations and vibrational analysis. The analytical gradients for the gCP
and SRB term of 3c are not implemented, but should be possible to derive and implement without
any troubles. The three-body gradient for the dispersion term is implemented only numerically in
GAMESS, but the analytical is available which would be needed if gradient or hessian calculations
are needed for this term. A NDDO based method with 3 corrections, all with analytical gradient
would be a highly attractive method with great scalability.

The PM6-D3H+/PCM implementation in GAMESS has recently been used for protein structure
refinement in order to predict reliable chemical shifts for the protein, as part of a Masters thesis.[55]
Protein structures were refined using GAMESS, which then was used to calculate NMR data using
Gaussian. The study shows, using hydrogen-bonded corrected schemes for structure refinement
greatly affects the accuracy of the NMR calculation.

Work to reproduce the binding study of Gilson et al[8] with CB7 is currently under way, in col-
laboration with Hari Muddana and Mike Gilson at UC San Diego. The calculations seem much
more reliable with much more stable vibrational analysis of the structures, however the calculations
using GAMESS instead of MOPAC still needs some work as the results did not correlate well with
experimental results for most of the ligands. The results of that study was out of the scope of
this thesis as still a lot of work is needed to analyse the data and the need to introduce a new
thermodynamic model similar to Gilson.

Work on enzyme reaction prediction using PM6 has been done before[56], but we are now working
on a more qualitative approach to reproduce DFT level calculations on different sized reaction
mechanism[57] with different semi-empirical methods. The idea of this project is also to have
a similar test case for bio-chemical TS as with the BEGDB, and further calculation with more
correlated method than DFT are needed, and thus the structures are made available online on
github in hope other research group will re-optimize the structure and calculated the TS and
product barriers with a method similar to CCSD(T)/CBS as with BEGDB.
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S.1 S22 and S66 Complexes optimized with OPTTOL = 0.0001

Table S1

Set ID Name
s22 08 Methanedimer
s22 12 Pyrazinedimer
s22 18 Benzeneammoniacomplex
s66 04 WaterPeptide
s66 23 AcNH2Uracila
s66 33 PyridineEthene
s66 37 CyclopentaneNeopentane
s66 38 CyclopentaneCyclopentane
s66 57 BenzenePeptideNHpi
s66 65 PyridineEthynea

s66 66 MeNH2Pyridine
a Necessary to also set ihrep to 20.
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S.2 S22 and S66 Complexes with imaginary frequencies

Table S2

Set ID Name No. i-freq
PM6a

s66 30 BenzeneEthene 1
s66 65 PyridineEthyne 1

PM6-D3H+a

s22 01 Ammoniadimer 1
s22 15 Adeninethyminecomplexstack 1
s22 20 BenzenedimerTshaped 1
s66 16 PeptideWater 1
s66 30 BenzeneEthene 1
s66 42 UracilCyclopentane 1

HF-3ca

s22 01 Ammoniadimer 1
s22 08 Methanedimer 3
s22 10 BenzeneMethanecomplex 3
s22 11 Benzenedimerparalleldisplacer 2
s22 14 Indolebenzenecomplexstack 1
s22 16 Etheneethynecomplex 1
s22 18 Benzeneammoniacomplex 1
s22 19 BenzeneHCNcomplex 2
s22 20 BenzenedimerTshaped 3
s22 21 IndolebenzeneTshapecomplex 2
s66 04 WaterPeptide 1
s66 05 MeOHMeOH 1
s66 06 MeOHMeNH2 1
s66 09 MeNH2MeOH 1
s66 13 PeptideMeOH 1
s66 14 PeptideMeNH2 1
s66 19 MeOHPyridine 1
s66 21 AcNH2AcNH2 1
s66 23 AcNH2Uracil 1
s66 24 BenzeneBenzenepipi 2
s66 27 BenzenePyridinepipi 1
s66 28 BenzeneUracilpipi 1
s66 30 BenzeneEthene 1
s66 33 PyridineEthene 1
s66 44 EthenePentane 1
s66 47 BenzeneBenzeneTS 1
s66 48 PyridinePyridineTS 1
s66 49 BenzenePyridineTS 2
s66 50 BenzeneEthyneCHpi 2
s66 53 BenzeneAcNH2NHpi 1
s66 54 BenzeneWaterOHpi 1
s66 57 BenzenePeptideNHpi 1
s66 66 MeNH2Pyridine 1
a The calculations have been done using the GAMESS

software.
b The calculations have been done using the MOPAC

software.
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Table S3

Set ID Name No. i-freq
PM6b

s22 01 Ammoniadimer 2
s22 04 Formamidedimer 2
s22 05 Uracildimerhbonded 2
s22 06 2pyridoxine2aminopyridinecomplex 3
s22 07 AdeninethymineWatsonCrickcomplex 2
s22 11 Benzenedimerparalleldisplaced 1
s22 14 Indolebenzenecomplexstack 1
s22 19 BenzeneHCNcomplex 2
s22 20 BenzenedimerTshaped 3
s66 04 WaterPeptide 1
s66 05 MeOHMeOH 1
s66 06 MeOHMeNH2 1
s66 08 MeOHWater 1
s66 09 MeNH2MeOH 1
s66 10 MeNH2MeNH2 1
s66 14 PeptideMeNH2 2
s66 16 PeptideWater 1
s66 17 UracilUracilBP 2
s66 18 WaterPyridine 1
s66 20 AcOHAcOH 1
s66 22 AcOHUracil 1
s66 23 AcNH2Uracil 2
s66 25 PyridinePyridinepipi 1
s66 28 BenzeneUracilpipi 1
s66 35 NeopentanePentane 1
s66 36 NeopentaneNeopentane 6
s66 37 CyclopentaneNeopentane 1
s66 39 BenzeneCyclopentane 1
s66 41 UracilPentane 1
s66 42 UracilCyclopentane 2
s66 44 EthenePentane 1
s66 47 BenzeneBenzeneTS 2
s66 48 PyridinePyridineTS 1
s66 49 BenzenePyridineTS 1
s66 59 EthyneWaterCHO 2
s66 63 BenzeneAcOH 1
s66 66 MeNH2Pyridine 3
a The calculations have been done using the GAMESS software.
b The calculations have been done using the MOPAC software.
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Table S4

Set ID Name No. i-freq
PM6-DH+b

s22 01 Ammoniadimer 2
s22 05 Uracildimerhbonded 1
s22 06 2pyridoxine2aminopyridinecomplex 2
s22 07 AdeninethymineWatsonCrickcomplex 1
s22 10 BenzeneMethanecomplex 3
s22 18 Benzeneammoniacomplex 2
s22 19 BenzeneHCNcomplex 2
s22 20 BenzenedimerTshaped 2
s22 21 IndolebenzeneTshapecomplex 1
s66 08 MeOHWater 2
s66 10 MeNH2MeNH2 1
s66 12 MeNH2Water 1
s66 13 PeptideMeOH 1
s66 14 PeptideMeNH2 1
s66 15 PeptidePeptide 1
s66 16 PeptideWater 2
s66 17 UracilUracilBP 2
s66 19 MeOHPyridine 1
s66 20 AcOHAcOH 2
s66 22 AcOHUracil 1
s66 23 AcNH2Uracil 2
s66 24 BenzeneBenzenepipi 1
s66 25 PyridinePyridinepipi 2
s66 36 NeopentaneNeopentane 9
s66 42 UracilCyclopentane 2
s66 45 EthynePentane 1
s66 46 PeptidePentane 1
s66 47 BenzeneBenzeneTS 1
s66 48 PyridinePyridineTS 1
s66 49 BenzenePyridineTS 2
s66 52 BenzeneAcOHOHpi 2
s66 55 BenzeneMeOHOHpi 1
s66 66 MeNH2Pyridine 1
a The calculations have been done using the GAMESS software.
b The calculations have been done using the MOPAC software.
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S.3 Selected Complexes from JSCH-2005

Table S5

BEGDB ID Name
1018 G...U wobble
1017 I...C WC
1020 U...U
1021 U...U pl
1084 A...T S1
1014 A...T WC
1082 G...C S
1012 G...C WC(1)
1015 mA...mT H
1085 mA...mT S
1083 mG...mC S
1013 mG...mC WC
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S.4 GAMESS Header examples

PM6-D3H+ Optimization and vibrational analysis

1 $basis
2 gbasis =PM6 -D3H+ ! Use the PM6 method w/ D3 and H+ correction
3 $end
4

5 $contrl
6 scftyp =RHF ! Use Restricted Hartree -fock
7 icharg =0 ! Total molecule charge
8 runtyp = optimize ! Do a geometry optimization
9 $end

10

11 $scf
12 npunch =1 ! less output during SCF iterations
13 $end
14

15 $statpt
16 opttol =5.0e-4 ! convergence critria
17 nstep =500 ! Maximum no. of steps
18

19 hssend =.T. ! do hessian calculation after optimization
20 $end
21

22 $force
23 nvib =2 ! force calculation using centered finite difference

scheme
24 method = seminum ! Use semi - numerical scheme for force calculation
25 $end
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PM6-D3H+/PCM Optimization and vibrational analysis

1 $basis
2 gbasis =PM6 -D3H+ ! Use the PM6 method w/ D3 and H+ correction
3 $end
4

5 $contrl
6 scftyp =RHF ! Use Restricted Hartree -fock
7 icharg =0 ! Total molecule charge
8 runtyp = optimize ! Do a geometry optimization
9 $end

10

11 $scf
12 npunch =1 ! less output during SCF iterations
13 $end
14

15 $statpt
16 opttol =5.0e-4 ! convergence critria
17 nstep =500 ! Maximum no. of steps
18

19 hssend =.T. ! do hessian calculation after optimization
20 $end
21

22 $force
23 nvib =2 ! force calculation using centered finite difference

scheme
24 method = seminum ! Use semi - numerical scheme for force calculation
25 $end
26

27 ! Solvent settings
28 $pcm
29 solvnt =WATER
30 mxts =15000 ! The maximum number of tesserae
31 $end
32

33 $tescav
34 mthall =4 ! Use the FIXPVA scheme
35 ntsall =60 ! The density of tesserae
36 $end
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PM6-D3H+/PCM Optimization GAMESS header w/ convergence help

1 $basis
2 gbasis =PM6 -D3H+ ! Use the PM6 method w/ D3 and H+ correction
3 $end
4

5 $contrl
6 scftyp =RHF ! Use Restricted Hartree -fock
7 icharg =0 ! Total molecule charge
8 runtyp = optimize ! Do a geometry optimization
9 $end

10

11 $scf
12 npunch =1 ! less output during SCF iterations
13 $end
14

15 $statpt
16 opttol =1.0e-4 ! convergence critria
17 nstep =500 ! Maximum no. of steps
18

19 hssend =.T. ! do hessian calculation after optimization
20

21 ihrep =20 ! Update Hessian every nth step
22 projct =.F. ! flag to eliminate translation and rotational

degress of freedom
23 $end
24

25 $force
26 nvib =2 ! force calculation using centered finite difference

scheme
27 method = seminum ! Use semi - numerical scheme for force calculation
28 $end
29

30 ! Solvent settings
31 $pcm
32 solvnt =WATER
33 mxts =15000 ! The maximum number of tesserae
34 $end
35

36 $tescav
37 mthall =4 ! Use the FIXPVA scheme
38 ntsall =60 ! The density of tesserae
39 $end
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