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The selenium content of SEPP1 versus selenium requirements

in vertebrates

Sam Penglase, Kristin Hamre, St�le Ellingsen

Selenoprotein P (SEPP1) distributes selenium (Se) throughout the body via the circulatory

system. The Se content of SEPP1 varies from 7 to 18 Se atoms depending on the species,

but the reason for this variation remains unclear. Herein we provide evidence that

vertebrate SEPP1 Sec content correlates positively with Se requirements (R2=0.88). As the

Se content of full length SEPP1 is genetically determined, this presents a unique case

where a nutrient requirement can be predicted based on genomic sequence information.
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Abstract

Selenoprotein  P  (SEPP1)  distributes  selenium  (Se)  throughout  the  body  via  the  circulatory

system. The Se content of SEPP1 varies from 7 to 18 Se atoms depending on the species, but the

reason for this variation remains unclear. Herein we provide evidence that vertebrate SEPP1 Sec

content correlates positively with Se requirements (R2=0.88). As the Se content of full length

SEPP1 is genetically determined, this presents a unique case where a nutrient requirement can be

predicted based on genomic sequence information.
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Introduction

Selenium (Se) is an essential trace element required for the selenocysteine (Sec) residues inserted

during  mRNA translation  into  Se  dependent  proteins,  termed selenoproteins  (Brigelius-Flohé

1999). The number of selenoprotein coding genes differs among vertebrate species, ranging from

the 24 to 25 found in mammals up to the 35 to 38 found in bony fish. Most selenoproteins are

redox enzymes containing a single Sec residue involved in catalytic activity (Papp et al., 2007).

An exception is  the Se rich glycoprotein,  selenoprotein P (SEPP1; aka SeP, SEPP, SEPP1a),

which in vertebrates contains 7 to 18 Sec residues, depending on the species (Lobanov et al.,

2008). The high Se content of SEPP1 is thought to facilitate Se distribution throughout the body.

In mammals, the liver is a major site of SEPP1 expression, where it is synthesised utilising food

derived Se. Hepatic SEPP1 is then secreted into the blood plasma (Kato et  al.,  1992), where

SEPP1 accounts for between 40 and 80% of the total Se (Hill et al., 1996; Hill et al., 2007; Read

et al., 1990). Tissues utilise a combination of receptor mediated endocytosis and pinocytosis to

obtain  SEPP1  from  the  plasma,  where  it  is  then  catabolised  to  release  Se  for  de  nova

selenoprotein synthesis (Burk and Hill 2009; Burk et al., 2013). 

Several features of SEPP1 are conserved among vertebrates including, i) a single N-terminal

domain  Sec  residue present  within  a  thioredoxin  like  motif  (UXXC,  where  U is  Sec),  ii)  a

histidine rich region in the mid region of the protein ), and iii) an  apolipoprotein  E receptor-2

(APOER2; aka LRP8) binding site followed by five Sec residues in proximity to the C-terminal

(Figure  1)  (Lobanov  et  al.,  2008).  APOER2  is  widely  expressed  in  human  tissues

(www.humanproteomemap.org; (Kim et al., 2014). APOER2 facilitated uptake of plasma SEPP1

is an essential  (testes) or important (brain and foetus) pathway in some, but not all  (muscle,

kidney, liver or whole body) tissues for maintaining Se homeostasis  in vivo (Burk et al., 2007;

Burk et al., 2013; Hill et al., 2012; Olson et al., 2007). In contrast, the histidine rich regions of
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SEPP1  presumably  interact  with  multiple  receptors,  including  megalin  (LRP2).  A megalin

facilitated uptake pathway minimises excretion of Se by binding SEPP1 fragments in the kidney

(Kurokawa et al., 2014; Olson et al., 2008) and plays a role in maintaining tissue Se homeostasis

(Chiu  -  Ugalde et al., 2010;  Steinbrenner et al., 2006). Additonally, the histidine rich regions are

associated with the heparin binding properties of SEPP1. It is postulated that the heparin binding

properties of SEPP1 allow the N-terminal Sec of SEPP1 to provide antioxidant protection for

endothelial cells at sites of inflammation (Hondal et al., 2001; Saito et al., 2004).

 

In contrast, other domains in SEPP1 have low conservation among species. For instance, single

base mutations in genomes have led to many cases of Sec to cysteine (Cys) substitution within

the  vertebrate  SEPP1  C-terminal  domain  upstream and  including  the  APOER2  binding  site

(Figure 1) (Lobanov et al., 2008). The reason why Sec content plasticity is observed only within

this region of SEPP1 is unclear, but it is responsible for most of the variation between the SEPP1

Sec content among vertebrates (Lobanov et al.,  2008). Furthermore,  why SEPP1 Sec content

differs among species also remains unknown. Several lines of evidence suggest vertebrate SEPP1

Sec number may be a direct function of Se utilisation. For instance, vertebrate SEPP1 Sec content

correlates  positively with selenoproteome size,  tissue Se levels,  and Se bioavailability in  the

environment (Lobanov et al., 2008). 

If a direct relationship between SEPP1 Sec content and Se requirements exists, the SEPP1 Sec

content of a species could predict its Se requirements, or vice versa. In doing so, this would

provide  a  new insight  into  how the  genome effects  nutrient  utilisation.  Additionally, such  a

relationship would allow considerable scope for implementing the 3R´s (replace, reduce, refine).

For example, this relationship would indicate the dietary Se levels to focus on when investigating

the Se requirements for novel species. Such knowledge would reduce both the number of animals

required and the risk of  exposure to Se levels that  may compromise animal welfare in  such

experiments.

44

45

46

47

48

49

50
51
52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.784v1 | CC-BY 4.0 Open Access | rec: 11 Jan 2015, publ: 11 Jan 2015

P
re
P
ri
n
ts



In the following work,  we compared the Sec content  of  mammalian and bony fish SEPP1’s

predicted in silico with their Se requirements determined in vivo. We found a strong positive non-

linear correlation (0.88) between the two, suggesting Se requirements can be predicted from the

Sepp1 gene sequence.  The correlation was dictated by the Sec content  within the C-terminal

domain  upstream and including the  APOER2 binding site.  The model  was  limited,  whereby

further  analysis  suggested it  could not  predict  Se requirements  in  species whose SEPP1 Sec

content was >16 residues, as found in many bony fish species. The predicted Se requirements for

vertebrate species based on their SEPP1 Sec content are provided. 
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Materials and methods

The  in silico  predicted species specific Sec content of SEPP1 (SEPP1a in fish) were obtained

from Lobanov et al. (2008), the open access selenoprotein database (selenodb.org; (Romagné et

al.,  2014))  or  by  analysing  genomic  Sepp1 sequences  (NCBI)  for  Sec  content

(http://seblastian.crg.es/), an open access online software for this purpose (Mariotti et al., 2013).

The  SEPP1 Sec  content  of  five  bony fish  species;  loach  (Paramisgurnus  dabryanus),  cobia

(Rachycentron  canadum),  grouper  (Epinephelus  malabaricus),  gibel  carp  (Carassius  auratus

gibelio) and yellowtail kingfish (Seriola lalandi); were assumed to be within the 15 to 17 residue

range found for fish in general (Lobanov et al., 2008)(See Supp. Table 2). The species specific Se

requirement data were obtained from published studies and from the National Research Council

of the USA (NRC) nutrient requirement reports (Gatlin and Wilson 1984; Han et al., 2011; Hao et

al., 2014; Hilton et al., 1980; Jensen and Pallauf 2008; Le and Fotedar 2013; Lei et al., 1998; Lin

and Shiau 2005;  Liu et al., 2010;  NRC 1963;  1985;  1995;  1997;  2011;  Penglase et al., 2014;

Sunde et al., 2009; Wedekind et al., 2004; Weiss et al., 1996; 1997). See Supp. Table 1 for further

information  regarding  these  animal  Se  requirement  studies.  Where  multiple  Se  requirement

studies for a species were available, the dietary Se requirements to fulfil the requirements of the

actively growing juvenile stage was selected. Data were analysed in GraphPad Prism (GraphPad

Software, San Diego, CA, USA, V. 5.04). Data were fitted with a horizontal line (null hypothesis)

and then tested against more complex models in the following sequence; first order polynomial,

second order polynomial and five parameter logistic equation (5PL) asymmetric sigmoidal; until

the simplest model that explained the data was found (p<0.05). Model parameters were optimised

to reflect current knowledge; vertebrates with seven Sec SEPP1; guinea pigs (Cavia  porcellus)

and naked mole rats (Heterocephalus glaber); have a Se requirement (Jensen and Pallauf 2008;

Kasaikina et al., 2011). Thus the y intercept (no Se requirement) of models was constrained to ≤6
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Sec  for  whole  SEPP1 (Figure  2).  Other  vertebrate  classes  were  excluded  from the  analyses

because of limited data. 

Results and Discussion

The selenocysteine content of Selenoprotein P correlates strongly with selenium requirements.

The Sec content in SEPP1 were identified for a total of 11 species; three bony fish and eight

mammals; for which the Se requirements are also published (Supp. Table 1). Using this data, a

positive non-linear correlation (R2=0.88) was found between the Se requirements and SEPP1 Sec

number (Figure 2). Similarly, a positive correlation also occurs between SEPP1 Sec content and

selenoprotein number in vertebrates (Kryukov and Gladyshev 2000;  Lobanov et al., 2008). All

fish annotated to date have SEPP1 (aka SEPP1a in fish) with 15 to 17 Sec residues (See Supp.

Table 2). Based on this, an additional five bony fish species with known Se requirements were

assumed to have SEPP1’s with 17 Sec residues and added to the data set, which was then re-

analysed.  This  resulted  in  an  asymmetric  sigmoidal  trend with a  plateau  at  17.0  (Figure  2),

suggesting that a species SEPP1 is only useful for predicting Se requirements prior to this plateau

(≤16 Sec residues).  When a  species  SEPP1 has  >16 Sec residues,  as  is  found in  many fish

species, the curve predicts a minimum requirement (0.24 mg/Se kg dry matter (DM)) but not a

maximum (there is no correlation between SEPP1 Sec content and Se requirements above this

level). Modelling the data with alternative SEPP1 Sec content (15 or 16 Sec) for these five fish

species shifts  the plateau height towards those values,  but retains the general features of the

model (data not shown). 

We then used this regression model (Figure 2) to predict the Se requirements of a species based

on its SEPP1 Sec residue number predicted  in silico (Table 1). As discussed before, there is a

broad range of Se requirements found for bony fish that occurs in absence of an equally large

distribution  of  SEPP1 Sec content.  The reason  for  this  occurrence  is  unknown.  Perhaps  the
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relatively straightforward single base mutations of Sec to Cys codons (Lobanov et al.,  2008)

allowed mammalian SEPP1 Sec content to decrease in comparison to the ancestral vertebrate

SEPP1 and in line  with Se requirements,  while  fish utilised other  regulatory mechanisms to

increase Se supply to peripheral tissues. For example Sepp1 mRNA expression is elevated in fish,

particularly in the kidneys,  in comparison to mammals (Lobanov et al.,  2008).  This suggests

plasma SEPP1 in  fish  may be replenished by SEPP1 synthesised  from Se scavenged in  the

kidneys. As expected, the model (Figure 2) generally reflects the Se requirements of the species

used to construct it, i.e. rat Se requirements are 0.1 mg Se/kg DM (Weiss et al., 1996; 1997) and

it has a SEPP1 Sec content of 10 (Supp. Table 1), falling within the 0.08 ± 0.02 range predicted

by the model (Table 1). 

A hypothesis for the Sec number plasticity or conservation in different domains of vertebrate

SEPP1.

As discussed, most of the difference in the SEPP1 Sec content between species is a result of

differences in the Sec content found upstream and including the APOER2 binding site within the

C-domain of SEPP1 (Figure 1 and Supp. Table 2). Thus as expected, when we analysed the Sec

content in this region in relation to a species Se requirement (Supp. Figure 1), we found a similar

positive correlation as found for full length SEPP1 and Se requirements (Figure 2). Recently it

was found that SEPP1 Sec residues closer to the C-terminal are translated with greater efficiency

than  those  towards  the  N-terminal  (Shetty  et  al.,  2014).  Premature  termination  of  SEPP1

translation at Sec codons appears to be a common event. For instance, four rat SEPP1 isoforms

have been identified in plasma, whereby in addition to the full length protein, shorter variants are

synthesised when translation is terminated at the second, third or seventh Sec codon (Ma et al.,

2002). Thus, on average each plasma SEPP1 in mice contains 5 Sec residues, not the 10 Sec

residues expected if only the full length protein is present (Hill et al., 2007). As a consequence of
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this, a proportion of translated SEPP1 proteins will not contain the APOER2 binding site (Figure

1).

Taking  in  mind  the  above,  we  first  hypothesise  that  decreases  in  Se  requirements  are  an

evolutionary adaption to Se availability. For instance, guinea pigs and naked mole rats both have

low Se requirements (Jensen and Pallauf 2008; Kasaikina et al., 2011), and inhabit the Andes or

East Africa respectively, both regions of low Se status (FAO 1992; Rachel et al., 2013). Secondly,

we hypothesise that the Se requirements of the brain among species is similar on a weight basis,

despite differences in the Se requirements of the whole body. For instance, compared to mice,

naked mole rats have lower levels (-30 to -75%) of Se in most tissues except the brain (Kasaikina

et al., 2011). And lastly, low Se availability can stall translation of selenoproteins at Sec codons

(Weiss Sachdev and Sunde 2001), and perhaps results in the truncated forms of SEPP1 translated

in vivo. We therefore hypothesise that Sec to Cys substitutions in SEPP1 occurred specifically in

the region downstream and including the APOER2 binding site as it aids the translation of full

length protein under Se limiting conditions, such as those faced by naked mole rats and guinea

pigs. The subsequent retention of the APOER2 binding site would allow the continuation of a

controlled Se supply to critical organs utilising APOER2 mediated uptake of SEPP1, such as the

brain. 

Conclusion

The Sec  content  of  SEPP1 correlates  with  Se  requirements  in  vertebrates  when Sec  residue

number is ≤16. There was no correlation between SEPP1 Sec content and Se requirements for

species with SEPP1’s with >16 Sec residues, as is the case for many bony fish species. However,

for those species with SEPP1’s with >16 Sec residues, a minimum Se requirement of 0.24 mg

Se/kg DM was  predicted.  This  study suggests  that  genome evolution  is  affected  directly  by
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nutrient availability in the environment, and provides novel evidence that the genomic sequence

can be used to predict a nutrient requirement.
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Table 1(on next page)

The Se requirements (mg Se/kg DM) predicted by the model (Figure 2) versus those

determined in feeding trials for vertebrates as the selenocysteine content (Sec no.) of

selenoprotein P (SEPP1) increases.

Predicted Se requirement data are mean � 95% confidence interval. 1 mg Se/kg feed DM,

mean (� 95% confidence interval, when shown) 2 Further information on the representative

species used for the determined Se requirement data can be found in Supp. Table 1. 3 There

are currently no known species with full length SEPP1 containing 6 Sec residues.
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Table 1.  Table of the Se requirements (mg Se/kg DM) predicted by the model (Figure 2)

versus those determined in feeding trials for vertebrates as the selenocysteine content (Sec

no.) of selenoprotein P (SEPP1) increases. Predicted Se requirement data are mean ± 95%

confidence interval.

Class Sec no. Predicted Se

requirement1

Determined Se

requirement1

Representative

species2

? 3 6 0.02 ± 0.03 ND -

M
am

m
al

s

7 0.04 ± 0.03 0.06 Guinea pig

8 0.05 ± 0.02 ND -

9 0.07 ± 0.02 ND -

10 0.08 ± 0.02 0.10 Rat

11 0.10 ± 0.02 ND -

12 0.12 ± 0.03 0.10 Cow

13 0.14 ± 0.04 0.10 Horse

14 0.17 ± 0.05 0.20 Pig

15 0.20 ± 0.06 0.21 Dog

Bony

fish

16 0.24 ± 0.06 0.25 Catfish

17+ >0.24 0.30 Zebrafish

1 mg Se/kg feed DM, mean (± 95% confidence interval, when shown) 
2 Further information on the representative species used for the determined Se requirement

data can be found in Supp. Table 1. 
3 There are currently no known species with full length SEPP1 containing 6 Sec residues.
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1

The receptor binding sites and selenocysteine (Sec) residues of vertebrate

selenoprotein P (SEPP1)

From the N-terminal side, SEPP1 is comprised of a conserved N-terminal domain Sec residue,

followed by several proposed heparin binding sites which include a histidine rich region.

Following this, there is the shorter Sec residue rich C-terminal domain which contains an

APOER2 binding site. The C-terminal domain can be further divided into two subdomains. The

first subdomain exists on the N-terminal side of the APOER2 binding site and contains a

region with a low conservation of Sec residues among vertebrates (mainly due to Sec to

cysteine (Cys) conversions ( Lobanov et al., 2008 ) ). The second subdomain is located

downstream of the APOER2 binding site and contains five Sec residues that are conserved

across vertebrate species. Several species of amphibians also have an additional Sec residue

in the C-terminal end of this region ( Lobanov et al., 2008 ) . The proposed heparin binding

sites/histidine rich regions are based on rat SEPP1 found by Hondal et al. ( 2001 ) . Similar

histidine rich regions are found in the SEPP1�s of other species (selenodb.org). Cys residues

outside the C-terminal domain are not shown. Red lines = conserved Sec residues; Black

lines = Cys or Sec residues; Green lines = Cys/Sec residues within the APOER2 binding site;

Green box grids = proposed heparin binding sites.
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2

The relationship between the selenocysteine content of selenoprotein P and selenium

requirements in vertebrates.

The solid line with the solid circles (�) is the best fit model for the SEPP1 Sec content versus

Se requirements (mg Se/kg dry matter (DM)) from 11 species with representatives from the

mammalian and bony fish classes where the genome sequences were available (Second

order polynomial, R2 = 0.88, y = 4.3 + 78x - 122x2). The broken line represents the same

data modelled with an additional five bony fish species with known Se requirement levels

(�), but unannotated genomes. SEPP1 Sec content in these fish were assumed to be within

the likely range of 15-17 Sec residues found for fish in general (5PL Asymmetric sigmoidal, R2

= 0.92, y = 5.13 + (11.9/((1+10((-1.6410-X) � 6.391))9.611^10)). Shaded boxes group animals within

classes. The X axis is log transformed.
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