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2	
  

SUMMARY 1	
  

Ecological variables such as species richness (S) and total abundance (N) can strongly 2	
  

influence ecological patterns. For example, the general form of the species abundance 3	
  

distribution (SAD) can often be explained by the majority of possible forms having the same N 4	
  

and S, i.e. the SAD feasible set. The feasible set reveals how variables determine observable 5	
  

variation, whether empirical patterns are exceptional to the majority of possible forms, and 6	
  

provides a constraint-based explanation for the ubiquity of hollow-curve SADs in nature. 7	
  

However, use of the feasible set has been limited to inefficient sampling algorithms that prevent 8	
  

large ecological communities and ecologically realistic combinations of N and S from being 9	
  

examined. This is the primary hindrance to using this otherwise novel perspective and theoretical 10	
  

framework. We developed efficient computational algorithms to generate random samples of the 11	
  

feasible set for the SAD and similar discrete distributions of abundance, including those that 12	
  

allow for zero-values, e.g., absences. We provide Python and R based implementations of our 13	
  

algorithms and tools for testing and using them. Our algorithms are often several orders of 14	
  

magnitude faster than a long-standing and recently used approach. This greatly increases the size 15	
  

and diversity of communities that can be examined with the feasible set approach and thus 16	
  

advances progress using constraint-based approaches to decipher ecological patterns.  17	
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3	
  

The species abundance distribution (SAD) is an important ecological pattern that 1	
  

characterizes the interspecific pattern of commonness and rarity across a community (Brown 2	
  

1995; Rosenzweig 2002; Blackburn & Gaston 2003). The SAD has been used to gain insight 3	
  

into the underlying mechanisms shaping communities, and the ability to predict the shape of the 4	
  

SAD has served as a primary basis for comparing biodiversity theories (e.g. MacArthur & 5	
  

Wilson 1967; Scudo & Ziegler 1978; May 1981; Hubbell 2001; Harte 2011). Though theoretical 6	
  

explanations of the SAD are underpinned by a diverse array of processes such as colonization 7	
  

and dispersal limitation, niche differentiation, metacommunity dynamics, and stochastic 8	
  

population dynamics (e.g. Hubbell 2001, Leibold et al. 2004, McGill 2010), it has become 9	
  

increasingly clear that general variables such as total community abundance (N) and species 10	
  

richness (S) have strong constraining influences on the form of the SAD, regardless of the 11	
  

mechanisms operating in the community (Harte et al. 2008; McGlinn & Hurlbert 2012; Supp et 12	
  

al. 2012; White et al. 2012, Locey & White 2013). For example, Locey and White (2013) 13	
  

demonstrated that most of the possible shapes of the SAD having the same N and S, i.e., the 14	
  

SAD feasible set, capture the majority of variation in empirical SADs.  15	
  

The SAD feasible set reveals how N and S numerically constrain observable variation in 16	
  

the form of the SAD and whether empirical SADs are exceptional to or representative of the 17	
  

majority of possible SAD shapes (e.g. rank-abundance curves, frequency distributions) for a 18	
  

given set of constraint variables (e.g. N, S). Likewise, the general properties of the feasible set 19	
  

reveal simple explanations for common patterns. For example, the vast majority of possible 20	
  

shapes of the SAD for ecologically realistic values of the N and S are hollow-curves, i.e., 21	
  

frequency distribution revealing a trend of decreasing frequency with increasing abundance 22	
  

classes. This provides a simple and straightforward first-principle explanation for the ubiquity of 23	
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4	
  

hollow-curve SADs in nature. Though only the SAD has been examined using this type of 1	
  

feasible set approach (i.e. all possible forms of a pattern), Locey & White (2013) suggest that 2	
  

other ecological patterns could also be examined in the context of their feasible sets. However, 3	
  

there are computational challenges to using their approach. 4	
  

Feasible sets can be immense and enumerating them can be untenable. However, small 5	
  

random samples can be used to characterize the center of the feasible set (i.e., average form) as 6	
  

well as the distribution of statistical features (e.g., evenness, diversity) within it. Locey & White 7	
  

(2013) took a conceptually simple approach to sampling the SAD feasible set, an approach 8	
  

known as integer partitioning. This approach is based on the fact that there are a limited number 9	
  

of unordered ways that the abundances of S unlabeled species can sum to a total abundance of N 10	
  

unlabeled individuals. These unordered configurations of integers are called integer partitions 11	
  

(Bóna 2006). For example, the feasible set of integer partitions for N = 6 and S = 3 is: {(4, 1, 1), 12	
  

(3, 2, 1), (2, 2, 2)}, where differently ordered configurations having the same integer values (e.g. 13	
  

(4, 1, 1), (1, 1, 4), (1, 4, 1)) represent the same integer partition (4, 1, 1). Important to note, is 14	
  

that each integer partition represents a unique rank-abundance curve, e.g., (4, 1, 1) that 15	
  

corresponds one-to-one with a unique frequency distribution, e.g., (one 4 and two 1’s). 	
  16	
  

Use of integer partitioning to randomly sample the feasible set allows the feasible space to 17	
  

be characterized without generating all possible forms. However, all published partitioning 18	
  

algorithms sample the feasible set only with regards to the total, N. In this way, all partitions of 19	
  

N have the same probability of being drawn, regardless of the number of elements S. This means 20	
  

that randomly sampling the feasible set for a given N and S, requires generating partitions 21	
  

according to N and then rejecting those not having S elements, often resulting in impractically 22	
  

high rejection rates. For example, randomly generating one partition for N = 1000 and S = 10 23	
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5	
  

requires drawing from a feasible set of nearly 2.4x1031 partitions, one of the roughly 8.9x1014 1	
  

having 10 elements (a probability of nearly 3.7x10-17); a practically impossible task.  2	
  

Another challenge in applying integer partitioning to the study of feasible sets is that some 3	
  

ecological patterns of abundance include parts with zero values. One example is the species 4	
  

spatial abundance distribution (SSAD) describing the frequency with which individuals of a 5	
  

single species occupy areas within a landscape (Brown et al. 1995; Harte et al. 2008; Haegeman 6	
  

& Etienne 2010; Harte 2011). The SSAD reflects the spatially implicit pattern of aggregation of 7	
  

individuals across a landscape and is mechanistically linked to other ecological patterns (Brown 8	
  

et al. 1995; Harte 2011). In the SSAD, individuals can be absent from a number of areas, 9	
  

meaning that there are some areas with zero individuals. Because integer partitions per se do not 10	
  

include zeros, integer partitioning methods need to be modified to examine the SSAD feasible 11	
  

set and potentially other patterns that include zeros.	
  12	
  

Here, we present algorithms that greatly increase the efficiency of sampling the SAD 13	
  

feasible set as well as feasible sets that include zeros. We explain each algorithm in concept and 14	
  

develop Python and R based packages to implement them. We test each algorithm for sampling 15	
  

bias and for speed against the method of Locey & White (2013). To reveal the practical gains of 16	
  

these new algorithms, we reanalyze the SAD datasets of Locey & White (2013), one of the 17	
  

largest and most diverse compilations of species abundance data, wherein it took more than 18	
  

10000 compute hours to examine only 60% of the available data (9562 of 15950 SADs). Our 19	
  

new algorithms allow us to examine a larger portion of the data in less than one tenth the time. 20	
  

Our work expands the feasible set approach to values of N and S that were previously untenable 21	
  

and to new patterns of abundance, thus advancing the front of a numerical constraint-based 22	
  

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.78v2 | CC-BY 3.0 Open Access | rec: 30 Aug 2014, publ: 30 Aug 2014

P
re
P
rin

ts



6	
  

approach to understanding and quantifying ecological patterns (Pueyo et al. 2007, Haegeman & 1	
  

Loreau 2008, Harte et al. 2008, Haegeman & Etienne 2010, Harte 2011, Locey & White 2013). 2	
  

 3	
  

METHODS	
  4	
  

 We develop integer partitioning algorithms that generate random samples of feasible 5	
  

sets for discrete distributions of abundance that are defined by a total N and composed of S 6	
  

elements, where both N and S are positive integers. Integer partitioning is a mature field of 7	
  

mathematics and algorithms for generating random partitions of N (e.g. RANPAR of Nijenhuis 8	
  

& Wilf 1978) are often implemented in mathematical environments (e.g. Sage, Maple, 9	
  

Mathematica). However, these algorithms and software do not randomly partition N into 10	
  

exactly S elements. Instead, they partition N into a random number of elements ranging from 1 11	
  

to N, and then maybe, do this many times until a match to S is found. This requires 12	
  

unreasonably high rejection rates for ecologically realistic combinations of N and S. Here, we 13	
  

develop an approach to generate random partitions of N having exactly S elements. We begin 14	
  

by noting a basic integer partitioning relationship:  15	
  

1.) For every integer N there are q(N, S) partitions having S or less elements as well as q(N, 16	
  

S) partitions having S or less as the first element (Bóna 2006). 17	
  

Computationally the function q(N, S) is given by the recurrence relation: 18	
  

𝑞 𝑛, 𝑘 =   𝑞 𝑛, 𝑘 − 1 + 𝑞(𝑛 − 𝑘, 𝑘) 

where the number of partitions of n having k or less elements equals the sum of the number of 19	
  

partitions of n having k - 1 or less elements and the number of partitions n - k having k or less 20	
  

elements and where, by convention, q(n, 0) = 0, q(1, k) = 1. 21	
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7	
  

To better understand this relationship consider the five partitions of the integer 4: {(4), (3, 1	
  

1), (2, 2), (2, 1, 1), (1, 1, 1, 1)}. Each partition can be represented by rows of dots called Ferrers 2	
  

diagrams, where each row represents an element in the partition (Fig 1). The Ferrers diagrams 3	
  

(Fig1) demonstrate that the number of partitions of N = 4 with, say, S = 3 or less as elements 4	
  

equals the number of partitions of 4 having 3 or less elements. This raises another important 5	
  

relationship: each partition of N with S elements corresponds to exactly one partition of N with S 6	
  

as the largest element (Bóna 2006). Rotating a partition about its upper left to lower right 7	
  

diagonal reveals this (Fig 1). In some cases, rotating a partition about its diagonal produces the 8	
  

same partition, e.g. (2, 2) is a self-conjugate. This is a classic proof by bijection (one-to-one 9	
  

correspondence) for the above relationship. As a result, the value of the first element in a 10	
  

partition always determines the number of elements in its conjugate (Bóna 2006). We will use 11	
  

this information to generate random partitions of N having exactly S elements. 12	
  

Here, we describe how to build a random partition of N having S as the largest element  13	
  

element-by-element, and finally conjugate the resulting partition to produce a random partition 14	
  

of N having S elements. This is a far simpler problem than directly generating a random 15	
  

partition of N having S elements, which seems intractable by the lack of solutions for it in 16	
  

combinatorial texts (including Bóna 2006), peer-reviewed research, preprints on Arxiv.org, and 17	
  

the lack of any functions for it in well-known mathematical software such as Sage, Matlab, 18	
  

Maple, and Mathematica. Now, because we know that we are only interested in partitions of N 19	
  

having S as the largest element, we can simply let the first element of our random partition be 20	
  

S. The conjugate will still be any one of the possible partitions of N having S elements. Having 21	
  

determined what the first part of our partition is, we then subtract S from N because the value 22	
  

of S is now part of the partition we are building. From here, we can generate a random partition 23	
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8	
  

for the reduced value of N, where the value of the first element is no greater than S. We can do 1	
  

this, element-by-element, by iteratively applying relationship (1). 2	
  

Here, we will find the first element of a randomly chosen partition of N having S or less 3	
  

as the largest element. We begin by choosing a whole number x at random ranging from 1 to 4	
  

q(N, S) to represent any one of the q(N, S) partitions of N having S or less as the first element. 5	
  

We then find the value of first element of the partition by ‘sandwiching’ it. First, we know 6	
  

there are at least x partitions of N having S or less as the first element, i.e., x ≤ q(N, S). Second, 7	
  

unless x = 1 (whereby the partition is just a vector of 1’s), x must be greater than some 8	
  

candidate value C for which there are q(N, C) partitions of N having C or less as the first 9	
  

element. Putting these two statements together, there must be a candidate value C that violates 10	
  

the inequality: q(N, C) < x ≤ q(N, S). In this way, we can find the value of the next element by 11	
  

trying values of C. Once we find the value, we append it to our partition and then decrease x by 12	
  

q(N, C – 1) and N by C. Iterating, we then find the value of the first element for our new 13	
  

combination of (x – q(N, C – 1)) and (N – C) by exploring candidate values no greater than C. 14	
  

Repeating this process sequentially builds the partition until N = 0 at which point the sum of 15	
  

the partition will equal the original value of N (Fig 1). Finally, we conjugate the partition and 16	
  

because it already has S as the first element, we produce a random partition of N (i.e. all are 17	
  

equally likely) having exactly S elements. 18	
  

The question remains as to which candidate value to start with and how to proceed to 19	
  

different values. We could start with the smallest possible value of the largest part and take a 20	
  

‘bottom-up’ approach, or the largest possible value and take a ‘top-down’ approach, or even 21	
  

choose a candidate value at random and use a ‘divide-and-conquer’ method. However, in the 22	
  

event that S is relatively small compared to N, e.g., by two or three orders of magnitude, these 23	
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9	
  

approaches would be inefficient because they would first generate a partition of, say, N = 1	
  

200000 having S = 300 as the first element, but having as many as 199701 elements! Clearly 2	
  

building the partition one element at a time would be inefficient in this case. 3	
  

Here, we provide an alternative and, likewise, novel algorithm to building the partition to 4	
  

obtain a random partition of N having S elements. This is not the primary method of sampling a 5	
  

feasible set because it is not always the most efficient approach due to the computational 6	
  

overhead. This method builds a partition of N having exactly S elements using multiples of 7	
  

integers – the ‘multiplicity approach’. Instead of finding the value of the first element, appending 8	
  

it, and moving on to find the next value, we can instead ask how many times does the particular 9	
  

value occur, e.g. 1 occurs twice in the partition (2, 1, 1). We can start with the smallest possible 10	
  

multiple (i.e. m = 1) and ask whether x is less than or equal to the number of partitions of N – 11	
  

S*m having less than S as the first part. This is because the set of partitions of N having a number 12	
  

of S’s equal to m actually contains the set of partitions of N – S*m having less than S as the first 13	
  

part (see Appendix 1). We can then increase m by one until x ≤ q(N – S*m, S), at which point we 14	
  

will have found the corresponding multiple of k. Note again, values of N, S, and x are reduced as 15	
  

the partition is built, lest we never stop building it. 16	
  

 17	
  

Random partitions with some elements having zero values 18	
  

The above algorithms address distributions having positive values, such as the distribution 19	
  

of abundance among species (SAD). In contrast, some ecological patterns include zero values 20	
  

(e.g. absences). One example is the species spatial abundance distribution (SSAD), a frequency 21	
  

distribution that characterizes the number of quadrats, cells, or areas containing a given 22	
  

abundance of a species (Brown et al. 1995; Haegeman & Etienne 2010; Harte 2011). However, 23	
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10	
  

only small changes are needed to adapt the above approaches to cases allowing zero-valued 1	
  

parts. For example, let 10 unlabeled individuals occupy a landscape sectioned into quarters. The 2	
  

most aggregated distribution would be for all 10 to occupy the same quarter, [10, 0, 0, 0]. The 3	
  

least aggregated would be for 3 to occupy two quarters while 2 occupy the other two quarters, [3, 4	
  

3, 2, 2]. In fact, the number of configurations for 10 unlabeled individuals distributed across 4 5	
  

unlabeled sections equals the number of partitions of 10 having 4 or less parts, i.e. q(10, 4) = 23. 6	
  

Consequently, if the number of parts S is less than the total N, then a random partition would 7	
  

simply be a random partition for N having S or less parts, with zeros appended to ensure the final 8	
  

form of the partition has S parts. 9	
  

On the other hand if the number of parts S is greater than the total N, then a different 10	
  

approach is needed. To see this let 4 unlabeled individuals occupy a landscape sectioned into 11	
  

tenths. The most aggregated distribution would be for all 4 to occupy the same subsection, [4, 0, 12	
  

0, 0, 0, 0, 0, 0, 0, 0] and the least aggregated configuration would be for 4 sections to have one 13	
  

individual and for 6 sections to have zero, i.e. [1, 1, 1, 1, 0, 0, 0, 0, 0, 0]. In this way, the number 14	
  

of possible configurations for 4 unlabeled individuals distributed across 10 unlabeled sections is 15	
  

simply q(N, N), once again, because we are dealing with unordered configurations of unlabeled 16	
  

elements. Consequently, if N < S, a random partition for N and S, allowing for zero-valued parts, 17	
  

is simply a random partition for N having N or less parts, with zeros appended to ensure the 18	
  

partition has S parts. 19	
  

 20	
  

Examining for bias and speed	
  21	
  

We implemented the above algorithms in Python and R and made them freely available 22	
  

using a public GitHub repository (https://github.com/klocey/partitions). We also developed these 23	
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11	
  

algorithms into an R package, rparitions. To further ensure that our sampling algorithms were 1	
  

unbiased we used kernel density curves to visually compare the results of the above algorithms 2	
  

to full feasible sets and random samples generated with the function implemented in the Sage 3	
  

mathematical environment (www.sagemath.org) that is based on the RANPAR algorithm of 4	
  

Nijenhuis & Wilf (1978) (note: where the number of elements S is an output) and is the method 5	
  

used in Locey & White (2013). Our Python package include test files that conduct, among 6	
  

several other tests of our source code and partitioning functions, 2-sample t-tests and 2-sample 7	
  

Kolmogorov Smirnov tests on kernel density curves of the variance of logarithmically 8	
  

transformed abundances from random samples generated by the Sage software and random 9	
  

samples generated using the algorithms derived here. These tests are important to regularly run 10	
  

because additional code developments can corrupt source code. 11	
  

Though we provide a recoding of the RANPAR algorithm in our software, to free users 12	
  

from having to use Sage, our comparisons are based on using the Sage software to draw random 13	
  

samples using the RANPAR algorithm. This is largely because Sage is an impressively powerful 14	
  

software and we were, in part, interested in the practical gains of our algorithms over it. If our 15	
  

algorithms are unbiased, then their distributions will not differ in any systematic way from full 16	
  

feasible sets and random samples generated using the proven function implemented in Sage.  17	
  

We compare the computational speed of our algorithms to that of the approach used in 18	
  

Locey & White (2013) (i.e. using Sage to generate random partitions for a given q and rejecting 19	
  

those not having n elements) across a range of values of q, n, and q-n ratios for which the latter 20	
  

method was likely to return random samples within reasonable time (one hour). Because Sage is 21	
  

coded in Python, our comparisons are made using the Python versions of our algorithms. 22	
  

 23	
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12	
  

Empirical Demonstration of the New Algorithms  1	
  

Locey and White (2013) analyzed the species abundance distributions (SADs) of 9562 sites 2	
  

of trees, bird, mammal, fungi, and prokaryote communities using a partitioning algorithm that 3	
  

sampled the feasible set according to total abundance N but not with respect to species richness S 4	
  

(i.e. the number of elements). Those data consisted, in part, of a subset of previously compiled 5	
  

datasets of site-specific species abundance data (see White et al. 2012), and included four 6	
  

continental-to-global scale surveys, including the Christmas Bird Count (129 sites) (National 7	
  

Audubon Society 2002),  North American Breeding Bird Survey (1,586 sites) (Sauer et al. 2011), 8	
  

Gentry’s Forest Transect Data Set (182 sites) (Phillips and Miller 2002), Forest Inventory 9	
  

Analysis (7,359 sites) (U.S. Department of Agriculture 2010), and one global-scale data 10	
  

compilation, the Mammal Community Database (42 sites) (Thibault et al. 2011). Locey and 11	
  

White (2013) also compiled abundance data at the species level from five microbial metagenome 12	
  

projects for a total of 264 SADs. Those data were obtained from the metagenomics server MG-13	
  

RAST (Meyer et al. 2008). Metagenomic data were compiled into datasets representing aquatic 14	
  

prokaryotic communities (48 metagenomes) (Flores et al. 2011, 15	
  

www.catlin.com/en/Responsibility/CatlinArcticSurvey), terrestrial prokaryotic communities (92 16	
  

metagenomes) (Chu et al. 2010, Fierer et al. 2012), and terrestrial fungal communities (124 17	
  

metagenomes) (Amend et al. 2010). We refer the reader to Locey & White (2013) and White et 18	
  

al. (2012) for more thorough descriptions of those datasets. 19	
  

The inefficiency of the partitioning method used in Locey & White (2013) restricted their 20	
  

analyses to combinations of N and species richness S, for which, there was a reasonable 21	
  

probability of generating a random integer partition of N with exactly S elements. This restriction 22	
  

allowed for only 60% of the available data to be examined despite more than 10000 compute 23	
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13	
  

hours worth of effort. We reanalyze those datasets using the algorithms developed here, which 1	
  

should allow for random samples of a greater number of SADs to be produced in less time. 2	
  

 3	
  

RESULTS	
  4	
  

Statistical properties of entire feasible sets are indistinguishable from random samples 5	
  

generated with our sampling algorithms, demonstrating that the implementations of our 6	
  

algorithms were unbiased (Fig 2 and Figs 1-2 of Appendix). When generating 300 random 7	
  

partitions, i.e. enough to safely characterize the feasible space (Locey & White 2013), these 8	
  

implementations were between 10 and 105 times faster than the method used by Locey & White 9	
  

(2013)  for the combinations of N and S we tested (Fig 3). These combinations were limited to 10	
  

values of N and S for which the algorithm used in Sage could generate random samples in 11	
  

reasonable time. Each algorithm was best suited for particular values of N and S (Fig 4). For 12	
  

cases where all parts have positive values, the multiplicity algorithm is the fastest for 13	
  

combinations where N is partitioned among a relatively small number of elements (Fig 3 14	
  

Appendix). 15	
  

The greater efficiency of the algorithms developed here allowed us to generate between 16	
  

300 and 500 random partitions for 92.7% of the SADs (14786/15950) from the compilation of 17	
  

SAD data used by Locey & White (2013), in less than 1000 compute hours. In contrast, the 18	
  

method used by Locey & White (2013) required more than 10000 compute hours to generate 19	
  

between 300 and 500 random partitions for 60% of the available data (9562/15950 SADs).  20	
  

 21	
  

 22	
  

DISCUSSION 23	
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14	
  

The feasible set approach provides a framework for understanding how constraints 1	
  

determine observable variation in ecological patterns and distributions of wealth and abundance. 2	
  

We greatly improved the efficiency of an integer partitioning approach for randomly sampling 3	
  

the feasible set. The algorithms we derived greatly increase the practical use of feasible set by 4	
  

decreasing computing time and by allowing feasible sets of distributions characterized by zero 5	
  

values, e.g., the species spatial abundance distribution, to be defined, explored, and used to 6	
  

understand variation in empirical patterns. We provided the algorithms in two computing 7	
  

languages used by ecologists, i.e., R and Python, and took steps to ensure the implementations of 8	
  

our algorithms are unbiased. We provided R and Python test scripts to detect computational 9	
  

errors that can result when a user modifies the code. 10	
  

Integer partitioning is only one way to examine and randomly sample the feasible set of 11	
  

possible SAD and SSAD shapes, i.e., for a given set of constraints. Other possibilities include 12	
  

constraint-based programming (see http://cran.r-project.org/web/views/Optimization.html) and 13	
  

iterative random walks, such as that used by Haegeman & Loreau (2008). Those approaches may 14	
  

not require combinatorial problems to be solved and so may not suffer from the problem of 15	
  

combinatorial explosion (large increases in the size of the feasible set for small changes in the 16	
  

total q and number of elements). However, one benefit to the integer partitioning approach is that 17	
  

the random sampling algorithms are inherently unbiased and do not require ‘burn-in’ periods to 18	
  

produce independent samples. Integer partitioning also reveals properties such as the size of the 19	
  

feasible set, the distribution of statistical characteristics (e.g. species evenness, diversity, modal 20	
  

abundance class) across the feasible set, and a fundamental way to unify different ecological 21	
  

patterns such as the SAD and SSAD, i.e., by their similar mathematical structure. However, we 22	
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15	
  

suggest that approaches such as those in Haegeman & Loreau (2008) should also be developed 1	
  

and compared to integer partitioning. 2	
  

The feasible set approaches taken here, in Haegeman & Loreau (2008), and in Locey & 3	
  

White (2013) ignore biological and statistical mechanism and focuses entirely on observable 4	
  

variation in the shape of empirical patterns. Consistency of empirical patterns with the center of 5	
  

the feasible set suggests that the shapes of those patterns contain little information beyond that 6	
  

encoded by the constraints used to characterize the feasible set (Haegeman & Loreau 2008; 7	
  

Locey & White 2013). However, consistency with the feasible set does not mean that biological 8	
  

processes are not operating but rather that they may indirectly influence empirical patterns 9	
  

through their effects on constraints (Supp et al. 2012; White et al. 2012). Indeed, if the majority 10	
  

of variation in an ecological pattern can be explained by a few general variables, then 11	
  

understanding the forces, processes, or mechanisms driving the values of those variables would 12	
  

seem to be of primary importance (McGill 2010). Alternatively if empirical patterns occupy an 13	
  

uncommon area of the feasible set, e.g., in being exceptionally uneven, then biological processes 14	
  

or additional constraints may be relevant.  15	
  

Our work greatly advances the ability of ecologists to characterize and explore observable 16	
  

variation in ecological patterns of abundance by greatly decreasing computational time. These 17	
  

advances allow combinations of constraint values to be examined that were previously out of 18	
  

reach, and hence, will help provide a greater understanding of the degree to which small 19	
  

combinations of general variables can explain the forms of ecological distributions (e.g. SAD, 20	
  

SSAD) and common ecological patterns (e.g. hollow-curve frequency distributions, Taylor’s 21	
  

Law). The algorithms we developed apply to frequency distributions such as the SAD and 22	
  

SSAD. However, many ecological patterns are also cumulative, describing the rates at which 23	
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16	
  

species are encountered with increasing area (species-area relationship) or time (species-time 1	
  

relationship) or both (species-time-area relationship), as well as the spatially implicit distribution 2	
  

of occupancy among species within a landscape (occupancy-frequency distribution). 3	
  

Characterizing and randomly sampling the feasible sets of these and other patterns may require 4	
  

modification of the algorithms we developed, approaches more similar to that of Haegeman and 5	
  

Loreau (2008), or altogether new approaches. 6	
  

	
  7	
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 1	
  

Figure 1. A configuration of Ferrers diagrams for the feasible set of 4 revealing relationship (1): 2	
  

that the number and set of partitions for 4 having 4, 3, 2 or less elements (vertical) equals the 3	
  

number and set of partitions of 4 having 4, 3, 2 or less as the largest element (horizontal). (2, 2) 4	
  

is a self-conjugate.  5	
  

	
   	
  6	
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 1	
  

Figure 2. A comparison of the full feasible set and kernel density curves for the median derived 2	
  

from 1000 random samples for different combinations of N and S using our four new algorithms 3	
  

for parts without zeros (left column) and for parts with zeros (right column). The similarity 4	
  

between the results derived using our algorithms and the full feasible set reveals that the 5	
  

algorithms produce unbiased random samples of the feasible set. We used Sage to generate the 6	
  

entire feasible set for N = 50 and S = 10 (16928 partitions) and used the random partitioning 7	
  

function in Sage to generate 1000 partitions for N = 100 and S = 20, which is too large to 8	
  

enumerate in full in reasonable time (10474462 partitions). 9	
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  1	
  

Figure 3. Plots of the ratio of the computational time for Sage to generate 300 random integer 2	
  

partitions (no zeros) to the time taken for the new algorithms (‘Multiplicity’, ‘Top down’, 3	
  

‘Divide and Conquer’, ‘Bottom up’) to do the same. The y-axis gives the orders of magnitude  4	
  

	
  5	
  

	
  6	
  

 	
  7	
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23	
  

	
  1	
  

Figure 4.  Color map revealing the fastest algorithm for specific combinations of N ≤ 1000 and S 2	
  

≤ N. Comparisons were based on the time taken to generate 300 random partitions for each  3	
  

combination of N and S, both for cases where parts were allowed to have zero values (left) and 4	
  

when parts had positive values only (right). Insets reveal the small corner of the main graph 5	
  

where N ≤ 100.  6	
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Dataset *Number of 
SADs 

Locey & White 
>10K hours 

Present Study 
~1K hours 

North American Breeding Bird 
Survey 2769 1586, 57% 2769, 100% 

Christmas Bird Count 1992 129, 6.5% 1231, 62% 

Gentry’s forest transects 222 182, 82% 221, 99.5% 

Forest Inventory and Analysis 10356 7359, 71% 10101, 98% 

Mammal Community Database 103 42, 41% 103, 100% 

Aquatic metagenomes 252 48, 19% 120, 48% 

Terrestrial metagenomes 128 92, 72% 113, 88% 

Fungi metagenomes 128 124, 97% 128, 100% 

Total 15950 9562, 60% 14786, 92.7% 
 * The number of SADs in the dataset matching the criteria of: one randomly chosen SAD per 1	
  

site having 10 or more species recorded. 2	
  

Table 1. Results of Locey and White (2013) and those from the reanalysis of those data used in 3	
  

that study reveal the practical gains of the algorithms developed here. Note, sampling effort per 4	
  

dataset was not controlled or accounted for.  5	
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