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Low-cost, low-input RNA-seq protocols perform nearly as well

as high-input protocols

Peter A Combs, Michael B Eisen

Recently, a number of protocols extending RNA-sequencing to the single-cell regime have

been published. However, we were concerned that the additional steps to deal with such

minute quantities of input sample would introduce serious biases that would make analysis

of the data using existing approaches invalid. In this study, we performed a critical

evaluation of several of these low-volume RNA-seq protocols, and found that they

performed slightly less well in metrics of interest to us than a more standard protocol, but

with at least two orders of magnitude less sample required. We also explored a simple

modification to one of these protocols that, for many samples, reduced the cost of library

preparation to approximately $20/sample.
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Abstract1

Recently, a number of protocols extending RNA-sequencing to the2

single-cell regime have been published. However, we were concerned that3

the additional steps to deal with such minute quantities of input sam-4

ple would introduce serious biases that would make analysis of the data5

using existing approaches invalid. In this study, we performed a critical6

evaluation of several of these low-volume RNA-seq protocols, and found7

that they performed slightly less well in metrics of interest to us than a8

more standard protocol, but with at least two orders of magnitude less9

sample required. We also explored a simple modification to one of these10

protocols that, for many samples, reduced the cost of library preparation11

to approximately $20/sample.12

1 Introduction13

Second-generation sequencing of RNA (RNA-seq) has proven to be a sensitive14

and increasingly inexpensive approach for a number of different experiments,15

including annotating genes in genomes, quantifying gene expression levels in a16

broad range of sample types, and determining differential expression between17

samples. As technology improves, transcriptome profiling has been able to be18

applied to smaller and smaller samples, allowing for more powerful assays to19

determine transcriptional output. For instance, our lab has used RNA-seq on20

single Drosophila embryos to measure zygotic gene activation [21] and medium-21

resolution spatial patterning [5]. Further improvements will allow an even22

broader array of potential experiments on samples that were previously too23

small.24
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For instance, over the past few years, a number of groups have published de-25

scriptions of protocols to perform RNA-seq on single cells (typically mammalian26

cells) [29, 27, 28, 12, 16]. A number of studies, both from the original authors27

of the single-cell RNA-seq protocols and from others, have assessed various as-28

pects of these protocols, both individually and competitively [2, 32, 22]. One29

particularly powerful use of these approaches is to sequence individual cells in30

bulk tissues, revealing different states and cellular identies [3, 30].31

However, we felt that published descriptions of single-cell and other low-32

volume protocols did not adequately address whether a change in concentration33

of a given RNA between two samples would result in a proportional change34

in the FPKM (or any other measure of transcriptional activity) between those35

samples. While there are biases inherent to any protocol, we were concerned36

that direct amplification of the mRNA would select for PCR compatible genes37

in difficult to predict, and potentially non-linear ways. For many of the pub-38

lished applications of single cell RNA-seq, this is not likely a critical flaw, since39

the clustering approaches used are moderately robust to quantitative changes.40

However, to measure spatial and temporal activation of genes across an embryo,41

it is important that the output is monotonic with respect to concentration, and42

ideally linear. A linear response allows for more easily interpretable experimen-43

tal results, without necessarily relying on complicated transformations of the44

data.45

While it is possible to estimate absolute numbers of cellular RNAs from an46

RNA-seq experiment, doing so requires spike-ins of known concentration and47

estimates of total cellular RNA content [24, 20]. However, many RNA-seq ex-48

periments do not do these controls, nor are such controls strictly necessary under49

reasonable, though often untested, assumptions of approximately constant RNA50

content. While ultimately absolute concentrations will be necessary to fully pre-51

dict properties such as noise tolerance of the regulatory circuits [10, 9], many52

current modeling efforts rely only on scaled concentration measurements, often53

derived from in situ-hybridization experiments [8, 15, 13]. Given that, we felt54

it was not important that different protocols should necessarily agree on any55

particular expression value for a given gene, nor are we fully convinced that56

absolute expression of any particular gene can truly reliably be predicted in a57

particular experiment.58

In order to convince ourselves that data generated from limiting samples59

would be suitable for our purposes, we evaluated several protocols for perform-60

ing RNA-seq on extremely small samples. We also investigated a simple modifi-61

cation to one of the protocols that reduced sample preparation cost per library62

by more than 2-fold. Finally, we evaluated the effect of read depth on quality of63

the data. This study provides a single, consistent comparison of these diverse64

approaches, and shows that in fact all data from the low-volume protocols we65

examined are usable in similar contexts to the earlier bulk approach.66
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2 Results67

2.1 Experiment 1: Evaluation of Illumina TruSeq68

In our hands, the Illumina TruSeq protocol has performed extremely reliably69

with samples on the scale of 100ng of total RNA, the manufacturer recom-70

mended lower limit of the protocol. However, attempts to create libraries from71

much smaller samples yielded low complexity libraries, corresponding to as much72

as 30-fold PCR duplication of fragments. Anecdotally, less than 5% of libraries73

made with at least 90ng of total RNA yielded abnormally low concentrations,74

which we observed correlated with low complexity (Data not shown). To deter-75

mine the lower limit of input needed to reliably produce libraries, we attempted76

to make libraries from 40, 50, 60, 70, and 80 ng of Drosophila total RNA, each77

in triplicate.78

Table 1: Total TruSeq cDNA library yields made with a given amount of input
total RNA. Yields measured by Nanodrop of cDNA libraries resuspended in
25µL of EB. The italicized samples were unusually low, and when analyzed
with a Bioanalyzer, showed abnormal size distribution of cDNA fragments.

Amount Input RNA Replicate A Replicate B Replicate C
40 ng 57 ng 425 ng 672 ng
50 ng 435 ng 768 ng 755 ng
60 ng 115 ng 663 ng 668 ng
70 ng 300 ng 593 ng 653 ng
80 ng 468 ng 550 ng 840 ng

We considered the two libraries with lower than usual concentration to be79

failures. While a failure rate of approximately 1 in 3 might be acceptable for80

some purposes, we ultimately wanted to perform RNA sequencing on precious81

samples, where a failure in any one of a dozen or more libraries would neces-82

sitate regenerating all of the libraries. Furthermore, due to the low sample83

volumes involved (less than approximately 500pg of poly-adenylated mRNA),84

common laboratory equipment is not able to determine the particular point in85

the protocol where the failures occurred.86

Thus, we consider 70 ng of total RNA to be the conservative lower limit to87

the protocol. While this is about 30% smaller than the manufacturer suggests, it88

is still several orders of magnitude larger than we needed it to be. We therefore89

considered using other small-volume and “single-cell” RNA-seq kits, which we90

had less experience with and less faith in the data.91
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2.2 Experiment 2: Competitive Comparison of Low-volume92

RNAseq protocols93

We first sought to determine whether the low-volume RNAseq protocols avail-94

able faithfully recapitulate linear changes in abundance of known inputs. We95

generated synthetic spike-ins by combining D. melanogaster and D. virilis total96

RNA in known, predefined proportions of 0, 5, 10, and 20% D. virilis RNA. For97

each of the low-volume protocols, we used 1ng of total RNA as input, whereas98

for the TruSeq protocol we used 100ng.99

Although pre-defined mixes of spike-in controls have been developed and are100

commercially available [17], we felt it was important to ensure that a given pro-101

tocol would function reproducibly with natural RNA, which almost certainly has102

a different distribution of 6-mers, which could conceivably affect random cDNA103

priming and other amplification effects. Furthermore, our spike-in sample more104

densely covers the approximately 105 fold coverage typical of RNA abundances.105

It should be noted, however, that our sample is not directly comparable to any106

other standards, nor is the material of known strandedness. We assumed that107

the majority of each sample is from the standard annotated transcripts, but did108

not verify this prior to library construction and sequencing.109

The different protocols had a variation in yield of libraries from between110

6 fmole (approximately 3.6 trillion molecules) and 2,400 femtomoles, with the111

TruSeq a clear outlier at the high end of the range, and the other protocols112

all below 200 fmole (Table 2.2). While the number of PCR cycles in the final113

enrichment steps can be adjusted, all of these quantities are sufficient to generate114

hundreds of millions of reads—far more than is typically required for an RNA-115

seq experiment. We pooled the samples, attempting equimolar fractions in the116

final pool; however, due to a pooling error, we generated significantly more reads117

than intended for the TruSeq protocol, and correspondingly fewer in the other118

protocols. Unless otherwise noted, we therefore sub-sampled the mapped reads119

to the lowest number of mapped reads in any sample in order to provide a fair120

comparison between protocols.121

We were interested in the fold-change of each D. virilis gene across the four122

samples, rather than the absolute abundance of any particular gene. Therefore,123

after mapping and gene quantification, we normalized the abundance Aij of124

every gene i across the j = 4 samples by a weighted average of the quantity Qj125

of D. virilis in sample j, as show in equation 1. Thus, within a given gene, a126

linear fit of Âij vs Qj should have a slope of one and an intercept of zero.127

Âij = Aij ÷

∑
j QjAij

∑
j(Qj)2

(1)128

We filtered the D. virilis genes for those with at least 20 mapped fragments129

in the sample with 20% D. virilis, then calculated an independent linear re-130

gression for each of those genes. As expected, for every protocol, the mean131

slope was 1 (t-test, p < 5 × 10−7 for all protocols). Similarly, the average in-132

tercepts for all protocols was 0 (t-test, p < 5 × 10−7 for all protocols). Also133
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unsurprisingly, the TruSeq protocol had a noticeably higher mean correlation134

coefficient (0.98±0.02) than any of the other protocols (0.95±0.06, 0.92±0.09,135

and 0.95± 0.06 for Clontech, TotalScript, and SMART-seq2, respectively). The136

mean correlation coefficient was statistically and practically indistinguishable137

between the Clontech samples and the SMART-seq2 samples (t-test p = .11,138

Figure 2.2).139

While the TruSeq protocol clearly performed better than the low-volume140

kits, we wondered how well an ideal RNA-seq protocol could perform. We sim-141

ulated an experiment with known levels of D. virilis spike in and assuming a142

multinomial distribution of read counts, and repeated the simulation 1,000 times143

to estimate the distribution of relevant quality metrics. Surprisingly, the mean144

correlation coefficient for the TruSeq protocol was higher than the mean corre-145

lation coefficient of every repetition of the simulation, though indistinguishable146

for practical purposes (0.984 vs 0.982). The slopes were equally well clustered147

around 1, with an interquartile range of 0.0864 for the TruSeq protocol com-148

pared to 0.0843, the mean of all simulations; 13% of simulations had a higher149

IQR. We thus conclude that the major limiting factor for the TruSeq protocol150

to generate a linear response in the data is likely the sequencing depth, whereas151

the other protocols all contain additional biases.152

Indeed, the only major differentiator we could find between the low-volume153

protocols we measured was cost. For only a handful of libraries, the kit-based154

all inclusive model of the Clontech and TotalScript kits could be a significant155

benefit, allowing the purchase of only as much of the reagents as required. By156

contrast, the Smart-seq2 protocol requires the a la carte purchase of a number157

of reagents, some of which are not available or more expensive per unit for158

smaller quantities. Furthermore, there could potentially be a “hot dogs and159

buns” problem, where reagents are sold in non-integer multiples of each other,160

leading to leftovers. Many of these reagents are not single-purpose, however, so161

leftovers could in principle be repurposed in other experiments.162

Table 2: Summary of protocols used in experiments 2 and 3. Cost is estimated
per sample assuming a large number of libraries at US catalog prices as of May
2014, and includes RNA extraction.

Protocol Shorthand Cost/library
TruSeq TruS $45
Clontech CT $105

TotalScript TotS $115
Smart-seq2, standard protocol SS $55
Smart-seq2, 2.5 fold dilution SS—2.5x $28
Smart-seq2, 5 fold dilution SS—5x $20
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Experiment Protocol % D. virilis Yield (fmole) Reads Mapped
2 CT 0 6.5 3,803,843 3,374,520
2 ” 5 15.7 4,372,738 4,164,781
2 ” 10 47.4 10,013,087 9 ,527,023
2 ” 20 17.8 4,781,463 4,317,101
2 TotS 0 176.8 3,281,134 2,930,058
2 ” 5 170.2 2,498,134 2,237,330
2 ” 10 102.5 5,777,523 5,424,366
2 ” 20 119.9 6,068,996 5,740,496
2 TruS 0 2,401.0 67,560,511 64,024,881
2 ” 5 2,001.1 23,370,854 22,589,083
2 ” 10 2,174.2 39,454,390 38,093,763
2 ” 20 2,379.2 35,265,536 34,304,792
2 SS2 0 34.3 2,439,518 2,297,087
2 ” 5 59.6 2,550,023 2,419,889
2 ” 10 67.9 2,534,628 2,444,568
2 ” 20 39.8 2,504,340 2,389,850
3 SS2—2.5x 0 104.4 15,769,915 14,393,959
3 ” 1 124.7 21,349,748 20,084,131
3 ” 5 113.0 17,047,120 16,329,641
3 ” 10 103.5 23,762,232 22,372,562
3 ” 20 123.8 20,809,781 20,041,548
3 SS2—5x 0 59.4 19,214,155 17,324,598
3 ” 1 58.6 23,832,274 22,364,220
3 ” 5 65.4 18,149,452 17,157,450
3 ” 10 28.8 15,821,419 14,869,864
3 ” 20 57.2 22,466,345 21,620,603

Table 3: Sequencing summary statistics for samples. Protocols are the short-
hands used in table 2. Reads indicates the total number of reads, and Mapped
the total number of reads that mapped at least once to either genome. Experi-
ments 2 and 3 were run in a single HiSeq lane each.
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Figure 1: Comparison of linearity between different RNA-seq proto-

cols. A) Normalized levels of gene expression Â across samples using the TruSeq
protocol, where each line is for a different gene. B-E) Distributions of slopes,
intercepts, and correlation coefficient for linear regressions of the abundance of
each gene, as in panel A. 7
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Table 4: Distribution of fit parameters. A simple linear fit, Âij = m ·Qj + b was
computed for each gene i, and a correlation coefficent r calculated. For brevity,
x̄ is the mean of some variable x, and σx is its standard deviation.

Protocol m̄±σm b̄±σb r̄±σr

TruSeq 1.01±0.0698 -0.108±1.05 0.98±0.019
Clontech 1.01±0.12 -0.217±1.79 0.95±0.061

TotalScript 0.952±0.129 0.715±1.93 0.93±0.094
Smart-seq2 1.03±0.121 -0.506±1.82 0.95±0.057

Smart-seq2, 2.5 fold dilution 0.996±0.111 0.0623±1.67 0.96±0.053
Smart-seq2, 5 fold dilution 1.01±0.111 -0.173±1.66 0.96±0.049

2.3 Experiment 3: Further modifications to the SMART-163

seq2 protocol164

Although the SMART-seq2 was the cheapest of the protocols when amortized165

over a large number of samples, we wondered whether it could be performed166

even more cheaply without compromising data quality. This would enable us167

to include more biological replicates in the future experiments for which we are168

evaluating these protocols. In the original protocol, we noticed that roughly169

60% of the cost came from the Nextera XT reagents. Thus, reducing the cost170

of tagmentation was the obvious goal to target.171

We made additional libraries, again starting with 1ng of total RNA. We172

amplified a single set of spike-in samples with 0, 5, 10, and 20% D. virilis173

total RNA as in experiment 2, and made a single an additional sample with174

1% D. virilis RNA. Starting at the point in the SMART-seq2 protocol where175

tagmentation was started, we performed reactions in volumes 2.5× and 5×176

smaller, using proportionally less cDNA as well. Due to the low total yield, we177

increased the number of enrichment cycles from 6 to 8 (see methods).178

When normalized to the same number of reads as in experiment 2, the179

protocols with diluted Nextera reagents performed effectively identically: for180

instance, the mean correlation coefficients were in both cases 0.96 ± 0.05 (Fig.181

2 and Table 4). This is despite the additional cycles of enrichment, which182

improved yield.183

Because we used a common set of pre-amplified cDNA samples that was184

performed in a distinct pre-amplification from experiment 2, we can estimate185

the contribution of that pre-amplification to the overall variation. If, in fact, the186

pre-amplification is a major contributor to the variation, then we would expect187

to find that the correlation between, for instance, the slopes of two runs of the188

same experiment with different pre-amplifications would be significantly lower189

than the correlation between the slopes of two runs using the same pre-amplified190

cDNA pools.191

Unsurprisingly, the sets of samples that used the same preamplification were192
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more correlated with each other than with the set of samples that used a separate193

pre-amplification (Fig. 3). By analogy to dual-reporter expression studies[7], we194

term variation along the diagonal “extrinsic noise” (ηext = std(m1 +m2)), and195

variation perpendicular to the diagonal “intrinsic noise” (ηint = std(m1−m2)),196

being intrinsic to the pre-amplification step. Using that metric, the intrinsic197

noise is lower for the samples with the same pre-amplification (ηint = 0.09)198

than for the samples with different pre-amplifications (ηint = 0.16). Somewhat199

surprisingly, the extrinsic noise is higher for the samples with the same pre-200

amplification (ηext = 0.20 vs ηext = 0.16), perhaps due to the 2 additional201

cycles of PCR enrichment.202

Figure 2: Distributions of slopes, intercepts, and correlation coefficients for
experiment 3. Nextera XT reactions were reduced in volume by the indicated
amount.

3 Discussion203

When sample size is not the limiting factor, it is clear that using well-established204

protocols that involve minimal sequence-specific manipulation of the sample205

yields the best results, both in terms of reproducibility and linearity of response.206

However, if it is not practical to collect such relatively large samples, we believe207

that any of the “single-cell” protocols we have tested should perform similarly,208

and can be used as a drop-in replacement. While preamplification steps do209

introduce some detectable variance, it is not vastly detrimental to the data210

quality, and does not introduce obvious sequence-specific biases.211

Such methods should be strongly preferred if it is feasible to collect a suit-212

ably homogenous sample. While bulk tissues may be a mixture of multiple213

distinct cell types, this may or may not affect the particular research question214

an RNAseq experiment is designed to answer. In our hands, the lower limit215

of reliable library construction using the Illumina TruSeq kit is approximately216

70ng of total RNA; with non precious samples, the practical limit is likely to217

be even lower. Although we believe there is significant user-to-user variation, it218
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Figure 3: Estimating the source of preamplification noise. Plotted are
the estimated slopes for each gene between experiments. The blue, “Different
pre-amplification” compares the 2.5× diluted and full sized reactions, whereas
the green “same pre-amplification” points compare the 2.5× and 5× dilution
samples, which used the same preamplified cDNA but different tagmentation
reactions.

seems unreasonable to expect order-of-magnitude improvements are possible in219

techniques for precious samples. We suggest that this limit may be related to220

cDNA binding to tubes or purification beads, but since the quantities are lower221

than the detection threshold of many standard quality control approaches, we222

cannot directly verify this, nor do we believe that knowing the precise cause is223

likely to suggest remediation techniques.224

Compared to the regimes these protocols were designed for, we used a rel-225

atively large amount of input RNA—1 ng of total RNA—corresponding to ap-226

proximately 50 nuclei of a mid-blastula transition Drosophila embryo. Previous227

studies have shown that this amount of RNA is well above the level where228

stochastic variation in the number of mRNAs per cell will strongly affect the229

measured expression of a vast majority of genes [22]. It is nevertheless a small230

enough quantity to be experimentally relevant. For instance, we have previously231

dissected single embryos into approximately 12 sections, yielding approximately232

10ng per section[5], and one could conceivably perform similar experiments on233

imaginal discs or antennal structures, which contain a similar amount of cells234

[19, 11].235

One of the more striking results is that costs can be significantly reduced by236

simply performing smaller reactions, without noticeably degrading data quality.237

We do not suspect this will be true for arbitrarily small samples, such as from238

single cells. Instead, it is likely only true for samples near the high end of the239
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effective range of the protocol. We have not explored where this result breaks240

down, and strongly caution others to verify this independently using small pilot241

experiments before scaling up.242

4 Methods243

4.1 RNA Extraction, Library Preparation, and Sequenc-244

ing245

We performed RNA extraction in TRIzol (Life Technologies, Grand Island, NY)246

according to manufacturer instructions, except with a higher concentration of247

glycogen as carrier (20 ng) and a higher relative volume of TRIzol to the ex-248

pected material (1 mL, as in [21] and [5]). We quantified RNA concentrations249

using a fluorometric Qubit RNA HS assay (Life Technologies).250

TruSeq libraries were prepared with the “TruSeq RNA Sample Preparation251

Kit v2” (Illumina Cat.#RS-122-2001) according to manufacturer instructions,252

except for the following modifications. All reactions were performed in half253

the volume of reagents. We find that this increases the effective concentration254

of RNA and cDNA. We performed all reactions and cleanups in 8-tube PCR255

strip tubes, which allowed us to reduce the volume of Resuspension Buffer to256

minimize volume left behind after each cleanup.257

Clontech libraries were prepared with the “Low Input Library Prep Kit”258

(Clontech Cat.#634947). We generated cDNA by using TruSeq reagents until259

the cDNA synthesis step. Then, we used the Low Input Library Prep Kit to260

modify the cDNA into sequencing-competent libraries. We believe that a similar261

cDNA synthesis could be performed using oligo dT Dynabeads, RNA fragmen-262

tation reagents, and Superscript II (Life Technologies), for an approximate cost263

per sample of $15.264

TotalScript libraries were prepared with the “TotalScript RNA-Seq Kit” and265

“TotalScript Index Kit” (Epicentre Cat.#TSRNA1296 and TSIDX12910). We266

followed the manufacturer’s instructions, and used the oligo dT priming option.267

We performed the mixed priming option in parallel, which yielded approximately268

4-fold more library, but did not sequence them due to concerns of ribosomal269

contamination.270

SMARTseq2 libraries were prepared according to the protocol in Picelli et271

al.(2014) [26]. Because we had already extracted and mixed the RNA, we began272

at step 5 with 3.7 µL of dNTPs and 1 µL of 37 µM oligo dT primer, yielding the273

same concentration of primer and oligo as originally reported. We used 18 cycles274

for the preamplification PCR in step 14, added 1ng of cDNA to the Nextera XT275

reactions in step 28, and used 6 and 8 cycles for the final enrichment in step 33276

(experiments 2 and 3, respectively).277

Libraries were quantified using a combination of Qubit High Sensitivity278

DNA (Life Technologies) and Bioanalyzer (Agilent Technologies, Sunnyvale,279

CA) readings, then pooled to equalize index concentration. Due to a pooling280

error in experiment 2, the TruSeq libraries were included at much higher abun-281
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dance. Pooled libraries were then submitted to the Vincent Coates Genome282

Sequencing Laboratory for 50bp single-end sequencing according to standard283

protocols for the Illumina HiSeq 2500. Bases were called using HiSeq Control284

Software v1.8 and Real Time Analysis v2.8.285

4.2 Mapping and Quantification286

Reads were mapped using STAR [6] to a combination of the FlyBase reference287

genome version 5.54 for D. melanogaster and D. virilis [23]. We randomly288

sampled the mapped reads to use an equal number in each sample compared.289

We used HTSeq (command line options htseq-count --idattr=’gene name’290

--stranded=no --sorted=pos) to count absolute read abundance per gene [1].291

4.3 Simulation of Experiment 2292

We wrote a Python script that simulated Experiment 2 assuming only uncorre-293

lated counting noise in the number of reads per gene. The read counts from the294

sample with 20% D. virilis and the TruSeq protocol was used to generate the295

base probabilities. D. virilis gene probabilities were adjusted downwards, and296

the remaining probability was assigned evenly to the D. melanogaster genes.297

The SciPy function stats.multinomial was used to simulate read counts, as-298

suming an equal number of reads as in the original experiment. Gene expression299

levels were normalized using equation 1, as in the actual experiment.300
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and is primarily written in Python [31, 4, 14, 18, 25]. Commit 9fc810e7 was314

used to perform all analyses in this paper.315
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