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Sequencing 16S rRNA gene fragments using the PacBio SMRT

DNA sequencing system

Patrick D Schloss, Sarah L Westcott, Matthew L Jenior, Sarah K Highlander

Over the past 10 years, microbial ecologists have largely abandoned sequencing 16S rRNA

genes by the Sanger sequencing method and have instead adopted highly parallelized

sequencing platforms. These new platforms, such as 454 and Illumina's MiSeq, have

allowed researchers to obtain millions of high quality, but short sequences. These

platforms have allowed researchers to significantly improve the design of their

experiments. The tradeoff has been the decline in the number of full-length reference

sequences that are deposited into databases. To overcome this problem, we tested the

ability of the PacBio Single Molecule, Real-Time (SMRT) DNA sequencing platform to

generate sequence reads from the 16S rRNA gene. We generated sequencing data from

the V4, V3-V5, V1-V3, V1-V6, and V1-V9 variable regions from within the 16S rRNA gene

from a synthetic mock community and natural samples collected from human feces,

mouse feces, and soil. The synthetic mock community allowed us to assess the actual

sequencing error rate and how that error rate changed when different curation methods

were applied. We developed a simple method based on sequence characteristics and

quality scores to reduce the observed error rate for the V1-V9 region from 2.16% to 0.32%.

Unfortunately, this error rate was still 16-times higher than the error rate that has been

observed for the shorter reads generated by 454 and Illumina's MiSeq sequencing

platforms. Although the longer reads frequently provided better classification, the wider

adoption of this approach for 16S rRNA gene sequencing is likely limited by its high

sequencing error and low yield of sequencing data relative to the other available

platforms.
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Abstract

Over the past 10 years, microbial ecologists have largely abandoned sequencing 16S rRNA

genes  by  the  Sanger  sequencing  method  and  have  instead  adopted  highly  parallelized

sequencing platforms. These new platforms, such as 454 and Illumina's MiSeq, have allowed

researchers  to  obtain  millions  of  high  quality,  but  short  sequences.  These  platforms  have

allowed researchers to significantly improve the design of their experiments. The tradeoff has

been  the  decline  in  the  number  of  full-length  reference  sequences  that  are  deposited  into

databases. To overcome this problem, we tested the ability of the PacBio Single Molecule, Real-

Time (SMRT) DNA sequencing platform to generate sequence reads from the 16S rRNA gene.

We generated sequencing data from the V4, V3-V5, V1-V3, V1-V6, and V1-V9 variable regions

from within the 16S rRNA gene from a synthetic mock community and natural samples collected

from human feces, mouse feces, and soil. The synthetic mock community allowed us to assess

the  actual  sequencing  error  rate  and  how that  error  rate  changed  when  different  curation

methods were applied. We developed a simple method based on sequence characteristics and

quality scores to reduce the observed error rate for the V1-V9 region from 2.16% to 0.32%.

Unfortunately, this error rate was still 16-times higher than the error rate that has been observed

for the shorter reads generated by 454 and Illumina's MiSeq sequencing platforms. Although the

longer reads frequently provided better classification, the wider adoption of this approach for 16S

rRNA gene sequencing is likely limited by its high sequencing error and low yield of sequencing

data relative to the other available platforms.

Keywords: Microbial ecology, bioinformatics, sequencing error
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Introduction

Advances in  sequencing technologies  over  the past  10 years  have introduced considerable

advances to the field of microbial ecology. Clone-based Sanger sequencing of the 16S rRNA

gene has largely been replaced by various platforms produced by 454/Roche (e.g. Sogin et al.

2006), Illumina (e.g. Gloor et al. 2010), and IonTorrent (e.g. Junemann et al. 2012). It was once

common to sequence fewer than 100 16S rRNA gene sequences from several samples using

the Sanger approach (e.g. McCaig et al. 1999). Now it is common to generate thousands of

sequences from each of several hundred samples (The Human Microbiome Consortium 2012).

The advance in throughput has come at the cost of read length. Sanger sequencing regularly

generated 800 nt per read and because the DNA was cloned, it was possible to obtain multiple

reads per fragment to yield a full-length sequence from a representative single molecule. At

approximately $8 (US) per sequencing read, most researchers have effectively decided that full-

length  sequences  are  not  worth  the  increased  cost  relative  to  the  cost  of  more  recently

developed  approaches.  There  is  still  a  clear  need  to  generate  high-throughput  full-length

sequence reads that are of sufficient quality that they can be used as references for analyses

based on obtaining short sequence reads.

Historically, all  sequencing platforms were created to primarily perform genome sequencing.

When sequencing a genome, it  is  assumed that  the same base of  DNA will  be sequenced

multiple times and the consensus of multiple sequence reads is used to generate contigs. Thus,

although an individual base call may have a high error rate, the consensus sequence will have a

low error rate. To sequence the 16S rRNA gene researchers use conserved primers to amplify a

sub-region from within the gene that is isolated from many organisms. Because the fragments

are not cloned, it is not possible to obtain high sequence coverage from the same DNA molecule

using these platforms.  Thus,  to  reduce sequencing error  rates  it  has  become imperative  to

develop stringent sequence curation and denoising algorithms (Kozich et al. 2013; Schloss et al.
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2011). There has been a tradeoff between read length, number of reads per sample, and the

error rate. For instance, we recently demonstrated that using the Illumina MiSeq and the 454

Titanium platforms the raw error rate varies between 1 and 2% (Kozich et al. 2013; Schloss et al.

2011). Yet,  it  was possible to obtain error  rates below 0.02% by adopting various denoising

algorithms. However, the resulting fragments were only 250-nt long. In the case of 454 Titanium,

extending the length of  the fragment  introduces length-based errors and in  the case of  the

Illumina MiSeq, increasing the length of the fragment reduces the overlap between the read

pairs  reducing the ability of  each read to mutually reduce the sequencing error. Inadequate

denoising of sequencing reads can have many negative effects including limited ability to identify

chimeras (Edgar et al. 2011; Haas et al. 2011) and inflation of alpha- and beta-diversity metrics

(Huse et al. 2010; Kozich et al. 2013; Kunin et al. 2010; Schloss et al. 2011). Although MiSeq

and 454  enjoy  widespread  use  in  the  field,  the  MiSeq  platform is  emerging  as  the  leader

because  of  the  ability  to  sequence  15-20  million  fragments  that  can  be  distributed  across

hundreds of samples for less than $5000 (US).

As these sequencing platforms have grown in popularity, there has been a decline in the number

of full-length 16S rRNA genes being deposited into GenBank that could serve as references.

This is particularly frustrating since the technologies have significantly improved our ability to

detect and identify novel populations for which we lack full-length reference sequences. A related

problem is  the perceived limitation  that  the  short  reads  generated  by the 454  and  Illumina

platforms cannot be reliably classified to the genus or species level. Previous investigators have

utilized simulations to demonstrate that increased read lengths usually increase the accuracy

and sensitivity of classification against reference databases (Liu et al. 2008; Wang et al. 2007;

Werner et al. 2012). There is clearly a need to develop sequencing technologies that will allow

researchers to generate high quality full-length 16S rRNA gene sequences in a high throughput

manner.
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New advances in single molecule sequencing technologies, such as the platform produced by

Pacific Biosciences (PacBio),  offer the opportunity to once again obtain full-length sequence

reads with a high depth of coverage from a large number of samples. To this point, the PacBio

Single Molecule, Real-Time (SMRT) DNA Sequencing System has received limited application in

the microbial ecology research domain (Fichot & Norman 2013; Mosher et al. 2013; Mosher et

al. 2014). The SMRT system ligates hairpin adapters (i.e. SMRTbells) to the ends of double-

stranded DNA. Although the DNA molecule is linear, it  is  effectively circularized allowing the

sequencing  polymerase  to  process  around  the  molecule  multiple  times  (Au  et  al.  2012).

According to Pacific Biosciences the platform is able to generate median read lengths longer

than 8 kb with the P4-C2 chemistry; however, the single pass error rate is approximately 15%.

Given the circular nature of the DNA fragment, the full read length can be used to cover the DNA

fragment multiple times resulting in a reduced error rate. Therefore, one should be able to obtain

multiple coverage of the full 16S rRNA gene at a reduced error rate.

Despite the opportunity to potentially generate high-quality full-length sequences,  the Pacific

Biosciences platform has not been widely adopted for sequencing 16S rRNA genes (Fichot &

Norman 2013;  Mosher  et  al.  2014).  Previous studies utilizing the technology have removed

reads with mismatched primers and barcodes, ambiguous base calls, and low quality scores

(Fichot & Norman 2013). Others have utilized the platform without describing the bioinformatic

pipeline that was utilized (Mosher et al. 2014). Regardless of the curation methods, the error

rates associated with sequencing the 16S rRNA gene on the platform have never been reported.

In the current  study, we assessed the quality of  data generated by the Pacific  Biosciences

sequencer and whether it  could fill  the need for generating high-quality, full-length sequence

data. We hypothesized that by modulating the 16S rRNA gene fragment length we could alter

the read depth and obtain reads longer than are currently available by the 454 and Illumina

platforms but with the same quality. To test this hypothesis, we developed a sequence curation

pipeline that was optimized by reducing the sequencing error rate of a mock bacterial community
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with known composition. The resulting pipeline was then applied to 16S rRNA gene fragments

that were isolated from soil and human and mouse feces.

Materials and Methods

Community DNA. We utilized genomic DNA isolated from four communities. These same DNA

extracts were previously used to develop an Illumina MiSeq-based sequencing strategy (Kozich

et al. 2013). Briefly, we used a “Mock Community” composed of genomic DNA from 21 bacterial

strains:  Acinetobacter  baumannii ATCC  17978,  Actinomyces  odontolyticus ATCC  17982,

Bacillus cereus ATCC 10987,  Bacteroides vulgatus ATCC 8482,  Clostridium beijerinckii ATCC

51743, Deinococcus radiodurans ATCC 13939, Enterococcus faecalis ATCC 47077, Escherichia

coli ATCC 70096, Helicobacter pylori ATCC 700392, Lactobacillus gasseri ATCC 33323, Listeria

monocytogenes ATCC  BAA-679,  Neisseria  meningitidis ATCC  BAA-335,  Porphyromonas

gingivalis ATCC 33277, Propionibacterium acnes DSM 16379, Pseudomonas aeruginosa ATCC

47085,  Rhodobacter  sphaeroides ATCC  17023,  Staphylococcus  aureus ATCC  BAA-1718,

Staphylococcus  epidermidis ATCC  12228,  Streptococcus  agalactiae ATCC  BAA-611,

Streptococcus mutans ATCC 700610,  Streptococcus pneumoniae ATCC BAA-334. The mock

community DNA is available through BEI resources (v3.1, HM-278D). Genomic DNAs from the

three other communities were obtained using the MO BIO PowerSoil DNA extraction kit. The

human  and  mouse  fecal  samples  were  obtained  using  protocols  that  were  reviewed  and

approved by the University Committee on Use and Care of Animals (Protocol #PRO00004877)

and the Institutional Review Board at the University of Michigan (Protocol #HUM00057066). The

human stool donor provided informed consent.

Library  generation  and  sequencing. The  DNAs  were  each  amplified  in  triplicate  using

barcoded primers targeting the V4, V1-V3, V3-V5, V1-V5, V1-V6, and V1-V9 variable regions

(Table 1). The primers were synthesized so that the 5’ end of the forward and reverse primers

were each tagged with a 5-nt barcode sequence to allow multiplexing of samples within a single
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sequencing  run.  Methods  describing  PCR,  amplicon  cleanup,  and  pooling  were  described

previously (Kozich et al. 2013). The SMRTbell adapters were ligated onto the PCR products and

the libraries were sequenced at the University of Michigan DNA Sequencing Core using the P4-

C2 chemistry on a PacBio RS II SMRT DNA Sequencing System.

Data  analysis. All  sequencing  data  were  curated  using  mothur  (Schloss  et  al.  2009)  and

analyzed  using  the  R  programming  language  (R  Core  Team  2014).  The  raw data  can  be

obtained from the Sequence Read Archive at NCBI under accession SRP051686, which are

associated  with  BioProject  PRJNA271568.  Several  specific  features  were  incorporated  into

mothur to facilitate the analysis of PacBio sequence data. First, because non-ambiguous base

calls are assigned to Phred quality scores of zero, the consensus fastq files were parsed so that

scores of  zero were interpreted as corresponding to an ambiguous base call  (i.e.  N) in the

fastq.info command using the pacbio=T option. Second, because the consensus sequence can

be generated in the forward and reverse complement orientations, a checkorient option was

added to the trim.seqs command in order to identify the proper orientation. These features were

incorporated into mothur v.1.30. Because chimeric molecules can be generated during PCR and

would artificially inflate the sequencing error, it  was necessary to remove these data prior to

assessing the error  rate.  Because we knew the true sequences for  the strains in  the mock

community we could calculate all possible chimeras between strains in the mock community ( in

silico chimeras).  If  a  sequence read was 3 or  more nucleotides more similar  to an  in  silico

chimera than it was to a non-chimeric reference sequence, it was classified as a chimera and

removed  from  further  consideration.  Identification  of  in  silico chimeras  and  calculation  of

sequencing error rates was performed using the seq.error command in mothur (Schloss et al.

2011).  De novo chimera detection was also performed on the mock and other sequence data

using the abundance-based algorithm implemented in UCHIME (Edgar et al. 2011). Sequences

sequences were aligned against a SILVA-based reference alignment (Pruesse et al. 2007) using

a profile-based aligner (Schloss 2009) and were classified against the SILVA (Pruesse et al.
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2007), RDP (Cole et al. 2014), and greengenes (Werner et al. 2012) reference taxonomies using

a  naive  Bayesian  classifier  (Wang  et  al.  2007).  Sequences  were  assigned  to  operational

taxonomic units using the average neighbor clustering algorithm with a 3% distance threshold

(Schloss & Westcott 2011). Detailed methods including this paper as an R markdown file are

available  as  a  public  online  repository  (http://github.com/SchlossLab/

Schloss_PacBio16S_PeerJ_2015).

Results and Discussion

The PacBio error profile. To build a sequence curation pipeline, we first needed to characterize

the  error  rate  associated  with  sequencing  the  16S  rRNA gene.  We observed  an  average

sequencing error rate of 1.80%. Insertions, deletions, substitutions, and ambiguous base calls

accounted for 45.3, 17.3, 35.8, and 2.1% of the errors, respectively. The substitution errors were

equally  likely  and  all  four  bases  were  equally  likely  to  cause  insertion  errors.  Interestingly,

guanines (44.6%) and cytosines (34.5%) were more likely to be deleted than adenines (11.4%)

or  thymidines  (9.5%).  When we  considered  the  Phred  quality  score  of  each  base  call,  we

observed a median quality score  of  72 for  correct  base calls  and scores of  22 and 20 for

substitutions and insertions, respectively (Figure 1A). Although there was a broad distribution of

quality scores with each type of base call,  the errors could largely be distinguished from the

correct base calls.

A basic sequence curation procedure. To establish a simple curation procedure, we culled

any sequence that contained an ambiguous base call, had a string of the same base repeated 9

or more times, did not start and end at the expected alignment coordinates for that region of the

16S rRNA gene, or that was chimeric. This reduced the experiment-wide error rate from 1.80 to

0.90%. This basic procedure resulted in the removal of between 4.0 (V4) and 32.2 (V1-V9)% of

the reads. The percentage of reads removed increased with the length of the fragment (Figure

2). The number of reads removed because of the presence of ambiguous base calls was similar
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to the number of reads that were removed for not fully aligning to the correct region within the

16S rRNA gene (Table 2). The latter class of errors was generally due to sequence truncations

that could not be explained.

Identifying correlates of increased sequencing error. In contrast to the 454 and Illumina-

based platforms where the sequencing quality decays with length, the consensus sequencing

approach employed by the PacBio sequencer is thought to generate a uniform distribution of

errors. This makes it impossible to simply trim sequences to high quality regions. Therefore, we

sought to identify characteristics within sequences that would allow us to identify and remove

those sequences with errors using three different approaches. First, we hypothesized that errors

in the barcode and primer would be correlated with the error rate for the entire sequence. We

observed a strong relationship between the number of mismatches to the barcodes and primers

and the error  rate  of  the  rest  of  the  sequence  fragment  (Figure  1B).  Although allowing  no

mismatches to the barcodes and primers yielded the lowest error rate, that stringent criterion

removed a large fraction of  the reads from the dataset  and allowing at  most  one mismatch

marginally increased the error rate while preserving more sequences in the dataset (Figure 2).

Second, we hypothesized that increased sequencing coverage should yield lower error rates.

We found that once we had obtained 10-fold coverage of the fragments, the error rate did not

change appreciably (Figure 1C). When we compared the error rates of reads with at least 10-

fold coverage to those with less coverage, we reduced the error rate by 26.5 to 29.7% for each

region except the V4 region for which the error rate was reduced by 53%. Third, based on the

earlier  analysis  associating  errors  with  quality  scores,  we  used  two  quality  score-based

approaches for identifying reads with errors (Figure 3).  We calculated the minimum average

quality score across all 50-nt windows within each sequence and we also calculated the average

quality  score  across  each  sequence.  We then  associated  both  methods  of  calculating  the

average quality score with the error rate of the reads and the fraction of sequences that would

be retained if  each threshold were selected.  Using the sliding window approach we did not
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observe any clear break points indicating that one quality score would be better than another

(Figure  3AB).  In  contrast,  using the whole  sequence  quality  score  average we  observed a

decrease  in  the error  rate  and  the  fraction  of  sequences  retained  when the threshold  was

increased above 60 (Figure 3CD). When we used this threshold, we were able to reduce the

error rate by 32.8 to 56.1% (Figure 2A). We noted that the fraction of reads retained decreased

as the length of the fragment increased with retention of 86.9% of the V4 reads and 50.1% of the

V1-V9 reads (Figure 2B).  Next,  we asked whether  which combinations of  culling reads with

mismatches to the expected barcodes and primers, less than 10-fold sequencing coverage, and

an average quality score less than 60 made the most meaningful reductions in the error rate

while preserving the most reads when implemented with the basic curation pipeline (Figure 2B).

We observed similar error rates when we required one or fewer mismatches to the barcodes and

primers and an average quality score above 60 as when we also required a minimum 10-fold

coverage. Culling sequences that had more than one mismatch to the barcodes and primers and

those with an average quality score less than 60 reduced the error rate to between 0.22 and

0.97.  This  procedure  resulted  in  the removal  of  18  and  53% of  the  reads  (Figure  2).  The

remainder of this paper uses this sequence curation approach.

Pre-clustering sequences to further reduce sequencing noise. Previously, we implemented

a pre-clustering algorithm where sequences were sorted by their abundance in decreasing order

and rare sequences are clustered with a more abundant sequence if the rare sequences have

fewer mismatches than a defined threshold when compared to the more abundant sequence.

The recommended threshold was a 1-nt difference per 100-nt of sequence data. For example,

the threshold for 250 bp fragment from the V4 region would be 2 nt or 14 for the 1458 bp V1-V9

fragments. This approach removes residual PCR and sequencing errors while not overwhelming

the resolution needed to identify OTUs that are based on a 3% distance threshold. The tradeoff

of this approach is that one would unable to differentiate V1-V9 sequences that truly differed by

less than 14 nt. When we applied this approach to our PacBio data, we observed a reduction in
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the error rate between 15 (V1-V3 and V3-V5) and 44% (V1-V5). The final error rates varied

between 0.14 (V4) and 0.83% (V3-V5); the full-length, V1-V9, fragments had an error rate of

0.32% (Figure  2B).  These error  rates  are  7-40  times higher  than what  we  have previously

observed using the 454 and Illumina MiSeq platforms (0.02%)(Kozich et al. 2013; Schloss et al.

2011)

Effects of error rates on OTU assignments. The sequencing error rate is known to affect the

number of OTUs that are observed (Schloss et al. 2011). For each region, we determined that if

there were no chimeras or PCR or sequencing errors, then we would expect to find 20 OTUs.

When  achieved  perfect  chimera  removal,  but  allowed  for  PCR  and  sequencing  errors,  we

observed between 6 (V4) and 63.1 (V3-V5) extra OTUs. The range in the number of extra OTUs

was largely explained by the sequencing error rate (Pearson's R=0.91). Next, we determined the

number of OTUs that were observed when we used UCHIME to identify chimeric sequence.

Under these more realistic conditions, we observed between 7.4 (V4) and 86.8 (V3-V5) extra

OTUs. Finally, we calculated the number of OTUs in the soil, mouse, and human samples using

the same pipeline with chimera detection and removal based on the UCHIME algorithm. Again,

we found that there was a strong correlation between the number of observed OTUs and the

error rate for the soil (R=0.62), mouse (R=0.90), and human samples (R=0.72). These results

underscore the effect of sequencing error on the inflation of the number of observed OTUs.

Increasing sequence length improves classification. We classified all of the sequence data

we  generated  using  the  naïve  Bayesian  classifier  using  the  RDP, SILVA,  and  greengenes

reference taxonomies (Figure 4). In general, increasing the length of the region improved the

ability to assign the sequence to a genus or species. Interestingly, each of  the samples we

analyzed  varied  in  the  ability  to  assign  its  sequences  to  the  depth  of  genus  or  species.

Furthermore, the reference database that did the best job of classifying the sequences varied by

sample  type.  For  example,  the  SILVA reference  did  the  best  for  the  human feces and soil

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.778v1 | CC-BY 4.0 Open Access | rec: 7 Jan 2015, publ: 7 Jan 2015

P
re
P
ri
n
ts



samples  and  the  RDP  did  the  best  for  the  mouse  feces  samples.  An  advantage  of  the

greengenes database is that it contains information for 2,514 species-level lineages for 11% of

the reference sequences; the other databases only provided taxonomic data to the genus level.

There was a modest association between the length of the fragment and the ability to classify

sequences to the species-level for the human samples; there was no such association for the

mouse and soil samples. In fact, at most 4.0% of the soil sequences and 3.8% of the mouse

sequences could be classified to a species. These results indicate that the ability to classify

sequences to the genus or species level is a function of  read length, sample type,  and the

reference database.

Sequencing errors are not random. Above, we described that although there was no obvious

bias in the substitution or insertion rate, we did observe that guanines and cytosines were more

likely to be deleted than adenines and thymidines. This lack of randomness in the error profile

suggested that there might be a systematic non-random distribution of the errors across the

sequences. This would manifest itself  by the creation of duplicate sequences with the same

error. Because we were able to obtain a large number of reads from the mock communities

where we sequenced the V4 (N=17361),  V1-V5 (N=8061 sequences),  and V3-V5 (N=4854)

regions, we investigated the mock community data from these regions further. We identified all

of the sequences that had a 1-nt difference to the true sequence. For these three regions, a

majority of the sequences with 1-nt errors were only observed once (V4: 75.6%, V1-V5: 82.8%,

V3-V5: 79.8%).  We found that  the frequency of  the most abundant 1-nt  error  paralleled the

number of sequences. There were two sequences in the V4 dataset that occurred 76 times, one

sequence in the V1-V5 dataset that occurred 30 times, and one sequence in the V3-V5 dataset

that occurred 17 times. Contrary to previous reports (Carneiro et al. 2012;  Koren et al. 2012),

these results indicate that reproducible errors occur with the PacBio sequencing platform and

that they can be quite frequent.
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Conclusions

The various sequencing platforms that are available to microbial ecologists are able to fill unique

needs and have their own strengths and weaknesses. For sequencing the 16S rRNA gene, the

454 platform is able to generate a moderate number of high-quality 500-nt sequence fragments

(error rates below 0.02%) (Schloss et al. 2011) and the MiSeq platform is able to generate a

large number of high-quality 250-nt sequence fragments (error rates below 0.02%) (Kozich et al.

2013). The promise of the PacBio sequencing platform was the generation of high-quality near

full-length sequence fragments. As we have shown in this study, it is possible to generate near

full-length sequences; however, the error rate associated with those reads is considerable (i.e.

0.32%) and requires a level of sequencing coverage that is not commonly observed in a typical

sequencing  run.  This  results  in  the  generation  of  a  small  number  of  low quality  full-length

sequences. When we considered the shorter V4 region, which is similar in length to what is

sequenced by the MiSeq platform, the error rates we observed with the PacBio platform were

nearly 5-fold higher than what has previously been reported. It appears that the promise offered

by the PacBio platform has not been realized.

The widespread adoption of the 454 and MiSeq platforms and decrease in the use of Sanger

sequencing for the 16S rRNA gene has resulted in a decrease in the generation of the full-length

reference  sequences  that  are  needed  for  performing  phylogenetic  analyses  and  designing

lineage specific PCR primers and fluorescent in situ hybridization (FISH) probes. It remains to be

determined  whether  the  elevated  error  rates  we  observed  for  full-length  sequences  are

prohibitive for these applications. We can estimate the distribution of errors assuming that the

errors follow a binomial distribution along the length of the 1,500 nt gene with the error rate that

we achieved from the V1-V9 mock community data prior to pre-clustering the sequences, which

was 0.52% (Figure 5). Under these conditions one would only expect 0.04% of the sequences to

have no errors. In fact, 95% of the reads would have at least 3 errors and 50% of the reads

would have at least 8 errors. If the error rate could be dropped to 0.25%, then 95% of the reads
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would have at least 1 error and 50% of the reads would have at least 4 errors. If it were possible

to replicate the low error rates we have previously observed using the 454 and Illumina MiSeq

platforms, which was 0.02%, then we would expect 74.1% of the sequences to have no errors.

In fact, 95% of the reads would have 1 or fewer errors. Although full-length sequence data is

highly desired, at this point, it does not appear that the PacBio platform can provide the data of

sufficient quality to fill the niche of generating reference sequences.

Full-length  sequences  are  frequently  seen  as  a  panacea  to  overcome  the  limitations  of

taxonomic classifications. The ability to classify each of our sample types benefited from the

generation of full-length sequences. It was interesting that the benefit varied by sample type and

database. For example, using the mouse libraries,  the ability to classify each of the regions

differed by less than 5% when classifying against the SILVA and greengenes databases. The

effect of the database that was used was also interesting. The RDP database outperformed the

other databases for the mouse samples and the SILVA database outperformed the others for the

human and soil samples. The three databases were equally effective for classifying the mock

community. Finally, since only the greengenes database provided species-level information for

its reference sequences it  was the only database that allowed for resolution of species-level

classification. The sequences from the mouse and soil libraries were not effectively classified to

the species level (all less than 10%). In contrast, classification of the human libraries resulted in

more than 40% of the sequences being classified to a genus, regardless of the region. That the

variation in species-level classification for the human libraries was less than 10% suggests that

the benefit of added length is minimal considering the lower sequencing yield.

The development of newer sequencing technologies continue to advance and there is justifiable

excitement to apply these technologies to sequence the 16S rRNA gene. Although it is clearly

possible to generate sequencing data from these various platforms, it is critical that we assess

the platforms for their ability to generate high quality data and the particular niche that the new
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approach will fill. With this in mind, it is essential that researchers utilize mock communities as

part  of  their  experimental  design  so  that  they  can  quantify  their  error  rates.  The  ability  to

generate large numbers of near full-length 16S rRNA gene sequences is an exciting advance. At

this point, the excitement must be tempered by the appreciation that the error rates limit the

application of the approach.
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Figure 1(on next page)

Summary of errors in data generated using PacBio sequencing platform to sequence

various regions within the 16S rRNA gene.

Quality scores varied with error types (A). The sequencing error rate of the amplified gene

fragments increased with mismatches to the barcodes and primers (B). The sequencing error

rate declined with increasd sequencing coverage; however, increasing the sequencing depth

beyond 10-fold coverage had no meaningful effect on the sequencing error rate (C).
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Figure 2(on next page)

Change in error rate (A) and the percentage of sequences that were retained (B) when

using various sequence curation methods.

The condition that was used for downstream analyses is indicated by the star. The plotted

numbers represent the region that was sequenced. For example "15" represents the data for

the V1-V5 region.
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Figure 3(on next page)

The relationship between the error rate of each region and the composite

quality scores for the sequences.

The error rates (A and C) and percentage of sequences (B and D) were calculated for the

reads that had a composite quality score above the plotted value. The composite quality

scores were calculated by either determining the minimum value of the average quality

score wihin all 50-nt windows within each region (A and B) or by calculating the average

quality score across the entire sequence read (C and D).
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Figure 4(on next page)

Percentage of unique sequences that could be classified.

Classifications were performed using taxonomy references curated from the RDP, SILVA, or

greengenes databases for the four types of samples that were sequenced across the six

regions from the 16S rRNA gene. Only the greengenes taxonomy reference provided species-

level information.
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Figure 5(on next page)

The percentage of V1-V9 sequences that were predicted to have between 0 and 20

errors as a function of the error rate of the sequences.

The highest error rate, 0.52%, corresponds to what was observed before the pre-clustering

step. The smallest error rate (0.02%) corresponds to our previous observations using the 454

and MiSeq sequencing platforms. The predicted number of errors was assumed to follow a

binomial distribution.
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Table 1(on next page)

Tables
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Table 1.  Summary of the primer pairs used to generate the 16S rRNA gene fragment

fragments and the characteristics of each region.

Forward Reverse

E. coli

coordinates
a

Lengt
h

(bp)b

V4 GTGCCAGCMGCCGCGGTA
A

GGACTACHVGGGTWTCTAA
T

515-806 253

V3-
V5

CCTACGGGAGGCAGCAG CCCGTCAATTCMTTTRAGT 341-927 551

V1-
V3

AGRGTTTGATYMTGGCTCA
G

ATTACCGCGGCTGCTGG 8-534 490

V1-
V5

AGRGTTTGATYMTGGCTCA
G

CCCGTCAATTCMTTTRAGT 8-927 881

V1-
V6

AGRGTTTGATYMTGGCTCA
G

ACRACACGAGCTGACGAC 8-1078 1033

V1-
V9

AGRGTTTGATYMTGGCTCA
G

GGYTACCTTGTTACGACTT 8-1510 1464

a The  coordinates  where  the  start  and  end  of  the  forward  and  reverse  primers  anneal,

respectively.

b The number of bases between the primers.
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Table 2. Summary of the reasons that sequences were excluded because of the basic

sequence curation steps

Initial
sequences

(N)

Good
reads
(%)

Wrong
start/end
position

(%)

Excessively long
homopolymers

(%)

Ambiguous
base calls

(%)

Sequences
remaining

(N)

V4 21841 96.0 2.9 0.1 1.5 20974
V3-
V5

5212 84.0 10.0 0.1 7.5 4378

V1-
V3

7236 77.3 15.6 0.2 11.0 5594

V1-
V5

14875 79.1 11.5 0.2 12.5 11764

V1-
V6

2220 72.6 11.4 0.1 19.4 1611

V1-
V9

5003 67.8 18.0 0.5 17.5 3393
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