
Selaginella and the satyr: Euptychia westwoodi larval
performance on an ancient plant lineage

Members of the plant genus Selaginella are often considered living fossils, as extant taxa

are virtually indistinguishable from 300 Ma fossils. In contrast, the brush-footed butterflies

are a relatively recent radiation, having diversified primarily within the last 60 Ma. Satyrs

are among the most derived of these butterflies, likely radiated ~35 Ma and are known

primarily for their high diversity and propensity to feed on grasses and sedges. In contrast

to its close relatives, the Neotropical satyr genus Euptychia also feeds on Selaginella,

which is thought to be nutrient poor. Using no choice feeding experiments, I compared

growth rates Costa Rican E. westwoodi that were offered two species of Selaginella, to

those that were offered Lasiascis rusifolia, a grass commonly fed upon by close relatives. I

discovered E. westwoodi larvae fed on two species of Selaginella and there was no

difference in mass gained between the two species. However, larvae refused to feed on L.

ruscifolia and lost mass over the course of the trial and expired unless they were

transferred to Selaginella. To the best of my knowledge, these are the first data to report

larval performance of the butterfly genus Euptychia or any Selaginella feeding insect. .

Though far from conclusive, these results support the proposition that Euptychia have lost

the ability to feed on other host plants and are now specialized on grasses.
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Introduction 1 

 Butterflies of the family Nymphalidae underwent a period of rapid diversification during 2 

the late Cretaceous period, approximately 90 Ma, resulting in ~6000 extant species in ~540 3 

genera (Wahlberg et al. 2009). The timing of the nymphalid radiation is highly correlated with 4 

the diversification and spread of the angiosperms (their primary host plants), such that this 5 

pattern is considered a classic example of co-evolution (Ehrlich & Raven 1964; Crane, Friis, & 6 

Pedersen 1995; Janz & Nylin 2008). The Satyrinae is the most specious subfamily within the 7 

Nymphalidae, containing ~2200 species in ~200 genera (Hamm & Fordyce 2014), and 8 

experienced a burst of diversification in the Oligocene (~25 Ma) (Peña 2007). Consistent with the 9 

co-evolutionary hypothesis, this expansion is associated with diversification of the satyr’s 10 

primary host plants, which are graminoids such as Poaceae and Cyperaceae (Strömberg 2005; 11 

Spriggs, Chistin & Edwards 2014; Peña 2007). Graminoid feeding is likely an ancestral condition 12 

in the Satyrinae as this regime is found in the vast majority of satyrs (Ackery 1988; Peña 2007).  13 

 The satyrine genus Euptychia Hübner 1818 is found in the Neotropics but does not follow 14 

the dietary trends of its relatives (i.e. other member of the subfamily or tribe Euptychiini). While 15 

there are records of Euptychia feeding on Poaceae (Beccaloni et al., 2008; Janzen & Hallwachs 16 

2009), species within this genus primarily feed on two plant lineages, the Selaginellaceae 17 

(Lycopsidophyta) and Neckeraceae (Bryophyta) (Singer et al., 1971; Singer & Mallet 1985; 18 

DeVries 1987 Mound, Martin & Polaszek 1994). These are interesting host plants for Euptychia, 19 

not only because these are not graminoid plants, but also because they are two of the most 20 

ancestral plant lineages known (Finet et al., 2010).  21 

Members of the Lycopsidophyta reached peak diversity during the Carboniferous period 22 

(approximately 310 Ma) and are among the ancestral taxa to the gymnosperm/angiosperm 23 
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radiation (Nickrent et al., 2000; Banks 2009). The genus Selaginella is typically considered a 24 

“relict” species as it has exhibited very little phenotypic change over the last 300 Ma, yet few 25 

insects feed on it (Mound et al., 1994; Banks 2009). Only 16 species from 6 orders of insects 26 

have been reported to feed on Selaginella, yet there are multiple accounts of Euptychia spp. 27 

feeding on Selaginella (Singer et al., 1971; DeVries 1987; Mound et al., 1994; Janzen and 28 

Hallwachs 2009). It is intriguing that Euptychia would make the apparent switch to Selaginella 29 

and mosses considering these plants typically grow in nutrient poor soils and are thought to have 30 

less nutrient content relative to the more derived plant graminoids (Scriber & Slansky 1981; 31 

Egorov 2007).  32 

 Despite this apparent transition to feed on nutrient poor and ancient plants, little in known 33 

about the larval ecology of Euptychia on Selaginella. I set out to address outstanding questions in 34 

Euptychia ecology, such as: what is the degree of feeding specialization on different Selaginella 35 

species, and at what rate do larvae add mass under different feeding conditions? To this end I 36 

conducted a series of no-choice feeding studies using E. westwoodi Butler 1866, a species of 37 

Euptychia common to the lowland forests of Costa Rica, and has only been reported feeding on 38 

one species of Selaginella, S. eurynota (DeVries 1987).  39 

 40 

Materials and Methods 41 

 This study was conducted at both the La Selva Biological Research Station and the 42 

Tirimbina Biological Reserve in Costa Rica between 18 and 23 May 2010. These sites are located 43 

in lowland tropical wet forest of Sarapiqui County, Heredia province. Larvae of E. westwoodi 44 

(3rd-4th instars) were collected from S. eurynota, a locally abundant species. I was restricted to 45 

using larvae of this size because the balance at my disposal could not reliably measure smaller 46 
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larvae. In total, 54 E. westwoodi larvae were collected in the field. Once in the laboratory, each 47 

individual larva’s mass was measured to the nearest 1/10th of a mg using an SM-50 semi-micro 48 

balance (Curtiss-Wright Corp.). Larvae were then haphazardly placed into one of three treatment 49 

groups, each with an initial n=18.  50 

 Individual larvae were placed into 2 oz. sealable containers with the respective food plant 51 

for that treatment. Treatment group S1 was offered S. eurynota, the host plant the larvae were 52 

collected on; treatment group S2 was offered S. arthritica, another Selaginella species found in 53 

proximity to S. eurynota; and treatment group G1 were offered the grass Lasiacis ruscifolia. This 54 

grass was chosen because it is host plant to other Euptychiini species and its sympatric with 55 

Selaginella (DeVries 1987; Janzen & Hallwachs 2009). All treatment groups were offered fresh, 56 

undamaged plant material ad libidum in the morning and again in the evening. The experiment 57 

was maintained in an open-air classroom under ambient conditions (~25° C, 80% RH).   Larvae 58 

were allowed to feed for 48 hrs, after which time all larvae were measured for mass.  59 

 Treatment effects were estimated using repeated measures ANOVA (rmANOVA) as 60 

implemented in R 3.1.2 (R Core Team 2014). All data and the code necessary to reproduce the 61 

results presented here are freely available on the FigShare website (DOI to be established on ms 62 

is finalized). I modeled this in two ways, using an additive model and one with interaction terms. 63 

First, I asked if the mass (mg) of an individual larva acted as a function of treatment group plus 64 

its starting mass. Second, I asked if the starting mass of a larva was a function of treatment group 65 

interacting with starting mass. I then used ANOVA to ask if the two models were significantly 66 

different from one another. These, and all other comparisons, were considered statistically 67 

significant at α = 0.05. Given that rmANOVA is the equivalent of the one-way ANOVA for non-68 

independent groups, I used pairwise t-tests with Holm’s corrections as a post hoc test to compare 69 
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differences among groups. At the conclusion of the no-choice trial, all larvae were maintained 70 

through to the adult stage so their identity could be confirmed.   71 

 72 

Results and Discussion 73 

 After 48 hrs of no-choice trials the final experimental group sizes were: S. eurynota n = 74 

18, S. arthritica n = 17, and L. ruscifolia n = 17.  The additive and interactive models could not 75 

be distinguished statistically, so results from the additive model are reported for ease of 76 

interpretation. The rmANOVA appeared to sufficiently capture the variation I sought to explain, 77 

with a well-fit slope (P2, 48 = 2 e-16) and high R2 (0.78) (Table 1).  E. westwoodi larvae offered 78 

Selaginella were observed feeding, and most gained mass over the course of the experiment (Fig 79 

2-S1, S2). One individual from the S. eurynota group lost mass and expired shortly after the 80 

conclusion of the feeding trial. Necropsy revealed what appeared to be fungal mycelia, which 81 

filled the body cavity. Additionally, one individual from each of the Selaginella groups 82 

maintained mass during the experiment. In these cases the individuals molted, which suggests 83 

that each would have continued to gain mass had the experiment continued.  84 

Contrary to expectations, larvae offered L. ruscifolia were never observed feeding and all 85 

individuals in this treatment lost mass during the trial (Fig 2-G1). This was surprising given that 86 

L. ruscifolia is a common host plant of close relatives of Euptychia (DeVries 1987; Beccaloni et 87 

al., 2008; Janzen & Hallwachs 2009), and because grasses are generally considered to have low 88 

levels of allelochemicals relative to other angiosperms (Ackery 1988). Behaviorally, larvae 89 

placed with L. ruscifolia would crawl over leaf plant material but were never observed feeding; in 90 

contrast to Selaginella groups, which appeared to feed continuously. When fresh food was 91 
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exchanged for old, I microscopically examined L. ruscifolia leaves for damage and observed 92 

none. 93 

 Given these observations, it was not surprising that post hoc tests detected statistically 94 

significant differences between the S. eurynota / S. arthritica and L. ruscifolia groups (P < 0.001 95 

for both comparisons). The average mass change (with 95% CIs) over the two days the 96 

experiment were as follows: S. eurynota = +11.2 mg (6.7 – 15.7), S. arthritica = +12.5 mg (7.9 – 97 

16.9), L. ruscifolia = -3.1 mg (-7.6 – 1.4; N. b., the upper 95% CI exceeds 0, which is a side 98 

effect of the method used predict confidence intervals; no individuals in this group gained mass). 99 

I failed to detect a difference in mass gain between the two Selaginella groups (P = 0.64, t-test 100 

with Holm’s correction). Once the no-choice trials were concluded, half of the larvae in the L. 101 

ruscifolia treatment group were offered S. eurynota, or maintained on L ruscifolia. All larvae 102 

switched to S. eurynota immediately resumed feeding and eventually completed metamorphosis, 103 

while individuals that remained on L. ruscifolia expired within 96 hrs.  104 

 While these data suggest that E. westwoodi are specialized on Selaginella, it is premature 105 

to make that claim for a number of reasons. There are many instances of local herbivore 106 

populations evolving some degree of host specificity that the species as a whole does not exhibit. 107 

This phenomenon has been referred to as the “mosaic pattern of coevolution” (Thompson 1994; 108 

Thompson 2005) and is commonly recognized in butterflies. Furthermore, we know from 109 

different regions that other Euptychia feed on both grasses and Selaginella (Janzen and 110 

Hallwachs 2009). Additionally, it is possible that E. westwoodi is capable of feeding on grasses 111 

other than L. ruscifolia, and was not offered a suitable alternative.  112 

Another possible explanation for the refusal of L. ruscifolia was the use of 3rd – 4th instars. 113 

Other researchers have demonstrated Pieris rapae (Lepidoptera: Pieridae) larvae will reject host 114 
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plants if switched during later instars (Kerowe 1989; Renwick & Lopez 1999). I cannot discount 115 

this, but note that transferring E. westwoodi larvae from S. eurynota to S. arthritica had no 116 

apparent effect on mass; however the magnitude of difference between Selaginella and Lasiacis 117 

could be much greater than the differences among Selaginella. In contrast, other Lepidoptera are 118 

capable of switching host plants at later instars and still complete development (Scriber 1979; 119 

Scriber 1982). A longer experiment using neonate caterpillars and additional alternative host 120 

plants are needed to further understand the degree of host specialization present in E. westwoodi.   121 

 What is the diet breadth of Euptychia? This is not an easy question given the high level of 122 

divergence among Euptychia’s three host plants. Using a metric such as Faith’s Phylogenetic 123 

Diversity (PD) index (Faith 1992; Symons & Becalloni 1999) and functions in the “picante” 124 

package in R (Kembel et al., 2010), Euptychia has an unrooted PD of ~0.578 (branch lengths 125 

from Finet et al., [2010]). This value is strongly influenced by the phylogenetic distance between 126 

Neckeraceae, Selaginellaceae, and Poaceae. This influence is observed when analyzing the genus 127 

Adelpha, which has a PD of 0.576, but feeds on 22 host plant families. Other methods that 128 

consider host breadth, such as the ordinated diet breadth (ODB) (Hamm and Fordyce, 2014; 129 

Fordyce et al. in prep), may provide a more intuitive answer to the question of diet breadth. ODB 130 

asks, based on insect diets, what is the effective diet breadth of a taxon (Fordyce et al. in prep)? 131 

Using this metric, Euptychia has an ODB of 1.4, while Adelpha has an ODB of 12.8, which 132 

seems more in line with the number of host families that these genera are known to feed on.  133 

  To the best of my knowledge, these are the first data reporting insect performance on 134 

Selaginella. These data are useful but indicate other experiments should be performed. Future 135 

directions for research on Euptychia diet breadth include: beginning the experiment with eggs, 136 

conducting the experiment for a longer period, and comparing final adult dry mass and size 137 
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among experimental groups. In addition, it would be useful to investigate other Selaginella 138 

feeding insects and butterflies, such as the two Oriental satyr genera, Acrophtalmia and Ragadia. 139 

Both have been reported to feed on Selaginella, and would provide an important comparative 140 

framework for future work (Igarashi & Fukuda 1996). 141 

  142 

Conclusions 143 

 Larval (3rd-4th instar) E. westwoodi feeding on Selaginella gained an average of ≥10 mg 144 

during a two day no-choice feeding experiment, while larvae offered a common grass refused to 145 

feed and lost ~3 mg during that same time. Larvae that were initially offered grass, but were later 146 

switched to Selaginella, resumed feeding and eventually completed metamorphosis. A number of 147 

issues warn against a broad interpretation of these results, and calling E. westwoodi a specialist 148 

based on these results would be over reaching. However, it appears that 3rd-4th instar E. 149 

westwoodi from the Sarapiqui region of Costa Rica were adapted to Selaginella and incapable of 150 

feeding on a common grass. 151 
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 251 
Figure 1. Plot of rmANOVA results for E. westwoodi individual mass (mg) at Time1 (X-axis) 252 
and Time 2 (Y-axis) for three treatment groups: S1 = Selaginella eurynota, S2 = S. arthritica, G1 253 
= Lasiacis ruscifolia. Solid line indicates the model slope and the grey band indicates the 95% 254 
confidence interval. The dashed line is the 1:1 line; individuals above it gained mass and 255 
individuals below it lost mass during the course of the experiment.   256 
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Table 1. rmANOVA results from E. westwoodi feeding experiment. S1 = S. eurynota, S2 = S. 257 
arthritica, G1 = L. ruscifolia.  “T1 slope” indicates the slope of the regression at time 1, “S1 mass” 258 
indicates that group S1 was ~11 mg heavier than G1 at the conclusion of the experiment.  259 

 Estimate (± SE) t value P  
slope 0.98 (0.08) 12.3 < 2 e-16 

S1 mass 11.2 (2.23) 5.0 7.7 e-6 

S2 mass 12.4 (2.24) 5.5 1.1 e-6 

 260 
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