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Noise and metabolic free energy in high-order biocognition
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We examine the possible role of ‘noise’ as a control signal for large-scale cognitive biological
phenomena that recruit simpler cognitive modules into temporary, dynamic working coalitions.
Noise color, as well as magnitude, may convey essential control information, a possibly important
extension of the Data Rate Theorem. An adaptation of the Black-Scholes model suggests the
availability of metabolic free energy can determine rates of coalition biocognition in the presence
of noise. Evolutionary process may have exapted colored noise as a subtle tool for the regulation
of biological phenomena, supplementing direct molecular signals. Experimental verification of this
conjecture may be similarly subtle.

PACS numbers:

The life course of a higher organism is dominated by
a spectrum of sophisticated systems that recruit lower
level cognitive modules into dynamic coalitions to meet
changing patterns of threat and affordance [1-3]. These
systems include gene expression, wound healing, immune
response, animal consciousness, and so on, and operate at
vastly different rates. For a large animal, these particular
examples typically have time constants of years, months,
hours, and fractions of a second.

Most notably, neural phenomena are strongly domi-
nated by signals that are difficult to interpret as anything
but ‘noise’, making determination of any ‘neural code’ a
challenging enterprise indeed. As Koch [4] puts the mat-
ter, it has recently been realized that cortical networks
are primarily driven by stochastic internal fluctuations of
inhibition rather than by excitatory feed-forward input –
spikes are preceded by a momentary reduction in inhibi-
tion rather than by an increase in excitation. For micro-
scopic models of individual neurons, the phenomenon has
been characterized as ‘inverse stochastic resonance’ [5,6].
Here, we will provide a model of macroscopic stochastic
logic gates similarly triggered by a reduction in ‘noise’.

That is, we suggest ‘noise’, tinted in various colors,
can be a powerful control signal for such large-scale re-
cruitment processes. We use methods similar to those
applied to the study of noise-driven phase transitions [7].
A further noise argument, via a Black-Scholes model, il-
luminates the influence of metabolic free energy supply
rate on the rate of coalition cognition.

The Baars model of animal consciousness [3,8,9] posits
the phenomenon as the assembly of unconscious cognitive
modules into shifting working arrangements that address
sensory or internal signals exceeding a dynamic thresh-
old. Wallace [3] argues that the underlying mechanism
is general, a consequence and evolutionary exaptation
of the inevitable information crosstalk between cognitive
processes. In contrast to the simple on-off threshold oper-
ation of neurons that may involve noise through stochas-
tic resonance (e.g., [10]), the assembly of such working

coalitions is usually a large-scale explosive ‘reentrant’
autocatalytic phenomenon in which signal boosts signal
until a regulated maximum is reached [11]. We model
that dynamic to include noise, first taken as ‘white’, i.e.,
the mathematically tractable fiction of having a uniform
spectrum across frequencies.

A simple picture of explosively reentrant phenotype
emergence in the presence of noise can be represented by
the Ito stochastic differential equation

dXt = αXt(1−
Xt

K
)dt+ σXtdWt (1)

where α > 0 is a rate constant, K > 0 a ‘carrying capac-
ity’, and σ > 0 the amplitude of the white noise dWt, its
only characteristic.

Applying the Ito chain rule to log[Xt] in equation (1)
[12,13] gives, as a consequence of the Ito correction factor,
the long-time limits

Xt → 0, α <
σ2

2

Xt → K(1− σ2

2α
), α ≥ σ2

2
(2)

In this model, the ratio between the reentrant autocat-
alytic amplification parameter α and the squared mag-
nitude of the white noise, σ2, determines whether, and
to what extent, the large-scale logic switch defined by
equation (1) operates. α and the ‘carrying capacity’ K
are presumed to be genetically determined or to have
been learned, while σ represents an internal control sig-
nal that can proportionally activate the biological logic
gate, making it an analog system.

There is a strikingly similar control theory result, the
Data Rate Theorem (DRT), a generalization of the clas-
sic Bode Integral Theorem for linear control systems.
The DRT bridges a longstanding gap between informa-
tion theory and control theory, describing the stability of
feedback control under data rate constraints [14]. Given
a noise-free data link between a discrete linear plant and
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its controller, unstable modes can be stabilized only if the
feedback data rate H is greater than the rate of ‘topolog-
ical information’ generated by the unstable system. For
the simplest incarnation, if the linear matrix equation of
a ‘plant’ has the form xt+1 = Axt + ..., where xt is the
n-dimensional state vector at time t, then the necessary
condition for stabilizability is that

H > log[|detAu|] (3)

where det is the determinant and Au is the decoupled
unstable component of A, the part with eigenvalues ≥ 1.
The determinant represents a generalized volume. Thus
there is a critical positive data rate below which there
does not exist any quantization and control scheme able
to stabilize an unstable system.

Here, in contrast, ‘noise’, measured by σ, controls an
‘explosive’ instability transition to a fraction of the car-
rying capacity K determined by the ratio between the
amplification parameter α and σ2.

Other forms of noise, for example fractional Brownian
motion, produce more complicated results, as do geo-
graphic extensions of the model [15,16]. The most com-
plete treatment currently available appears to be via the
Doleans-Dade exponential ([12] Theorem 36).

Equation (1) is expressed in terms of classic white noise
having the simple quadratic variation [12,13] [Wt,Wt]t =
σ2t, where, again, σ is the single available parameter, the
noise magnitude. These and similar arguments can be ex-
tended to other kinds of noise, having arbitrary quadratic
variation and discontinuous (Levy-like) stochastic jumps,
provided they have the characteristic form

dXt = Xt−dYt (4)

where Yt is a stochastic process, and t− indicates left-
continuous. Letting ∆Yt = Yt − Yt−, representing the
jump process, the solution is given by the Doleans-Dade
exponential as [12]

Xt = exp(Yt−
1

2
[Yt, Yt]

C
t )Πs≤t(1+∆Ys) exp(−∆Ys) (5)

where [Yt, Yt]
C
t is the path-by-path continuous part of the

quadratic variation of Yt. This is written as

[Yt, Yt]
C
t = [Yt, Yt]−

∑
0≤s≤t

(∆Ys)
2 (6)

The product term in equation (5), with jump processes
having nonzero ∆, converges.

If the control signal ‘noise’ represented by the continu-
ous part of the quadratic variation [Yt, Yt]

C
t is monoton-

ically increasing in time at a greater rate than Yt, the
Doleans-Dade expression collapses to zero, and the bio-
logical logic gate is not activated. The similarity with
the Data Rate Theorem thus arises inversely, through a
nonactivation condition as

I =
1

2
d[Yt, Yt]

C/dt > dYt/dt (7)

While degrees of reentrant, autocatalytic activation –
when I ≤ dYt/dt – depend on the details of system struc-
ture, that activation represents the coordination of inde-
pendent underlying cognitive modules according to the
(inverse) control signal I.

Note that [Yt, Yt]
C
t may itself be parameterized, as in

the well-known case of fractional Brownian motion (fBM)
(e.g., [17]). For fBM, having Hurst parameter 0 ≤ H ≤ 1,
the covariance between noise at times t and s is

cov[WH(t),WH(s)] =
1

2
(t2H + s2H − |t− s|2H) (8)

If H = 1/2 the process is Brownian white noise. Fol-
lowing [18], the quadratic variation [WH

t ,W
H
t ] is +∞

for H < 1/2, proportional to t for H = 1/2, and 0 for
H > 1/2.

Although equation (5) provides a general model of
large-scale noise-driven analog logic gates, an unresolved
question concerns their rates of operation. Gene expres-
sion, wound healing, the immune response, and animal
consciousness involve the macroscopic assembly of sets of
lower level cognitive modules into similar Barrs-like dy-
namic ‘global workspaces’ that operate at vastly different
rates [3]. How is this possible? The key lies in the obser-
vation that neural tissues consume metabolic free energy
at an order of magnitude greater rate than other kinds of
tissue [19], although the argument requires some work.

Biological molecular energetics are striking. At 300 K,
molecular energies represent about 2.5 KJ/mol in avail-
able free energy. By comparison, the basic biological en-
ergy reaction, the hydrolysis of adenosine triphosphate
(ATP) to adenosine diphosphate, under proper condi-
tions at 300 K, produces some 50 KJ/mol. in reaction
energy, equivalent to a ‘reaction temperature’ of 6000 K.
A high rate of ATP delivery thus provides sufficient en-
ergy for very rapid biocogniton, taking a simple chemical
reaction perspective from the Arrhenius relation of phys-
ical chemistry (e.g., [20]).

The argument, however, must be adapted to highly
nonequilibrium cognitive physiological processes, as op-
posed to simple equilibrium chemical reactions. Interest
focuses on the Rate Distortion Function (RDF) associ-
ated with the channel connecting the organism with an
embedding and embodying environment [21]. Recall that
R(D) defines the minimum rate of information transmis-
sion needed to ensure that the mean distortion between
what is sent and what is received is less than or equal to
D ≥ 0, according to an appropriate distortion measure.

Let Rt be the RDF of the cognitive channel at time
t. A general relation can, under conditions of both white
noise and volatility, be written as

dRt = f(t, Rt)dt+ bRtdWt (9)

where the magnitude of the noise is now expressed as b
to avoid confusion with the earlier development.

Let M(Rt, t) represent the rate of incoming metabolic
free energy that is needed to achieve Rt at time t, and
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expand using the Ito chain rule,

dMt = [∂M/∂t+ f(Rt, t)∂M/∂R+
1

2
b2R2

t∂
2M/∂R2]dt

+[bRt∂M/∂R]dWt (10)

Define L as the Legendre transform of M

L = −M +R∂M/∂R (11)

Using the heuristic of replacing dX with ∆X in these
expressions, and applying the results of equation (10),
gives the relation

∆L = (−∂M/∂t− 1

2
b2R2∂2M/∂R2)∆t (12)

Analogous to the classic Black-Scholes calculation of
financial engineering [22], the terms in f and dWt cancel
out, so that the effects of noise are subsumed in the Ito
correction involving b. This invokes powerful regularity
assumptions that may be violated. Matters then revolve
about model robustness in the face of such violation.
L, as the Legendre transform of M , can be expected

to reach a constant rate of production at nonequilibrium
steady state (nss). Then ∆L/∆t = C ≥ 0, ∂M/∂t = 0,
so that

−1

2
b2R2∂2M/∂R2 = C (13)

The most interesting solution is

Mnss =
2C

b2
log[Rnss] + κ (14)

Thus

Rnss = R0 exp[
b2Mnss

2C
]

R0 = exp[
−κb2

2C
] (15)

at nonequilibrium steady state, so that the rate of cog-
nition, as measured by R, increases exponentially with
available metabolic free energy, in this approximation.

Taking C = 0 – so that L is a maximum at nss – R is
linear in M with a threshold, since R ≥ 0, and may be
expected to be sharply rising in M thereafter.

A complete solution can be found to equation (13) in-
volving the Lambert W-function, but it is quite obscure.

Extension of the Black-Scholes approach to colored or
Levy noise is not entirely trivial, and is a central theme
in much financial engineering literature (e.g., [23]).

It is interesting to compare these results with a simpler
Arrhenius reaction rate calculation [20], taking the prob-
ability of the Rate Distortion Function above a Barrs-
like consciousness threshold in a Boltzmann expression
as the rate index, and M as a temperature analog. This
produces a slightly different exponential expression that
increases rapidly at first, and then tops out with M as

Pr[R ≥ R0] =

∫∞
R0

exp[−R/ωM ]dR∫∞
0

exp[−R/ωM ]dR
= exp[−R0/ωM ]

(16)
ω is an appropriate constant and R0 the Baars thresh-

old value of the Rate Distortion Function.

The general inference – whichever model is chosen –
is that animal consciousness, which must operate with
a time constant of about 100ms, appears to do so by
providing metabolic free energy to neural tissues at a
rate an order of magnitude greater than other tissues.

Stochastic resonance is a local phenomenon in which
applied noise raises an information-carrying signal above
the triggering threshold of a nonlinear on-off mechanism,
in a large sense. By some contrast, here we examine
the possible role of noise color as well as amplitude as
a control signal for large-scale cognitive biological phe-
nomena particularly involving dynamic recruitment of
simpler cognitive modules into temporary working coali-
tions. A central inference, then, is that, for some pro-
cesses, the color of the noise may constitute an – or,
indeed, the – essential matter, in addition to magnitude
measures. Further mathematical development would in-
volve Fourier expansions of our results to more explicitly
tease out the influence of ‘color’ per se.

Extension of the argument leads to consideration of the
cognitive rate of such coalitions, finding that plausible
models imply sharply increasing rates of cognition with
increase in energy supply.

In sum, evolutionary process may have exapted mech-
anisms incorporating colored noise as a subtle tool in the
regulation of large-scale cognitive biological phenomena,
in addition to the usual well understood role of individual
molecular signals. Experimental test of this conjecture
may be similarly subtle.
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