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ABSTRACT

Background. Integration of reductionist and holistic approaches is one of the great challenges

for mathematical modeling. Mathematical models of complex systems are divided into black-

box, white-box and grey-box types. A black-box model is completely nonmechanistic as internal

mechanisms of a modeled complex system are hidden. A white-box model demonstrates direct

mechanisms of functioning of a complex system. It holistically shows all events at microlevel,

mesolevel and macrolevel of a modeled system at all stages of its dynamics. Earlier we have

used the white-box modeling for verification and reformulation of the competitive exlusion

principle. Here we investigate our white-box model of single-species population dynamics. This

is fundamentally important because most basic ecological models are of black-box type,

including Malthusian, Verhulst, Lotka-Volterra models.

Methods. Our white-box model of single-species population growth is a purely logical

deterministic individual-based cellular automata model. A biological prototype of the model is a

vegetative propagation of rhizomatous lawn grasses. Using the Monte Carlo method, we

investigate a role of different initial positioning of an individual in the habitat. We also

investigate different size and structure of the habitat and two types of fecundity.

Results. We have created and investigated a logical white-box model of an ecosystem with one

species. This model demonstrates mechanisms of the S-shaped and double S-shaped population

growth. We have investigated population growth limited by different factors, in particular by

resources, habitat structure, intraspecific competition, lifetime of individuals, regeneration time

and fecundity of individuals. We have compared the S-shaped curves with J-shaped curves of

population growth.

Conclusion. We present a basic white-box model of population dynamics which combines

reductionist and holistic approaches. Integration of reductionist and holistic approaches is

provided by the simultaneous modeling of both part-whole and cause-effect relations in complex

system. We consider this holystic multi-level white-box modeling approach as a method of

artificial intelligence which works as hyper-logical automatic deductive inference that provides

direct mechanistic insights into complex systems. The white-box modeling by logical

deterministic cellular automata is a perspective way for investigation not only of population

dynamics but also of any complex systems.

Keywords: population dynamics, complex systems, cellular automata, white-box modeling,

individual-based modeling.
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INTRODUCTION

Background

A mechanistic approach corresponds to the classical ideal of science. Existing mathematical

approaches to complex systems modeling are rather phenomenological than mechanistic.

Mechanicalness in this case assumes integration of reductionist and holistic approaches. David

Tilman drew attention to the fact that ecologists investigate interspecific competition

phenomenologically, rather than mechanistically (Tilman 1987). The article was published in

1987, however it is relevant for biodiversity science and mathematical modeling of complex

systems even today. It discusses a problem among field experiments designed to test for the

existence of interspecific competition in natural communities. Tilman suggests, �The design of

the experiments, though, is a memorial to the extent to which the often-criticized Lotka-Volterra

competition equations still pervade ecological thought. The experiments used a nonmechanistic,

Lotka-Volterra-based, phenomenological definition of competition: two species compete when

an increase in the density of one species leads to a decrease in the density of the other, and vice

versa. � With a few notable exceptions, most ecologists have studied competition by asking if an

increase in the density of one species leads to a decrease in the density of another, without

asking how this might occur. � Experiments that concentrate on the phenomenon of

interspecific interactions, but ignore the underlying mechanisms, are difficult to interpret and

thus are of limited usefulness.�(Tilman 1987)

Without mechanistic models we will not be able to overcome the limitations of

phenomenological approach which hides from us internal functional mechanisms of ecosystems.

Only a mechanistic approach will allow us not only to constate the loss of biodiversity, but to

understand what needs to be done to save it. A mechanistic mathematical model of a complex

system should be completely discrete, logical and consisting of cause-effects and of part-whole

relations between micro-subsystems, meso-subsystems and a whole macro-system.

The purpose of this study is a deeper mechanistic investigation of our logical white-box model of

single-species population dynamics, which is an alternative to the Verhulst model of population

growth (Kalmykov & Kalmykov 2013; Kalmykov & Kalmykov 2011).

Black-box, grey-box and white-box models

How to create such a mechanistic model? First, we need to know how to mechanistically model a

complex dynamic system. A complex dynamic system may be considered as consisting of

subsystems that interact. Interactions between subsystems lead to the emergence of new

properties, e.g. of a new pattern formation. Therefore we should define these subsystems and

logically describe their interactions in order to create and investigate a mechanistic model. If we

want to understand how a complex dynamic system works, we must understand cause-effect

relations and part-whole relations in this system. The causes should be sufficient to understand

their effects and the parts should be suf cient to understand the whole. There are three types of

possible models for complex dynamic systems: black-box, grey-box and white-box models (Fig.

1).
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Figure 1: Three types of mathematical models for complex dynamic systems. This
is a schematic representation of a black-box model, a grey-box model and a white-box
model with the level of their mechanistic understanding.

Black-box models are completely nonmechanistic. We cannot investigate interactions of

subsystems of such a non-transparent model. A white-box model of complex dynamic systems

has �transparent walls� and directly shows underlying mechanisms � all events at micro-, meso-

and macro-levels of a modeled dynamic system are directly visible at all stages. Earlier we

demonstrated, that the logical deterministic cellular automata approach allows to create white-

box models of complex dynamic systems (Kalmykov & Kalmykov 2013). A micro-level is

modeled by the lattice sites (cellular automata cells). A meso-level of local interactions of micro-

objects is modeled by the cellular automata neighbourhood. A macro-level is modeled by the

entire cellular automata lattice. As a rule, this approach is used in �overloaded� form, what makes

it less transparent. This is achieved by adding differential equations and stochasticity. Grey-box

models are intermediate and combine black-box and white-box approaches. Basic ecological

models are of black-box type, e.g. Malthusian, Verhulst, Lotka-Volterra models. These models

are not individual-based and cannot show features of local interactions of individuals of

competing species. That is why they principally cannot provide a mechanistic insight into

complex dynamic systems`.

A white-box model of a complex system is completely mechanistic. A white-box modeling is

axiomatic modeling. Before creating a white-box model we need to formulate an intrinsic

axiomatic system based on a general physical understanding of the subject area under study.

Axioms are the first principles of the subject. When scientists verify a theory first of all they

should strictly verify its axioms.

On the white-box modeling of population dynamics

Let's consider an example of the inadequacy of ecological models in result of incompleteness of

their axiomatic system. There are many models of population dynamics that do not take into

account what happens with individuals after their death. Dead individuals instantly disappear

with roots, stubs, etc. �One reason for the lack of understanding on the part of most botanists
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results from their failure to take into account the phenomenon of regeneration in plant

communities, which was first discussed in general terms by A. S. Watt in 1947.� (Grubb 1977)

Stephen Hubbell in his Unified Neutral Theory of Biodiversity (UNTB) in fact refuses a

mechanistic understanding of interspecific competition: �We no longer need better theories of

species coexistence; we need better theories for species presence-absence, relative abundance

and persistence times in communities that can be confronted with real data. In short, it is long

past time for us to get over our myopic preoccupation with coexistence� (Hubbell 2001).

However, he admits that �the real world is not neutral� (Rosindell et al. 2012). Since the basic

postulate (axiom) of the UNTB about ecological neutrality of the presence of similar species in

the ecosystem is wrong, this theory cannot be true. In addition, local interactions of individuals

are absent in the neutral models in principle. That is why neutral models cannot provide a

mechanistic insight into biodiversity. The UNTB models are of black-box and dark grey-box

types only � Fig. 1. We agree with James Clark, that the dramatic shift in ecological research to

focus on neutrality distracts environmentalists from the study of real biodiversity mechanisms

and threats (Clark 2009). Within the last decade, the neutral theory has become a dominant part

of biodiversity science, emerging as one of the concepts most often tested with eld data and

evaluated with models (Clark 2009). Neutralists are focused on considering unclear points of the

neutral theory � the ecological drift, the link between pattern and process, relations of simplicity

and complexity in modeling, the role of stochasticity and others, but not the real biodiversity

problems themselves (Rosindell et al. 2012). Attempts to understand neutrality instead of

biodiversity understanding look like attempts to explain the obscure by the more obscure.

Nonmechanistic ecological models make it difficult to answer basic questions, e.g. Why are

there so many closely allied species? (Anonymous 1944) An example of the difficult ecological

discussion is the debates �Ecological neutral theory: useful model or statement of ignorance?� on

the forum Cell Press Discussions (Craze 2012).Understanding of mechanisms of interspecific

coexistence is a global research priority. These mechanisms can allow us to efficiently operate in

the field of biodiversity conservation. Obviously, such knowledge must be based on mechanistic

models of species coexistence. Unfortunately, ecological modelers prefer to use the heaviest

black-box mathematical methods, which cannot produce mechanistic models of complex

dynamic systems in principle, and not use simple and long-known purely logical deterministic

cellular automata, which easily can produce white-box models and directly obtain clear

mechanistic insights into dynamics of complex systems.

Here, as a simple example, we show our white-box model of population and ecosystem

dynamics and characterise this cellular automata model. We investigate an ecosystem model

with one species (Fig. 2). This model is both the simplest and most basic, because it

demonstrates not only the well known phenomenological S-shaped population growth curve, but

also the underlined individual-based mechanism of its origin. A classical model of the S-shaped

population growth is the Verhulst model, but it is completely non mechanistic black-box model,

as the internal structure of the system and mechanisms remain hidden.
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METHODS

Biological prototype of the model

A vegetative propagation of rhizomatous lawn grasses is the biological prototype of our model

(Fig. 3). Festuca rubra trichophylla (Slender creeping red fescue) is the prototype of aggressive

vegetative propagation and Poa pratensis L. and Festuca rubra L. ssp. Rubra are the prototypes of

moderate vegetative propagation. One individual corresponds to one tiller. A tiller is a minimal

semi-autonomous grass shoot that sprouts from the base. Rhizomes are horizontal creeping

underground shoots using which plants vegetatively (asexually) propagate. Unlike a root,

rhizomes have buds and scaly leaves. One tiller may have maximum three (Fig. 3D) or six

rhizoms (Fig. 3B) in the model. Three rhizoms per tiller correspod to moderate propagation and

six rhizoms per tiller correspond to aggressive vegetative propagation. A tiller with roots and

leaves develops from a bud on the end of the rhizome. A populated microhabitat goes into the

regeneration state after an individual�s death. The regeneration state of a site corresponds to the

regeneration of microhabitat's resources including recycling of a dead individual (Fig. 4). All

individuals are identical. Propagation of offsprings of one individual leads to colonization of the

uniform, homogeneous and limited habitat (Fig. 2 and Movies S5-S8).

The cellular automata model

We have used logical deterministic individual-based cellular automata to model the S-shaped

population growth mechanistically (Fig. 2).

Figure 2: S-shaped population growth. A logical deterministic individual-based
cellular automata model of an ecosystem with one species shows both population
dynamics and pattern formation. The lattice consists of 25x25 sites. Individuals use the
hexagonal neighborhood for propagation. The lattice is closed on the torus to avoid
boundary effects. (A-C) Population dynamics of the species. S-shaped population
growth curve (C). (D-F) Spatio-temporal patterns of the model represented in numerical
form of program implementation.

The presented cellular automata model is defined by the 4-tuple:

1. a lattice of sites;

2. a set of possible states of a lattice site;

3. a neighborhood;

4. rules of transitions between the states of a lattice site.
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The best example of white-box mechanism is a mechanical watch. Our model metaphorically

resembles a mechanical watch in transparent case. A neighborhood logically binds dynamics of

all cellular automata sites into one holistic complex dynamic system. There are three most

known cellular-automamta neighborhoods: von Neumann, Moore and hexagonal. The

neighborhood may be of any type. Here we use the hexagonal and tripod neighborhoods which

allow to model aggressive and moderate vegetative propagation of rhizomatous lawn grasses

(Fig. 3). Different configurations of tripod patterns in Figs 3C and 3D is a result of the fact that

the cellular automata neighborhood is implemented successively for each lattice site.

Figure 3: Cellular automata neighborhoods. A cellular automata neighborhood
models a vegetative propagation of plants and defines fecundity and spatial positioning
of an individual�s offsprings. Coordinates i and j are integer numbers. Positioning of
offsprings is explained by how the cellular automata neighborhood is implemented
successively for each lattice site. (A) Hexagonal neighborhood. (B) A model example of
vegetative propagation of an individual in the hexagonal neighborhood. Offsprings
occupy all nearest lattice sites what corresponds to aggressive propagation. A
maximum number of offsprings per one individual (fecundity) equals six. (C) Tripod
neighborhood. (D) A model example of vegetative propagation of an individual in the
tripod neighborhood. Offsprings occupy a half of the nearest lattice sites what
corresponds to the moderate propagation. A maximum number of offsprings per one
individual equals three.

A pure mechanistic model of a complex system is a discrete logical model consisting of cause-

effects relations and part-whole relations. The causes are sufficient to understand their effects

and the parts are sufficient to understand the whole. This mechanistic model is hierarchically

subdivided into micro-subsystems, meso-subsystems and a whole macro-system. Interactions

between subsystems of a complex system lead to emergence of its new properties. Figs 3 and 4

illustrate rules of our basic model. Logical calculations are realized for micro-levels, meso-levels

and macro-levels of complex system on each iteration of the cellular automata what may be

considered as hyper-logical calculations or automatic hyper-logical inference.

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.762v1 | CC-BY 4.0 Open Access | rec: 27 Dec 2014, publ: 27 Dec 2014

P
re
P
ri
n
ts



7

Figure 4: Rules of the ecosystem model with one species. Directed graph of
transitions between the states of a lattice site is represented in pictorial (A) and
numerical forms (B). The graph represents a birth-death-regeneration process.

Here we show a description of the states of the single species model. Each site may be in one of

the four states 0, 1, 2, 3 (Fig. 4), where:

0 � a free microhabitat which can be occupied by an individual of the species;

1 � a microhabitat is occupied by a living individual of the species;

2 � a regeneration state of a microhabitat after death of an individual of the species;

3 � a site in this state represents an element of the boundary conditions, i.e. a border.

A free microhabitat is the intrinsic part of environmental resources per one individual and it

contains all necessary resources and conditions for an individual's life. A microhabitat is

modeled by a lattice site.

The cause-effects relations are logical rules of transitions between the states of a lattice site (Fig.

4B):

0, a microhabitat remains free if there is no one living individual in its neighborhood;

1, a microhabitat will be occupied by an individual of the species if there is at least

one individual in its neighborhood;

2, after death of an individual of the species its microhabitat goes into the

regeneration state;

0, after the regeneration state a microhabitat becomes free if there is no one living

individual in its neighborhood;

1, after the regeneration state a microhabitat is occupied by an individual of the

species if there is at least one individual in its neighborhood;

3, a site remains in this state, which defines a border site.

RESULTS AND DISCUSSION

According to Alexander Watt, a plant community may be considered �as a working mechanism�

which �maintains and regenerates itself� (Watt 1947). Our model demonstrates a such

mechanism in the most simplified form. From a more general physical point of view we model

an active (excitable) media with autowaves (travelling waves, self-sustaining waves) (Kalmykov

& Kalmykov 2013; Krinsky 1984; Zaikin & Zhabotinsky 1970). Active medium is a medium

that contains distributed resources for maintenance of autowave propagation. An autowave is a
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self-organizing and self-sustaining dissipative structure. An active medium may be capable to

regenerate its properties after local dissipation of resources. In our model, propagation of

individuals occurs in the form of population waves. We use the axiomatic formalism of Wiener

and Rosenblueth for modeling of excitation propagation in active media (Wiener & Rosenblueth

1946). In accordance with this formalism rest, excitation and refractoriness are the three

successive states. In our formalism the rest state corresponds to the free state of a microhabitat,

the excitation state corresponds to the life activity of an individual in a microhabitat and the

refractory state corresponds to the regeneration state of a microhabitat. All states have identical

duration. If the refractory period will be much longer than the active period, then such a model

may be interpreted, for example, as propagation of the single wave of dry grass fire. Time

duration of the basic states can be easily varied using additional states of the lattice sites.

Different initial conditions may lead to formation of different spatio-temporal patterns and as a

result they may lead to different dynamics of the system. Using the Monte Carlo method, we

have investigated the influence of different initial conditions on population dynamics of one

species. We have investigated two different boundary conditions, two different cellular automata

neighborhoods and four different lattice sizes (Figs 5 and 6). Different cellular automata

neighborhoods allowed us to investigate aggressive and moderate variants of vegetative

propagation of rhizomatous lawn grasses. Aggressive propagation was modeled by the

hexagonal neighborhood (Fig. 3A), where an individual's offsprings may occupy all nearest

microhabitats (Fig. 3B). Moderate propagation was modeled using the tripod neighborhood (Fig.

3C), where an individual's offsprings may occupy only a half of the nearest microhabitats (Fig.

3D). Figure 5 shows the results obtained in the study of aggressive propagation and Figure 6

shows the results obtained in the study of moderate propagation. In Figs 5B-D and 6E-H we

show the S-shaped population growth and in Fig. 6B-D we show the double S-shaped population

growth. Sizes of the lattice which define available space for colonization consisted of 3x3, 8x8,

23x23 and 98x98 sites. We investigated the boundary conditions of two types when the lattice

was closed on the torus by periodic conditions (Fig 5A-D and Fig 6A-D) and when the lattice has

a boundary (Fig 5E-H and Fig 6E-H). There were no changes of population dynamics in result of

the different initial positioning of an individual on the lattice in cases with periodic boundary

conditions (Fig 5A-D and Fig 6A-D). In cases when a lattice has a boundary, different initial

positioning of an individual lead to differences in population dynamics (Fig 5E-H and Fig 6E-H).

Moreover, increasing of the lattice may lead to more complex dynamics (Figs 5E-H, 6E-H).

Periodic fluctuations in numbers of individuals are observed at the plateau phase in most of the

experiments. With increasing of the lattice size, these periodic fluctuations in population size

become less visible. The periodic fluctuations on the plateau phase are absent when the lattice

consists of 3x3 sites in the case of the tripod neighborhood (Fig. 6A, 6E). The similar plateau

phases without fluctuations were found at the 3Nx3N sizes of the lattice (6x6, 9x9, 12x12,

15x15, 18x18, 27x27 lattices were tested), with and without edge effects and when the

neighborhood was tripod.

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.762v1 | CC-BY 4.0 Open Access | rec: 27 Dec 2014, publ: 27 Dec 2014

P
re
P
ri
n
ts



9

Figure 5: Results of the Monte Carlo simulations with hexagonal neighborhood.
Investigation of the influence of boundary conditions, initial positioning of an individual
and lattice sizes on single-species population dynamics. (A-D) The lattice is closed on
the torus to avoid boundary effects. (E-H) The lattice has a boundary. Every Monte
Carlo simulation consisted of 100 repeated experiments with different initial positioning
of an individual on the lattice.

As examples of the Monte Carlo simulation we show four Movies S1-S4. Each Monte Carlo

simulation consists of five repeated experiments with different initial positioning of an individual

on the lattice. The lattices are uniform, homogeneous and limited in all experiments. They are

consisted of 23x23 sites available for occupation by individuals. In Movie S1 the lattice is closed

on the torus and the neighborhood is hexagonal. In Movie S2 the lattice has a boundary and the

neighborhood is hexagonal. In Movie S3 the lattice is closed on the torus and the neighborhood

is tripod. In Movie S4 the lattice has a boundary and the neighborhood is tripod.
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Figure 6: Results of the Monte Carlo simulations with tripod neighborhood.
Investigation of the influence of boundary conditions, initial positioning of an individual
and lattice sizes on single-species population dynamics. (A-D) The lattice is closed on
the torus to avoid boundary effects. (E-H) The lattice has a boundary. Every Monte
Carlo simulation consisted of 100 repeated experiments with different initial positioning
of an individual on the lattice.

In more detail different spatio-temporal mechanisms we present the double S-shaped population

growth curve (Fig. 7, Movie S7) and three types of the S-shaped population growth curves. (Fig.

7, Movies S5,S6,S8).
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Figure 7: Population growth curves. The lattice size which is available for occupation
consisted of 50x50 sites in all four cases. (A) S-shaped curve with short phase of
decelerating growth. Cellular automata neighborhood is hexagonal and the lattice is
closed on the torus (Movie S5). (B) S-shaped curve with sharp transition to long phase
of decelerating growth. Cellular automata neighborhood is hexagonal and the lattice has
a boundary (Movie S6). (C) Double S-shaped population growth curve. Cellular
automata neighborhood is tripod and the lattice is closed on the torus (Movie S7). (D) S-
shaped curve with very long phase of decelerating growth. Cellular automata
neighborhood is tripod and the lattice has a boundary (Movie S8).

Figure 7A shows the S-shaped population growth curve with short phase of decelerating growth.

This curve reaches a plateau earlier than on population curves in Figures 7B-D. The plateau is

reached on the 32nd iteration (Movie S5). The higher rate of population growth is explained by

aggressive propagation and by the lack of edge effects.

Figure 7B shows the S-shaped population growth curve with sharp transition to long phase of

decelerating growth. This curve has a sharp slowdown of population growth before beginning of

phase of decelerating growth. It occurs on the 25th iteration, when population waves of

aggressively propagating species reach the habitat boundaries (Movie S6). In contrast to the

curve in Figure 7A, this population curve reaches the plateau on the 49th iteration. Reduced

population growth rate of aggressively propagating species is explained by the presence of edge

effects.

In Figure 7C the population growth curve has a double S-shaped form. The double S-shaped

population growth is a result of temporary slowdown of growth, which occurs at the stage when

colonization of the free field is replaced by interpenetration of colliding population waves into
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already occupied areas. Starting from the 34th iteration, the stage of gradually compaction of

populated areas begins (Movie S7). This compaction arises from the fact that after rounding of

the torus population waves occupy the remaining free sites in the partially populated part of

habitat as result of a 'phase shift' of the colliding waves. The free vacancies in population waves

remain in result of moderate propagation of individuals. The moderate propagation is modeled

by the tripod neighborhood. Speed of the sealing colonization increases slowly due to the form

of the population waves which invade into already occupied areas by the expanding wedge. At

the same time contribution into population growth from colonization of the areas which consists

only of free microhabitats decreases. The areas which consist only of free microhabitats

disappear on the 49th iteration. The population growth rate temporarily slows down what forms

the first plateau of the curve. This plateau phase lasts during 5 iterations. The accelerating of

additional compactization of population waves leads to the new population growth starting from

the 53rd iteration. The population curve reaches the second plateau on the 98th iteration.

Figure 7D shows the S-shaped population growth curve with very long phase of decelerating

growth. This curve reaches a plateau on the 72nd iteration (Movie S8). Reduced population

growth rate and reduced maximum number of individuals in the habitat (834 individuals) are a

result of the boundary conditions and with the moderate fecundity of individuals (because of

tripod neighborhood).

We have investigated population growth limited by different factors, e.g. finite size of the habitat

(limited resources), its forms, intraspecific competition, lifetime of individuals, regeneration time

of microhabitats, fecundity of individuals (Figs 2, 5-7 and Movies S1-S8). Here we show the

model of J-shaped population growth and investigate two cases of geometric population growth.

Unlike of the S-shaped population model, the J-shaped population model describes a situation in

which population growth is not limited in resources, for environmental reasons or by existence of

competitors, predators, herbivores and diseases. J-shaped population model describes a full

reproductive potential which lead to geometrical population growth (Fig. 8). In other respects

this model corresponds with our model of S-shaped population growth. It also takes into account

natural decline of individuals. Individual's lifetime equals one iteration.
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Figure 8: J-shaped population growth model. Propagation of individuals occurs in
the absence of intraspecific competition and any restrictions on the resources. A
species colonizes an infinite ecosystem under ideal conditions. (A) The number of
offsprings per individual equals three. (B) The number of offsprings per individual
equals six. (C) Geometric population growth in the first case (A). (D) Geometric
population growth in the second case (B).

To assess the effect of intraspecific competition and regeneration of microhabitats on population

growth we compared our model of the S-shaped growth (Fig. 7A and Movie S5) with the J-

shaped model of population growth in the presence of unlimited resources and without

intraspecific competition (Fig. 8B, D). Comparative dynamics of these models is shown in Table

1. Comparison of these two examples shows that intraspecific competition is a powerful factor

which limits population growth. We also compared our double S-shaped population growth

model (Fig. 7C and Movie S7) with the J-shaped population growth model (Fig. 8A, C).

Comparative dynamics of these models is shown in Table 2. Thus, we have compared our

models of S-shaped and double S-shaped population growth with the J-shaped population

growth.
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Table 1: Comparative population dynamics in the models with the S-shaped and

the J-shaped population growth.

Time (Number of iteration and

generation)
0 1 2 3 4 5

Number of individuals in the S-

shaped population growth model (Fig.

7A and Movie S5). Intraspecific

competition exists. Fecundity equals

6 individuals.

1 6 13 24 37 54

Number of individuals in the J-shaped

population growth model (Fig. 8B,D).

Intraspecific competition is absent.

Geometric population growth.

Fecundity equals 6.

1 6 36 216 1296 7776

Table 2: Comparative population dynamics in the models with the double S-

shaped and the J-shaped population growth.

Time (Number of iteration and

generation)
0 1 2 3 4 5

Number of individuals in the S-

shaped population growth model (Fig.

7C and Movie S7). Intraspecific

competition exists. Fecundity equals

3.

1 3 6 10 15 21

Number of individuals in the J-shaped

population growth model (Fig. 8A,C).

Intraspecific competition is absent.

Geometric population growth.

Fecundity equals 3.

1 3 9 27 81 243

The basic ecological model, which presented in this paper, can easily be expanded by the

introduction of additional states, different neighborhoods, nested and adjoint lattices (Kalmykov

& Kalmykov 2012). Such extension has allowed us to create pure mechanistic models of

interspecific competition between two, three and four species that are complete competitors, and

then to verify and reformulate the competitive exlusion principle (Kalmykov & Kalmykov 2013)

in order to solve the biodiversity mystery (Sommer 1999).

CONCLUSIONS

We have presented and investigated a mechanistic model of single species population dynamics.

This model is based on pure logical deterministic individual-based cellular automata. It has a

physical and ecological ontology of part-whole and cause-effects relations. A physical ontology
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is the ontology of the active medium and ecological ontology represents an ecosytem with the

plant community. This is a white-box model of single-species population dynamics. The

presented model gives a strong mechanistic insight of the S-shaped and double S-shaped

population growth. This model provides mechanistic fundamentals for population dynamics. It is

useful as a starting point for pure mechanistic modeling of population and ecosytem dynamics of

more complex situations like interspecific competition. Our deterministic logical cellular

automata model work as a system of artificial intelligence. It hyper-logically provides automatic

deductive inference. Instead of single logical steps, built up to a linear logical sequence, the

program may iteratively perform parallel logical operations in all sites of the cellular automata

lattice. We consider that the main difficulty of this white-box modeling is to create an adequate

axiomatic system based on an intrinsic physical ontology of the complex system under study.

The main feature of the approach is the use of cellular automata as a way of linking semantics

(ontology) and logic of the subject area. Here we have created and investigated a logical white-

box model of an ecosystem with one species, which combines reductionist and holistic

approaches to the modeling of complex systems. Integration of reductionist and holistic

approaches is provided by the simultaneous modeling of both part-whole and cause-effect

relations in complex system. We consider the white-box modeling by logical deterministic

cellular automata as a perspective way for investigation not only of population dynamics but also

of all complex systems.
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