
	
  

1	
  
	
  

 1	
  

 2	
  

 3	
  

 4	
  

 5	
  

 6	
  

 7	
  

 8	
  

 9	
  

Population dynamics of harmful algal blooms in Lake Champlain: A tale of two 10	
  

phases 11	
  

Edmund M. Hart1,3,*, Nicholas J. Gotelli1, Rebecca M. Gorney2, Mary C. Watzin2,4 12	
  

 13	
  

 14	
  

 15	
  

 16	
  

 17	
  

 18	
  

 19	
  

 20	
  

1. Department of Biology, University of Vermont, Burlington VT 05405 21	
  

2. Rubenstein School of Environment and Natural Resources, University of Vermont, Burlington VT 05405 22	
  

3. Current address Department of Zoology, University of British Columbia Vancouver BC V6K 1S4 23	
  

4. Current address College of Natural Resources, North Carolina State University, Raleigh, NC  27695-8001 24	
  

*     To whom correspondence should be addressed: ehart@zoology.ubc.ca 25	
  

PeerJ PrePrints | https://peerj.com/preprints/75v1/ | v1 received: 4 Oct 2013, published: 4 Oct 2013, doi: 10.7287/peerj.preprints.75v1

P
re
P
rin

ts



	
  

2	
  
	
  

Abstract 26	
  

Understanding the dynamics of harmful algal blooms (HABs) in lakes can inform management 27	
  

strategies to reduce their economic and health impacts. Previous studies have analyzed spatially 28	
  

replicated samples from a single time or have fit phenomenological models to time series data. 29	
  

We fit mechanistic population models to test the effects of critical nutrient concentrations and the 30	
  

density of potential algal competitors on population growth parameters in HABs in Lake 31	
  

Champlain, U.S.A. We fit models to five years (2003-2006, 2008) of weekly cyanobacteria 32	
  

counts. Plankton dynamics exhibited two phases of population growth: an initial  “bloom phase” 33	
  

of rapid population growth and a subsequent “post-bloom phase” of stochastic decline. 34	
  

Population growth rates in the bloom phase were strongly density dependent and increased with 35	
  

increasing TN:TP ratios. The post-bloom phase was largely stochastic and was not obviously 36	
  

related to nutrient concentrations. Because TN:TP was important only in the initial phase of 37	
  

population growth, correlative analyses of the relationship between cyanobacteria blooms and 38	
  

nutrient concentrations may be especially sensitive to when snapshot data are collected. Limiting 39	
  

nutrient inputs early in the season could be an effective management strategy for suppressing or 40	
  

reducing the bloom phase of cyanobacteria population growth. 41	
  

 42	
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Introduction 47	
  

Harmful algal blooms (HABs) of freshwater cyanobacteria are a potential threat to 48	
  

ecosystem function as well as human and animal health. Globally, the intensity and frequency of 49	
  

HABs has increased in recent years (Johnson et al. 2010). Colony-forming cyanobacteria (also 50	
  

known as blue-green algae) can grow to large population sizes and release toxins (Codd et al. 51	
  

2005), creating HABs. The economic and human health impacts of HABs have led to extensive 52	
  

studies of cyanobacteria blooms; however, the mechanisms driving the bloom growth are still not 53	
  

well understood. Given that some species of cyanobacteria are N-fixing, which may give them a 54	
  

competitive advantage in low total nitrogen: total phosphorous ratio (TN:TP) environments 55	
  

(Smith 1983, Elser and Urabe 1999, Havens et al. 2003), many studies have measured 56	
  

correlations between HABs and nutrient concentrations (Stahl-Delbanco et al. 2003, Armitage 57	
  

and Fong 2004). Other studies have implicated water temperature (Chen et al. 2003), light 58	
  

availability and water turbidity (Scheffer et al. 1997), recruitment of resting algal stages from the 59	
  

sediment (Stahl-Delbanco et al. 2003), and standing algal biomass (Downing et al. 2001) as 60	
  

causative agents of HABs. Zooplankton can also alter the response of cyanobacteria to nutrient 61	
  

additions (Wang et al. 2010), suggesting that grazing zooplankton can mediate the responses of 62	
  

phytoplankton to nutrients (Elser and Urabe 1999, Elser et al. 2007). Other experiments have 63	
  

implicated competitive interactions with other algae, which may be mediated by nutrients or 64	
  

abiotic conditions (Brauer et al. 2012). 65	
  

Many of these previous studies of HABs and nutrients have relied on one of three 66	
  

approaches: broad-scale snapshot surveys of algal communities and environmental covariates 67	
  

measured in many lakes (Downing et al. 2001, Kosten et al. 2012), small-scale experimental 68	
  

manipulations of nutrient concentrations (Armitage and Fong 2004), or long-term measurements 69	
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of algal abundance within a single lake (McCarthy et al. 2009). The analyses have either 70	
  

examined static patterns of algal abundance in different sites (Downing et al. 2001) or have 71	
  

treated time series data as if they were not autocorrelated (Onderka 2007). Although these 72	
  

methods can demonstrate correlations between HABs and environmental variables such as 73	
  

nutrient concentrations, HABs are dynamic populations. To understand the role of nutrients and 74	
  

other environmental factors in controlling HABs, explicit population growth models (Royama 75	
  

1992, Berryman 1999) should be fit to dynamic time series data (but see Brauer et al. 2012 for a 76	
  

dynamic modeling example).  77	
  

 We used a data set of weekly monitoring of cyanobacteria blooms, abiotic variables, and 78	
  

abundances of other algal taxa from several sites in Missisquoi Bay in Lake Champlain, 79	
  

Vermont, U.S.A., collected from 2003 to 2008 (excluding 2007 because no bloom occurred and 80	
  

therefore weekly monitoring was not conducted). We constructed 34 different population 81	
  

dynamic models to test multiple hypotheses about what factors control the growth of HABs. 82	
  

Using a time-series splitting approach (Berryman 1999), we found that algal blooms were best 83	
  

modeled by splitting the time series into a distinct “bloom phase” and “post-bloom phase.” A 84	
  

two-phase growth model has been used in studies of zooplankton population dynamics (Drake 85	
  

and Griffen 2010), although initial dynamics are sometimes dismissed as “transient” effects. 86	
  

Because HABs are often transient events (Huppert et al. 2002), we focus on discovering what 87	
  

drives the initial phase of the HAB. Our two-stage population growth model revealed the 88	
  

importance of density dependence and nutrient ratios during the bloom phase of HABs in Lake 89	
  

Champlain. 90	
  

Methods 91	
  

Site description 92	
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Lake Champlain is a 170 km long lake with a maximum width of about 20 km, and a maximum 93	
  

depth of 122 m (average depth = 23 m) that creates the border between New York and Vermont 94	
  

(Appendix Figure A1). The shallow and highly eutrophic Missisquoi Bay drains to the south, 95	
  

into the main lake section of Lake Champlain, but the lake itself drains north into the Richelieu 96	
  

River, which eventually drains to the St. Lawrence. Potential toxin-producing cyanobacteria 97	
  

(Microcystis, Anabaena, and Aphanizomenon spp.) have always been present in shallow waters 98	
  

of Lake Champlain (Shambaugh et al. 1999), but abundance has increased in recent years. 99	
  

Samples are from a monitoring program designed to quickly provide information on potentially 100	
  

toxic blooms to public health officials (Appendix A).  101	
  

Data structure 102	
  

We used weekly sample data collected from nine different sites in Missisquoi Bay from 2003 to 103	
  

2008 (excluding 2007 because weekly data were not collected). Settled counts of phytoplankton 104	
  

cells were identified to genus and total nitrogen (TN), total phosphorus (TP), and soluble reactive 105	
  

phosphorus (SRP) were measured for each sample. Because algal blooms are highly patchy in 106	
  

occurrence and can drift with wind and currents, we averaged data (cells/ml) that were collected 107	
  

at each time period from nine sites in Missisquoi Bay. The result was a 12 to 16-week time series 108	
  

for each year of averaged cell densities (Appendix Figure B1) and nutrient concentrations 109	
  

(Appendix Figure B3). Analysis was performed only on the dominant toxic genera: Microcystis 110	
  

in 2003, 2004, 2005, and 2008, and Anabaena in 2006. 111	
  

Modeling framework 112	
  

We fit mechanistic population growth models (Royama 1992, Berryman 1999) by assuming an a 113	
  

priori functional form for density dependence and using a linear generalization of the Ricker 114	
  

equation (Royama 1992) for the per capita growth rate, 𝑟! = ln   !!!!
!!

:   115	
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 𝑟! = 𝑟! − N!!!! e! eq. 1 

In this equation r0 is the maximum intrinsic growth rate,  e! is the strength of density dependence, 116	
  

θ is the degree of non-linearity, and carrying capacity is estimated as 𝐾 = 𝑟0
e! (Berryman 117	
  

1999). We examined untransformed phase plots of the data and did not find evidence for non-118	
  

linearity and therefore set θ = 1.0, and tested hypotheses only about the effects of nutrients on r0 119	
  

and c (vertical and lateral perturbations sensu Royama 1992). Changes to r0 were modeled as: 120	
  

 𝑟! = 𝑟! − 𝑁!!!e! +   𝑓(𝐸!!!) eq. 2 

where E is a nutrient or environmental variable measured at time lag d. Similarly, effects of 121	
  

nutrients on carrying capacity were modeled as: 122	
  

 𝑟! = 𝑟0 − 𝑁!!1e c!!(!!!!)  eq. 3 

We included effects of potentially competing algal species (S) as: 123	
  

 𝑟! = 𝑟! − 𝑁!!!e !!!(!!!!)  eq. 4 

This basic but flexible modeling framework allowed us to describe the pattern of algal 124	
  

population dynamics and test a variety of hypotheses about the effects of nutrients and other 125	
  

species on population growth.  126	
  

Data analysis 127	
  

Our data was linear, non-stationary and exhibited a first order feedback (Appendix B). To 128	
  

account for non-stationarity we split each time series into two phases. We defined the initial 129	
  

portion of the time series up to and including the maximum population size reached as the 130	
  

"bloom phase” and the period for the remainder of the series after the population peak as the 131	
  

"post-bloom phase." The bloom phase included the first five weeks since the beginning of bloom 132	
  

formation from the years 2003, 2004, 2005, 2006, and 2008. The post-bloom phase included the 133	
  

remaining weeks of data from each series. This data splitting approach is recommended if 134	
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investigators identify a separatrix between two different dynamical conditions (Berryman 1999). 135	
  

We tested the separatrix with a bootstrap analysis and it correctly predicted the two phases of our 136	
  

system 99% better than random split points (Appendix B, Figure B4). Because the split series 137	
  

were too short to analyze individually (n < 5 observations) we had too few degrees of freedom to 138	
  

make statistical tests within each year.  Instead we aggregated data across years within each 139	
  

phase by calculating rt and pairing it with Nt-1 for each year in the series. Next we combined all 140	
  

the pairs of rt and Nt-1 from the bloom phase of each year in one data series and did the same for 141	
  

the post-bloom phase points (combined n = 19 for the bloom phase and n = 41 for the post-142	
  

bloom phase). This aggregation method (Hsieh et al. 2008) assumes that the same underlying 143	
  

function can be fit to model growth rates measured for bloom trajectories in different years.  We 144	
  

tested 34 models based on eqs. 2 - 4 (Appendix Table B1 for a full list) in each phase and ranked 145	
  

them by small sample size AIC (AICc), defined as: 𝐴𝐼𝐶! = 𝐴𝐼𝐶 + 2𝐽(𝐽 + 1) 𝑛 − 𝐽 − 1 where n 146	
  

is sample size and J is the number of parameters (Burnham and Anderson 2002). Using AICc 147	
  

weights (wi), we calculated an evidence ratio to compare the relative fit of each model to the 148	
  

best-fit model. All models were fit in R 2.10 (R Core Development Team 2009) using the lm() 149	
  

for linear models nls() for non-linear models. 150	
  

Results 151	
  

The bloom phase and post-bloom phase portion of the cyanobacteria trajectories exhibited 152	
  

different population dynamics (Figure 1A). In the bloom phase, the best fitting model included 153	
  

negative density dependence and a positive effect of TN:TP on r0, with a model R2 of 0.76 (Table 154	
  

1). The remaining best-fitting models for the bloom phase all included positive growth with 155	
  

density dependence, and usually a positive effect of N on growth rates, although only the best-156	
  

fitting model included TN:TP (Table 1). In the best-fitting model of the bloom phase, a partial 157	
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E

q.	
  8	
  

residual plot shows a strong positive relationship between growth rate and TN:TP (Figure 1B), 158	
  

even after accounting for density dependence. The post-bloom phase models all had a negative 159	
  

growth rate. Although the best-fitting model for the post-bloom phase included an effect of TN 160	
  

on density dependence, it had an R2 of only 0.12 and low model weight (Table 1). With a ΔAICc 161	
  

of 1, this best-fitting model was not appreciably better than a null model that included only 162	
  

negative exponential growth (R2 = 0.04). Based on these analyses, the best descriptor of algal 163	
  

blooms in Missisquoi bay is: 164	
  

𝑟!!
𝑟0 − 𝑁!!1e! + 𝛽1

!"!
!"!

, 𝑡 =< 5
−𝑟!, 𝑡 > 5  

 165	
  

where t is time in weeks since the bloom began (t is therefore relative to the start of the bloom). 166	
  

The density of potentially competing algal species did not enter into any of the best-fitting 167	
  

models as a significant predictor of cyanobacteria blooms. To test whether cyanobacteria 168	
  

abundance was directly correlated with TN, TP or TN:TP, we regressed abundance against 169	
  

TN:TP and found no relationship overall, or within years or phases (Figure 2) 170	
  

Discussion 171	
  

HAB’s in Lake Champlain were best described by a two-phase model with an early bloom phase 172	
  

and a late post-bloom phase (Figure 1A, Table 1). The bloom phase was characterized by strong 173	
  

negative density dependence (with a time lag of one week) and a positive effect of TN:TP on the 174	
  

exponential component of population growth rate (Figure 1B). Algal density increased rapidly 175	
  

during the bloom phase and reached a peak within four to five weeks. The post-bloom phase was 176	
  

more variable in length and was characterized by a slow, largely stochastic, reduction in density. 177	
  

Our results support previous studies suggesting that TN:TP is important in controlling 178	
  

cyanobacteria population dynamics (Smith 1983, Havens et al. 2003, McCarthy et al. 2009, Paerl 179	
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et al. 2011), and that management strategies should look beyond controlling a single nutrient 180	
  

(Conley et al. 2009). 181	
  

Although we found a positive effect of TN:TP on population growth rate, other studies 182	
  

have demonstrated a negative relationship between TN:TP ratios and cyanobacteria biomass 183	
  

(Kotak et al. 2000) or relative abundance (Havens et al. 2003). These studies, however spanned a 184	
  

much larger range of TN:TP ratios than ours (for example, 1-43, Lake Taihu; McCarthy et al. 185	
  

2009) or measured TN:TP at a single time among a set of many lakes (1- 100, Smith 1983). 186	
  

During the five years of this Lake Champlain data series, the maximum TN:TP ratio was 16, well 187	
  

below the Redfield ratio suggesting that nitrogen is most often the limiting nutrient.  Our positive 188	
  

results are similar to McCarthy et al. (2009), who found a positive relationship between TN:TP 189	
  

and relative abundance of cyanobacteria when TN:TP was below 29. The TN:TP hypothesis 190	
  

assumes a low TN:TP ratio is an advantage for N-fixing taxa such as Anabaena and 191	
  

Aphanizomenon, but in most years in the Lake Champlain data series, blooms in Missisquoi Bay 192	
  

were dominated by Microcystis, which cannot fix N. Microcystis is capable of dominating for 193	
  

several reasons: it is a superior competitor for dissolved N (Smith 1983), low TN:TP ratios 194	
  

support the recruitment of resting stages from the sediment (Stahl-Delbanco et al. 2003), and 195	
  

perhaps most importantly, Microcystis can regulate its buoyancy.  Buoyance regulation allows 196	
  

Microcystis to monopolize light at the surface and take up nutrients from the sediment-water 197	
  

interface (Bormans et al. 1999). Other studies have also found that Microcystis has optimal 198	
  

growth conditions around an N:P ratio of 16 (Liu et al. 2011). The shallow average depth of 199	
  

Missisquoi Bay (less than 3 m), and hypoxic bottom conditions in mid-summer (Smith et al. 200	
  

2011)  provide an ideal environment for Microcystis to exploit dissolved N from the sediment-201	
  

water interface.  202	
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 We found no evidence for effects of the abundance of other algal taxa on the population 203	
  

dynamics of cyanobacteria. We used taxonomic groups in this analysis, but the factors that favor 204	
  

specific groups are often cross-phyletic, so a functional or trait-based assessment may have been 205	
  

more effective (Kruk et al. 2011). Additionally, we could not incorporate direct effects of 206	
  

predators (i.e., Daphnia) into our models because zooplankton was not sampled as part of the 207	
  

monitoring program. There can be indirect facilitation of conditions that favor HABs via 208	
  

Daphnia grazing on competitors of cyanobacteria (Wang et al. 2010) or alterations in nutrient 209	
  

cycling following seasonal changes in the zooplankton community (Elser 1999). Cyanobacteria 210	
  

are only grazed by Daphnia in limited quantities because the colonial growth form inhibits 211	
  

ingestion (DeMott et al. 2001), poor nutritive value (Elser and Urabe 1999), and perhaps because 212	
  

of cyanotoxin production (Rohrlack et al. 1999).  Once blooms have begun, experimental 213	
  

additions and deletions of Daphnia provides little evidence of control by grazers (Ghadouani et 214	
  

al. 2003).   215	
  

 The existence of two distinct phases of cyanobacteria blooms (Figure 1A) potentially 216	
  

complicates the interpretation of snapshot surveys of different lakes (e.g., Downing et al. 2001) 217	
  

because the results of such surveys will be highly dependent on when the samples were 218	
  

collected.  In large-scale surveys (Kosten et al. 2012), the absolute magnitude of TN and TP 219	
  

were better predictors of cyanobacterial dominance than the TN:TP ratio, whereas in a detailed 220	
  

study  of single lakes,  the TN:TP ratio is important (Paerl et al. 2011). In our study, only the 221	
  

exponential component of growth during the bloom phase was related to TN:TP ratio. This result 222	
  

is consistent with other studies that have found Microcystis can maintain high growth rates at 223	
  

low N:P ratios (Marinho and Azevedo 2007). TN:TP ratios may be important at the initiation of 224	
  

blooms but they do not matter once the post-bloom phase begins, perhaps because nutrients are 225	
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less important overall when cells begin to senesce. However, at high nutrient concentrations light 226	
  

may be a more important variable than nutrient ratio because it becomes a limiting factor that 227	
  

cyanobacteria are well-adapted to exploit (Brauer et al. 2012).   228	
  

Algal blooms are dynamic, transient events, but with few exceptions (e.g. in Carpenter 229	
  

and Kitchell 1993) they have not been analyzed with population dynamics models. In Lake 230	
  

Champlain, we discovered two distinct phases of HABs, each controlled by a different 231	
  

population growth equation and different correlations with environmental variables. Although 232	
  

simple correlations of cyanobacteria abundance with nutrients are often weak, our results point to 233	
  

the importance of TN:TP ratios on population growth rates during the bloom phase.  This further 234	
  

supports recent evidence that highlights the importance of nutrient ratios being a limiting factor 235	
  

for plants, not just single nutrients (Harpole et al. 2011).  Once a bloom has occurred its decline 236	
  

appears largely stochastic, and mitigation through control of nutrients after initiation may not be 237	
  

effective. A management strategy of reducing all nutrient inputs early in the season could 238	
  

potentially suppress the initiation of the bloom phase of HABs or reduce the size of the bloom.  239	
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Table 1 361	
  

Phase Model AICc ΔAICc Evidence 
Ratio 

R2 

Bloom 𝑟! = 𝑟! − 𝑁!!!e! + 𝛽!𝑇𝑁!:𝑇𝑃! 42.4 0 - 0.76 

 𝑟! = 𝑟! − 𝑁!!!e! 46.5 4.1 9 0.65 

 𝑟! = 𝑟! − 𝑁!!!e! + 𝛽!𝑇𝑁! 48 5.6 20 0.68 

 𝑟! = 𝑟! − 𝑁!!!e! + 𝛽!𝑇𝑁!!! 48.4 6 20 0.67 

 𝑟! = 𝑟! − 𝑁!!!e! + 𝛽!𝑆𝑅𝑃!!! 48.6 6.2 30 0.67 

      
Decline 𝑟! = −𝑟! − 𝑁!!!e !!!!!"!  90.7 0 - 0.12 

 𝑟! = −𝑟! 91.7 1 1.75 - 

 𝑟! = −𝑟! − 𝑁!!!e! 91.8 1.1 1.75 0.04 
 𝑟! = −𝑟! − 𝑁!!!e! + 𝛽!𝑇𝑁! 92.8 2.1 2.8 0.08 
 𝑟! = −𝑟! + 𝛽!𝑇𝑁! 93.1 2.4 3.5 0.02 

 362	
  

Table 1. The top five models for bloom phase dynamics and post-bloom phase dynamics of 363	
  

cyanobacteria in Lake Champlain, with the best-fitting models listed first for each phase. Models 364	
  

were assessed based on small sample size AIC (AICc). Model parameters are as follows: ro is the 365	
  

maximum per-capita growth rate, c is the strength of density dependence, TN is total nitrogen, 366	
  

TP is total phosphorus, and SRP is soluble reactive phosphorus. Evidence ratios are calculated as 367	
  

the AICc weight of the best fitting model divided by the ith model as ranked by ∆AICc (w1/wi). 368	
  

Evidence ratios in excess of 10 are usually interpreted as strong evidence favoring a particular 369	
  

model (Burnham and Anderson 2000). 370	
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Figure 1. (A). Phase plot of population growth of growth rate (r0) versus population size at the 375	
  

previous time step (Nt-1). The size of each symbol is proportional to the TN:TP ratio. Blue points 376	
  

represent the bloom phase, and the solid blue line is the best-fitting density dependent model 377	
  

(linear regression, df = 14 ,R2=0.76, p = 0). Red points represent the post-bloom phase, and the 378	
  

dashed red line is a simple, non-significant density dependent model (linear regression, df = 38, 379	
  

R2=0.04, p = 0.339). The slope of zero with a negative intercept indicates a simple exponential 380	
  

decline with no effect of density-dependence. (B) A plot of partial-residuals vs. the TN:TP ratio 381	
  

for the best-fitting model of plankton dynamics during the bloom phase. The positive correlation 382	
  

demonstrates that population growth rate increases with increasing TN:TP ratios even after 383	
  

taking density dependence into account. 384	
  

 385	
  

Figure 2 A plot of cyanobacteria abundance vs. nutrients separated by phase [bloom (open) and 386	
  

post-bloom (closed) points] and by year (colour). Neither nutrients nor nutrient ratios could 387	
  

explain a significant portion of the variance in abundance.    388	
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Figure 1   398	
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Figure 2 421	
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