
 

A peer-reviewed version of this preprint was published in PeerJ
on 2 June 2015.

View the peer-reviewed version (peerj.com/articles/996), which is the
preferred citable publication unless you specifically need to cite this
preprint.

Murphy RR, O’Connell J, Cox AJ, Schulz-Trieglaff O. 2015. NxRepair: error
correction in de novo sequence assembly using Nextera mate pairs.
PeerJ 3:e996 https://doi.org/10.7717/peerj.996

https://doi.org/10.7717/peerj.996
https://doi.org/10.7717/peerj.996


NxRepair: Error correction in de novo sequence assembly

using Nextera mate pairs

Rebecca R Murphy, Jared M O'Connell, Anthony J Cox, Ole B Schulz-Trieglaff

Scaffolding errors and incorrect traversals of the de Bruijn graph during de novo assembly

can result in large scale misassemblies in draft genomes. Nextera mate pair sequencing

data provide additional information to resolve assembly ambiguities during scaffolding.

Here, we introduce NxRepair, an open source toolkit for error correction in de novo

assemblies that uses Nextera mate pair libraries to identify and correct large-scale errors.

We show that NxRepair can identify and correct large scaffolding errors, without use of a

reference sequence, resulting in quantitative improvements in the assembly quality.

NxRepair can be downloaded from GitHub; a tutorial and user documentation are also

available.
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ABSTRACT

Scaffolding errors and incorrect traversals of the de Bruijn graph during de novo assembly can result

in large scale misassemblies in draft genomes. Nextera mate pair sequencing data provide additional

information to resolve assembly ambiguities during scaffolding. Here, we introduce NxRepair, an open

source toolkit for error correction in de novo assemblies that uses Nextera mate pair libraries to identify

and correct large-scale errors. We show that NxRepair can identify and correct large scaffolding errors,

without use of a reference sequence, resulting in quantitative improvements in the assembly quality.

NxRepair can be downloaded from GitHub; a tutorial and user documentation are also available.

Keywords: de novo assembly, mate pair, genome assembly, error correction, scaffolding, insert size,

misassembly, misassembly correction, assembly quality, automated error detection

INTRODUCTION

De Bruijn Graph construction and traversal is a popular method for de novo genome assembly (Compeau

et al., 2011). However, traversal of repeat regions, which tangle the de Bruijn Graph, remains challenging.

Read pairs with a large insert size, such as the Illumina Nextera mate pairs can provide additional

information for repeat disambiguation. Many assemblers incorporate mate pair insert size information

into the assembly and scaffolding process (Bankevich et al., 2012; Zerbino and Birney, 2008), but large

scale scaffolding errors can still occur (Fig. 1 (A)).

Error correction in de novo assemblies is a well-studied problem. Recent work, such as the Assem-

blathon (Bradnam et al., 2013) and GAGE (Salzberg et al., 2012) collaborations, compare the quality

of assemblies prepared by various assemblers. A Bayesian method of assembly quality evaluation also

exists (Ghodsi et al., 2013). Several recent papers have developed error identification and correction

methods. The A5 Assembly Pipeline (Coil et al., 2014) includes an error detection and rescaffolding

step and two new tools, REAPR (Hunt et al., 2013) and ALE (Clark et al., 2013) use read pair data to

identify misassemblies. A similar tool is currently under development at the Broad Institute (Walker,

2014). However with the exception of ALE, which is no longer actively maintained, these tools are not

optimised to use mate pair information.

Here we introduce NxRepair, an assembly error detection tool that can identify the most serious misas-

semblies, without using a reference sequence, by examining the distribution of Nextera mate pair insert

sizes. NxRepair specifically targets the most serious misassemblies by identifying regions with a high

number of anomalous insert sizes, breaking the scaffold and optionally trimming out the misassembled

region. NxRepair is complementary to existing tools, as it specifically uses Nextera mate pair information

to find the largest and most serious misassemblies.
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Figure 1. Using NxRepair to remove large misassemblies. (A) Alignment of the de novo assembly of

the TB genome to its reference genome. The assembly contains several large misassemblies. (B) A plot of

NxRepair’s support metric against scaffold position for the TB assembly. Low support for the assembly is

identified in three regions of a contig. (C) Breaking the contigs at the identified positions resolves the

most significant misassemblies. In (A) and (C), horizontal lines demarcate the scaffold boundaries.

IMPLEMENTATION

Statistical Analysis of Mate Pair Insert Sizes

Nextera mate pair libraries are prepared to have a certain insert size, typically between 1 and 10 kb. When

the mate pairs used to prepare an assembly are aligned back to the assembly, large misassemblies result in

unusual insert sizes and read orientations. We model this using a two-component mixture distribution.

The first component of this mixture is the insert size distribution of correctly aligned mate pairs. We

model the distribution of insert sizes, Y , as a normal distribution with mean µ̂ and standard deviation σ̂ :

Y ∼ N(µ̂, σ̂2). We estimate µ̂ and σ̂ for the entire genome by aligning reads back to the assembly and

using robust estimators (see below). The second component, defined as a uniform distribution across the

contig size U(0,L) for a contig of length L, captures anomalous insert sizes.

To calculate the degree of support for the assembly at each site across a contig, NxRepair retrieves all

mate pairs spanning the region [i−W, i+W ], of size 2W at position i on the contig. The default value of

W is200 bases (see Table 2). We define a latent indicator variable Xl ∈ {0,1} for each pair of reads, l,

which takes the value 1 if the insert size came from the null distribution, and 0 otherwise. Within each

window queried, the probability that each retrieved read, rl is drawn from the null distribution is given by:

P(Xl = x|Yl) =
P(Xl = x)(Yl |Xl = x)

∑
1
k=0 P(Xl = k)(Yl |Xl = k)

(1)

=
πx(Yl |Xl = x)

∑
1
k=0 πk(Yl |Xl = k)

(2)

where Yl is the insert size of read pair l, πx is the user defined prior probability of class x and π1 +π0 = 1.

The default value of π0 is 0.01 (see Table 2), meaning that in the absence of any insert size information,

99 % of read pairs are expected to arise from the null distribution.

Within each window, the total support for a correct assembly at position i can be calculated as:

Di =
N

∑
l=1

P(Xl = 1|Yl) ·Cl (3)

where the summation is over all read pairs aligning across position i and Cl is an indicator variable,
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reporting pairing orientation:

Cl =

{

1, if mate pairs have correct orientation and strand alignment

0, otherwise
(4)

Within each contig, the contig assembly support mean µD and variance sD are calculated from all reads

aligning to the contig,

µ̂D =
∑

N
l=1 Dl

N
sD =

∑
N
l=1

√

(Dl − µ̂)2

N
(5)

Using these values, the Z-score zl within each queried interval is calculated as:

zl =
Dl − µ̂D

sD

(6)

A misassembly is identified if zl < T for a user-defined threshold T (default value -4). This threshold

describes the number of standard deviations below the mean assembly support that is required to identify

an anomaly. The default value of -4 will flag only positions whose assembly support is less than four

standard deviations below the mean level of support.

Global Assembly Parameters

NxRepair identifies misassemblies by identifying regions where the mate pair insert size distribution differs

significantly from the insert size distribution across the entirety of the de novo assembly. Consequently,

it is necessary to have a robust estimate of the global mate pair insert size distribution. For calculation

of population statistics, mate pairs that align to different contigs are excluded, as are mate pairs with an

incorrect strand or pairing orientation, pairs whose mapping quality falls below a user specified threshold,

and pairs whose insert size exceed 30 kb (approximately 10 times the mean insert size). The global mean

µ̂ and median absolute deviation MAD are calculated across all contigs in the assembly as:

µ̂ =
∑

N
l=1 Yl

N
MAD = median(|Yl −median(Yl)|) (7)

where Yl is the insert size of the lth of N reads with correct pairing behaviour. The standard deviation was

then calculated from the MAD, using:

σ̂ = K ·MAD (8)

for K = 1.4826

These were then used as the parameters of the null distribution, as described in the main paper.

Interval Tree Construction

To facilitate rapid lookup of mate pair properties, we construct an interval tree (Cormen et al., 2009)

for each contig in the de novo assembly. An interval tree is a data structure that facilitates O(logn+m)
lookup of intervals that span a given point or interval, for n total entries and m spanning entries. The

interval tree contains the start and end positions of each mate pair aligned to that contig, as well as an flag

variable indicating whether that mate pair had correct strand and pairing orientation. Mate pairs where

the two reads align to different contigs were excluded. This allows NxRepair to rapidly query positions

across a contig to discover the insert size distribution at the queried position.
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Misassembly Location and Contig Breaking

To improve the quality of the de novo assembly, a contig is broken into two separate pieces at the site of a

misassembly and the broken ends of the two new contigs trimmed by a user defined length (default 4 kb)

to remove the misassembled region. To prevent excessive clipping, misassemblies separated by less than

the trimming distance are grouped together, the contig is broken at the start and end of the misassembled

region and the misassembled section is discarded. Low-scoring regions within the trimming distance of

the ends of contigs are not considered misassemblies, as the high proportion of mate pairs aligning here

whose mate maps to a different contig reduces the number of pairs under consideration and hence lowers

the observed Z-score.

Availability and Dependencies

NxRepair is available for free anonymous download from the Python Package Index (PyPI) here: :

https://pypi.python.org/pypi/nxrepair. The source code, written in python is hosted on

GitHub: https://github.com/rebeccaroisin/nxrepair. A full tutorial and API can be

found on ReadTheDocs: http://nxrepair.readthedocs.org/en/latest/.

NxRepair makes use of several further open source libraries, specifically:

Numpy (van der Walt et al., 2011) (http://www.numpy.org/)

Scipy (Millman and Aivazis, 2011) (http://www.scipy.org/)

Matplotlib (Hunter, 2007) (http://matplotlib.org/)

Pysam (https://pypi.python.org/pypi/pysam), the python wrapper for Samtools

Samtools (Li et al., 2009) (http://samtools.sourceforge.net/)

We installed the numpy, scipy and matplotlib libraries via Anaconda (https://store.continuum.

io/cshop/anaconda/).

We have used the Interval Tree implementation from the bx-python library (https://bitbucket.

org/james_taylor/bx-python/wiki/Home).

MATERIALS AND METHODS

Data

Nine bacterial genomes were prepared according to the Nextera mate pair protocol and sequenced in

a single MiSeq run using 2× 151 bp reads. The genomes sequenced are shown in Table 4. Reads

were trimmed using the MiSeq inbuilt trimmer. The untrimmed reads are available from BaseSpace

via https://basespace.illumina.com/s/TXv32Ve6wTl9 (free registration required). Note

that only these Nextera mate pair libraries were used. No additional single end or paired end libraries

were required.

Performance Optimisation

ROC Plots

To optimise the threshold in Z below which to identify a misassembled region, we prepared ROC plots,

varying the threshold value, T , in steps of 1 between -10 and 0.

The positions of true misassemblies were identified by aligning each de novo assembly to its reference

genome using QUAST (Gurevich et al., 2013). To correctly compare the sites of true misassemblies with

those identified by NxRepair, we divided each contig of the assembly into short stretches of 1 kb length.
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Before NxRepair After NxRepair

Genome No. NGA50 No. NGA50

Bcer 3 1157404 3 1157404

EcDH 8 576143 8 576143

EcMG 2 640732 2 640732

List 0 1496615 0 1496615

Meio 0 3095733 0 3095733

ped 6 1269259 0 1269259

pneu 7 577220 6 577220

Rhod 9 3181390 9 3181390

TB 70 184170 66 158885

Table 1. Number of large misassemblies and NGA50 as reported by QUAST before and after NxRepair

correction.

We then prepared an array, ANx of size L
1000

for contig length L, corresponding to misassemblies identified

by NxRepair. ANx was filled as follows:

ANx =

{

1, if NxRepair identified a misassembly in stretch i

0, otherwise
(9)

To prepare the ROCs each position i in ANx was labeled as true positive (TP) if ANx[i] = 1 and a true

misassembly fell within it, true negative (TN) if ANx[i] = 0 and no true misassembly occurred within the

interval, false positive (FP) if ANx[i] = 1 but no true misassembly had occurred, or false negative (FN) if

ANx[i] = 0 but the interval contained a true misassembly. The true positive rate (TPR) and false positive

rate (FPR) were then calculated as follows:

TPR =
TP

TP+FN
FPR =

FP

FP+TN
(10)

Based on the resultant ROC plots, shown in Fig. 2, a threshold in Z of -4 was found to detect true

misassemblies with minimal false positives, so was used for all subsequent analyses.

Profiling

Performance analysis was performed on a single core with 8 GB RAM available. Runtime analysis was

performed using the python cProfile module. The memoryprofiler python module was used to analyse

memory usage.

Workflow Pipeline

De novo assemblies were prepared using the SPAdes Assembler, version 3.1.1 (Bankevich et al., 2012):

spades.py -k 21,33,55,77 -t 4

--hqmp1-12 bacteria.fastq.gz --hqmp1-fr -o assembly

The initial assembly quality was evaluated using QUAST (Gurevich et al., 2013) to align the de novo

assembly to a reference genome:

python quast.py -o results sample -t 16

-R ref/reference.fna sample new.fasta

Following assembly, the mate pair reads were aligned back to the de novo assembly using BWA-MEM (Li,

2013). A sorted BAM file of the resulting alignment was then prepared using SAMtools (Li et al., 2009):
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Figure 2. ROC plots for the seven genomes containing misassemblies.

bwa index sample/scaffolds.fasta

bwa mem sample/scaffolds.fasta -p bacteria.fastq.gz | samtools view -bS

- | samtools sort - sample

samtools index sample.bam

We identified misassemblies using NxRepair as follows:

python nxrepair.py sample.bam sample/scaffolds.fasta sample scores.csv

sample new.fasta -img name sample new

The default parameters used and their meanings are shown in Table 2. These have been optimised for

Illumina Nextera mate pair libraries with a mean insert size of approximately 4 kb. For mate pair libraries

with a much larger (smaller) insert size, the maxinsert and trim parameters may need to be increased

(decreased).

Finally we used QUAST (Gurevich et al., 2013) to evaluate the assembly quality following NxRepair by

aligning the de novo assembly to a reference genome as described above.

RESULTS AND DISCUSSION

We used NxRepair to correct de novo assemblies from nine bacterial genomes. The genomes used

are described above. Mate pair reads were trimmed, assembled using the SPAdes assembler (version

3.1.1) (Bankevich et al., 2012) and then aligned back to the assembled scaffold using BWA-MEM (Li,

2013). We used QUAST (Gurevich et al., 2013) to evaluate the assembly quality before and after

NxRepair correction by aligning to an appropriate reference genome. For all NxRepair analyses, the

default parameters, shown in Table 2 were used. Fig. 1 (A) shows a misassembled genome that contained

several scaffolding errors identified by NxRepair (Fig. 1 (B)). Following NxRepair correction, the most

significant structural misassemblies were resolved (Fig. 1 (C)). The improvement following NxRepair

correction is shown for all nine genomes in Table 1. For two assemblies, errors were removed without

reducing NGA50; for one genome, errors were removed but NGA50 was slightly reduced; for five

genomes, two of which contained no large errors, no errors were found and the assembly was unchanged.
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Parameter Default Value Meaning

imgname None Prefix under which to save plots.

maxinsert 30000 Maximum insert size, below which a read pair is included

in calculating population statistics.

minmapq 40 Minimum MapQ value, above which a read pair is in-

cluded in calculating population statistics.

minsize 10000 Minimum contig size to analyse.

prior 0.01 Prior probability that the insert size is anomalous.

stepsize 1000 Step-size in bases to traverse contigs.

trim 4000 Number of bases to trim from each side of an identified

misassembly.

T -4.0 Threshold in Z score (number of standard deviations from

the mean) below which a misassembly is called.

window 200 Window size across which bridging mate pairs are evalu-

ated.

Table 2. NxRepair Parameters

Bacterium Total Time (s) Memory Usage (MiB)

Bcer 78 271

EcDH 123 444

EcMG 70 260

list 97 383

meio 259 565

ped 123 417

pneu 59 227

rhod 190 463

TB 155 411

Table 3. NxRepair performance analysis.

We note that in the case of the TB genome, the NGA50 was slightly reduced by NxRepair correction.

Manual inspection of the correction sites revealed that one of the misassemblies reported by NxRepair

was a join between two contigs which consisted of a gap of over 2 kb bridged by very few mate pairs.

This join is reported as correct by QUAST, but has only little support from the read data. We fail to correct

some misassemblies because they do not exhibit a signal given the wide insert size distribution of the

Nextera mate pairs.

Performance

We evaluated the runtime and peak memory usage of NxRepair on each of the nine genomes analysed.

The results are shown in Table 3. The most memory and computationally intensive part of the NxRepair

analysis is construction of the interval trees. The size of each interval tree is dependent on the contig size.

Consequently, we expect both runtime and memory usage to scale with the size of the largest contig.

CONCLUSIONS

NxRepair is a simple error correction module that can be used to identify and remove large scale errors

from de novo assemblies using Nextera mate pair reads. We evaluated NxRepair using nine bacterial

genomes, showing that of the seven genomes containing misassemblies, six could be improved by

NxRepair correction. NxRepair is freely available online and can be run with a single call from the

command line, making it an attractive option for improving assembly quality.
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Abbreviation: Bcer

Bacteria: Bacillus cereus ATCC 10987

Accession ID: NC 003909, NC 005707

NCBI FTP: ftp.ncbi.nih.gov/genomes/Bacteria/Bacillus_cereus_ATCC_10987_uid57673/

Abbreviation: EcDH

Bacteria: Escherichia coli str. K-12 substr. DH10B

Accession ID: NC 010473

NCBI FTP: ftp.ncbi.nih.gov/genomes/Bacteria/Escherichia_coli_K_12_substr__DH10B_uid58979/

Abbreviation: EcMG

Bacteria: Escherichia coli str. K-12 substr. MG1655

Accession ID: NC 000913

NCBI FTP: ftp.ncbi.nih.gov/genomes/Bacteria/Escherichia_coli_K_12_substr__MG1655_uid57779/

Abbreviation: list

Bacteria: Listeria monocytogenes

Accession ID: NC 003210

NCBI FTP: ftp.ncbi.nih.gov/genomes/Bacteria/Listeria_monocytogenes_EGD_e_uid61583/

Abbreviation: meio

Bacteria: Meiothermus ruber DSM 1279

Accession ID: NC 013946

NCBI FTP: ftp.ncbi.nih.gov/genomes/Bacteria/Meiothermus_ruber_DSM_1279_uid46661/

Abbreviation: ped

Bacteria: Pedobacter heparinus DSM 2366

Accession ID: NC 013061

NCBI FTP: ftp.ncbi.nih.gov/genomes/Bacteria/Pedobacter_heparinus_DSM_2366_uid59111/

Abbreviation: pneu

Bacteria: Klebsiella pneumoniae subsp. pneumoniae MGH 78578

Accession ID: NC 009648, NC 009649, NC 009650, NC 009651, NC 009652, NC 009653

NCBI FTP: ftp.ncbi.nih.gov/genomes/Bacteria/Klebsiella_pneumoniae_MGH_78578_uid57619/

Abbreviation: rhod

Bacteria: Rhodobacter sphaeroides 2.4.1

Accession ID: NC 007488, NC 007489, NC 007490, NC 007493, NC 007494, NC 009007, NC 009008

NCBI FTP: ftp.ncbi.nih.gov/genomes/Bacteria/Rhodobacter_sphaeroides_2_4_1_uid57653/

Abbreviation: TB

Bacteria: Mycobacterium tuberculosis H37Ra

Accession ID: NC 009525

NCBI FTP: ftp.ncbi.nih.gov/genomes/Bacteria/Mycobacterium_tuberculosis_H37Ra_uid58853/

Table 4. Summary of bacteria analysed and the relevant NCBI information on their reference genomes.

There were two repeats of each strain. All 18 samples were prepared with the Nextera mate pair protocol

and sequenced in a single MiSeq run using 2×151 bp reads. The untrimmed reads we used as input to

NxTrim (3.9Gbp in all) are available from BaseSpace via

https://basespace.illumina.com/s/TXv32Ve6wTl9 (free registration required).
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M. C., Delcher, A. L., Roberts, M., Marçais, G., Pop, M., and Yorke, J. A. (2012). GAGE: A critical

evaluation of genome assemblies and assembly algorithms. Genome Res., 22(3):557–567.

van der Walt, S., Colbert, S. C., and Varoquaux, G. (2011). The NumPy array: A structure for efficient

numerical computation. Computing in Science and Engineering, 13:22–30.

Walker, B. (2014). Pilon. https://github.com/broadinstitute/pilon/releases.

Zerbino, D. R. and Birney, E. (2008). Velvet: algorithms for de novo short read assembly using de Bruijn

graphs. Genome Res., 18(5):821–829.

9/9

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.747v1 | CC-BY 4.0 Open Access | rec: 20 Dec 2014, publ: 20 Dec 2014

P
re
P
ri
n
ts

https://github.com/broadinstitute/pilon/releases


Figure 1(on next page)

Figure 1: Using NxRepair to remove large misassemblies.

(A) Alignment of the de novo assembly of the TB genome to its reference genome. The

assembly contains several large misassemblies. (B) A plot of NxRepair's support metric

against scaffold position for the TB assembly. Low support for the assembly is identified in

three regions of a contig. (C) Breaking the contigs at the identified positions resolves the

most significant misassemblies. In (A) and (C), horizontal lines demarcate the scaffold

boundaries.
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Figure 2(on next page)

Figure 2: ROC plots

ROC plots for the seven genomes containing misassemblies.
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