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Abstract1

• Species-area relationships (SAR) and species abundance distributions (SAD) are among the most2

studied patterns in ecology, due to their application in both theoretical and conservation issues. One3

problem with these general patterns is that different theories can generate the same predictions, and for4

this reason they can not be used to detect different mechanisms.5

• A solution for this is to search for more sensitive patterns. One possibility is to extend the SAR to6

the whole species abundance distribution. A generalized dimension (Dq) approach has been proposed7

to study the scaling of SAD, but there has been no evaluation of the ability of this pattern to detect8

different mechanisms.9

• An equivalent way to express SAD is the rank abundance distribution (RAD). Here I introduce a new10

way to study scaling of SAD using a spatial version of RAD: the species-rank surface (SRS), which can11

be analyzed using Dq. Thus there is an old Dq based on SAR (DSAD
q ), and a new one based on SRS12

(DSRS
q ). I perform spatial simulations to relate both Dq with SAD, spatial patterns and number of13

species. Finally I compare the power of both Dq, SAD, SAR exponent, and the fractal information14

dimension to detect different community patterns using a continuum of hierarchical and neutral spatially15

explicit models.16

• The SAD, DSAD
q and DSRS

q all had good performance in detecting models with contrasting mechanisms.17

DSRS
q had a better fit to data and a strong ability to compare between hierarchical communities where18

the other methods failed. The SAR exponent and information dimension had low power and should not19

be used.20

• SRS and DSRS
q could be an interesting addition to study community or macroecological patterns.21

Keywords: multifractals, species-rank surface, species-area relationship, multi-species spatial pattern.22
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Introduction1

The species-area relationship (SAR) is considered one of oldest and best-documented patterns, and one of2

a few fundamental generalizations, in ecology (Crawley & Harral 2001; Šizling et al. 2011). The SAR is3

often characterized through a triphasic curve, with a range of intermediate scales corresponding to power4

law relationship between the number of species and the area (Preston 1960; Hubbell 2001). Although other5

quantitative forms could also be appropriate (@Tjorve2003; White et al. 2010) this power-law is more widely6

accepted (Rosindell & Cornell 2007). This relationship implies a self-similar or fractal structure of species7

distributions for a community across spatial scales (Šizling & Storch 2004).8

SARs only give information about the changes of richness with scale, but can be extended by incorporating9

the species abundances distribution (SAD), using Hill’s generalized diversity indexes (Hill 1973). These10

indexes follow from the definition of generalized entropies used in statistical physics, called Renyi’s entropies11

(Renyi 1970). The scaling of Renyi’s entropies is called generalized dimensions, and is used in physics to12

characterize multifractals (Beck 1990). Multifractals and fractals are related techniques first used in physics13

to characterize scaling behavior of complex structures (Stanley & Meakin 1988); the difference is that fractals14

look at the geometry of presence/absence patterns, while multifractals describe the arrangement of quantities15

such as population density or biomass (Saravia et al. 2012a). Multifractal analysis has been applied to16

ecology in different areas: metapopulation models (Gamarra 2005), analysis of natural landscapes (Kirkpatrick17

& Weishampel 2005), search patterns in copepods (Seuront & Stanley 2014), and biomass dynamics in18

microalgae (Seuront & Spilmont 2002; Saravia et al. 2012a; Dal Bello et al. 2014).19

The application of generalized dimensions to extend SAR was first suggested by Ricotta (2000), and the20

methodology was later developed and applied to Barro Colorado Island forest plots by Borda-de-Água (2002),21

who estimated generalized dimensions of SAD. Since then, several field studies have characterized species22

abundance scaling—also called the species diversity-area relationship (DAR)—using generalized dimensions23

and other multifractal techniques (Yakimov et al. 2008, , ). In addition, generalized dimensions have been24

applied to a spatially explicit neutral model (Yakimov et al. 2013) and used in open source software for25

ecological multifractal analysis (Saravia 2014).26

The species abundance distribution (SAD) is another fundamental pattern in ecological communities, and27

play a major role in ecology and conservation (McGill et al. 2007). SADs have been used to compare different28

communities and to compare models and data, but different mechanisms can produce nearly identical SADs29

(Chave et al. 2002; Rosindell & Cornell 2013). SADs are often presented using rank-abundance diagrams30

(RADs) in which the log-abundance is plotted against the rank of the species (McGill et al. 2007). RADs31

3

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.745v3 | CC-BY 4.0 Open Access | rec: 27 Dec 2014, publ: 27 Dec 2014

P
re
P
rin

ts



are equivalent to cumulative distributions and thus are a robust way to visualize the SAD without losing1

information (Newman 2005).2

Here I propose a new way to analyze the relation of SAD with spatial scale, by attaching the rank of each3

species to its spatial distribution; in this way the multivariate spatial distribution of species is summarized4

into a univariate two-dimensional distribution. I call this spatial distribution the species-rank surface (SRS),5

and it can be analyzed and compared using generalized dimensions. This paper uses simulations of spatial6

patterns to compare the behavior of generalized dimensions calculated from SRS and SAD. First I use a7

regular and randomized spatial pattern combined with a uniform and logseries SAD, artificial patterns used8

to observe the contrast. Then I use a continuum of neutral and hierarchical models to test if generalized9

dimensions can detect different communities, estimating statistical power and type I error rate. I also compare10

the performance of generalized dimensions with single dimensional indicators: the SAR exponent and the11

information dimension.12

Methods13

Multifractal analysis14

Extensive reviews of generalized dimensions and multifractal methods applied to ecology are available15

(Seuront 2009) and some good introductions have also been published (@Scheuring1994; Borda-de-Água16

et al. 2007). Thus I will only give a brief description. The generalized dimensions technique analyzes the17

scaling properties of quantities distributed in a space that we assume to be two dimensional (i.e., a plane).18

This distribution should be self-similar across some range of scales. This is called being multifractal, which19

can be mathematically represented in different ways (Harte 2001), of which the closest to ecology are the20

generalized dimensions Dq (Grassberger 1983), also called Renyi dimensions (Renyi 1970). D_q$ has been21

used to characterize the probabilistic structure of attractors derived from dynamical systems (Hentschel &22

Procaccia 1983).23

To estimate generalized dimensions I used the method of moments based on box-counting (Evertsz &24

Mandelbrot 1992). The spatial distribution of quantities µ is covered with a grid, dividing it into N(ε) boxes25

of side ε, allowing us to calculate the value µi(ε) in each. Then the so-called partition function is computed26

as:27

(1) Zq(ε) =
N(ε)∑
i

(µi(ε))q28
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Where q can be any real number and is called moment order. The operation is performed for different values1

of ε and q, within a predetermined range. The generalized dimension is then calculated as:2

(2) Dq =
1

q − 1lim
ε→0

log (Zq(ε))
log ε3

When q = 1, the denominator of the first term in Dq is undefined, so it must be replaced by the following4

expression:5

(3) Dq = lim
ε→0

N(ε)∑
i

µi(ε) log (µi(ε))

log ε6

In practical cases as the limit can not be assessed, and the dimensions are estimated as the slope of the7

log(Zq) versus log(ε) in equation (1) replacing by the numerator in equation (3). This is done for different8

values of q, provided that it is a real number, which yields a graphs of Dq in terms of q. This is called the9

spectrum of generalized dimensions.10

To be an approximate multifractal, the relationship log(Zq) versus log(ε) should be well described by a linear11

relationship, but a linear relationship with superimposed oscillations is also acceptable (Borda-de-Água et al.12

2007). A range of q and ε values must be established, and then Dq is estimated using linear regression. Note13

that Dq is defined as the limit ε→ 0 (equations 2 and 3), and thus to use the method it is sufficient that a14

scale exists below which a linear relationship applies (Hentschel & Procaccia 1983).15

To analyze species-abundance-area relationships with multifractals as Borda-de-Água (2002), the boxes are16

replaced by species. Thus at each spatial scale ε each species holds the quantity of interest: its own abundance.17

Then the partition function is defined as a sum over the species present S(A) in an area A and the side of18

the box ε is replaced by the area:19

(4) Zq(A) =
S(A)∑
i

(µi(A))q20

where µi(A) is the abundance of species i in an area A. Dq is defined as:21

(5) Dq =
1

1− q lim
A→∞

log (Zq(A))
logA22

When calculating Dq based on species abundances distribution, I refer to it as DSAD
q , and when I calculate23

them from the species rank surface, DSRS
q ; if I mention Dq without superscript I refer to both. DSAD

q24
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represents the scaling of the Hill’s generalized diversity index (Hill 1973): when the moment order is q = 0,1

then DSAD
q becomes the exponent of the SAR power-law scaling; when q = 1, DSAD

q represent the scaling of2

Shannon diversity index; and when q = 2, DSAD
q becomes the scaling of Simpson’s index. This is why Dq3

can characterize diversity-area relationships.4

Theoretically Dq must be a non-increasing function of q (Hentschel & Procaccia 1983), which means that if5

q1 ≥ q2 then Dq1 ≤ Dq2. Some studies have shown small violations of this property for DSAD
q (Borda-de-Água6

et al. 2002; Zhang et al. 2006). These violations are related to the way that DSAD
q is defined: the summation7

of equation 4 is over species, while the summation of the original definition, equation 1, is over boxes, and8

this changes the way in which the mathematical limits are taken and also the computation method of DSAD
q .9

A partial solution has been proposed (Yakimov et al. 2014), but the anomalies observed may be related to10

the mathematical assumptions needed for Dq to be non-increasing, in which case a new mathematical proof11

should be developed for DSAD
q . Thus as long as the linear relationship is reasonable I take DSAD

q as a useful12

technique of analysis.13

In a previous work I proposed a new way to analyze species-abundance-area using multifractals, one that14

fits more closely to the original definitions of equations 1 - 3: the species-rank surface (Saravia 2014) or15

SRS. To construct the SRS the spatial distribution of species has to be transformed by assigning to each16

species position its rank. First I use the species abundances, at the whole plot level, to calculate the species’17

rank ordering from highest to lowest, assigning a number starting with one. Then the rank is assigned to18

the spatial position of the individuals of each species, forming a surface. This (mathematical) landscape19

has valleys formed by the most abundant species and peaks determined by the rarest. Finally the standard20

multifractal analysis is applied. If sampling was performed using quadrats, without taking the spatial position21

of individuals, the sum of the ranks of the species in the smallest quadrats can be used to form the SRS.22

I use the coefficient of determination (R2) as a descriptive measure of goodness of fit (Borda-de-Água et al.23

2002). The C++ source code to perform multifractal analysis is available at https://github.com/lsaravia/24

mfsba.25

Generalized dimension relationship with spatial patterns and SADs26

I simulated species’ spatial patterns with different SADs to demonstrate how Dq is related to them. First I27

used a uniform SAD, in which all species have approximately the same densities. To generate it I take the28

number of individuals of each species from a Poisson distribution with the same mean. I distributed them in29

bands over a spatial grid so they form a regular spatial pattern, in which each grid position is occupied by30
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exactly one individual. I chose the number of species to exactly divide the side of the grid so all species are1

strips with approximately the same width (Figure 1). I used square grids with sides of 256 and 512 sites2

which contain 65536 and 262144 individuals respectively, and 8, 64 and 256 species, and then calculated Dq3

for the regular pattern, randomizing the positions of species to compare Dq obtained with these two extreme4

cases. The second SAD I used is a Logseries (Fisher et al. 1943) with the same number of species and the5

same sides as previously. I used the R package untb (Hankin 2007) to calculate the density for each species;6

this basically uses a Poisson distribution with the expected Logseries abundances as means. I then built the7

regular pattern with strips of species, but as species have different abundances the widths for each species8

are different (Figure 1). I then estimated Dq for the regular and randomized patterns, simulated 10 spatial9

patterns for each case, and calculated the mean and standard deviation of Dq.10

Spatially explicit model11

To simulate more realistic patterns of species-abundance-area relationships I used a stochastic spatially12

explicit model. I developed a stochastic cellular automata (Molofsky & Bever 2004) model that can switch13

between neutral or hierarchical competition, representing a continuum between niche and neutral communities14

(Gravel et al. 2006). Under neutral competition individuals do not interact, and all have the same mortality,15

colonization rates, and dispersal distances; in spite of these gross simplifications neutral models are capable16

of predicting several real community patterns (Rosindell et al. 2011). At the other end of the continuum17

are niche communities represented by hierarchical competition models [@Tilman1994]. In this case species18

have differences that imply a competitive hierarchy, in which some species are always better than others,19

producing competitive exclusion (Chave et al. 2002). I added a probability of replacement ρ to the neutral20

model: when ρ = 1 more competitive species always replace less competitive and the model behaves as a pure21

hierarchical one, and when ρ = 0, there is no replacement of species and the model is completely neutral.22

A more thorough description of the model is given in appendix A, and its C++ source code is available at23

https://github/lasaravia/neutral and figshare http://dx.doi.org/10.6084/m9.figshare.969692.24

Following a classical neutral scheme the model has a metacommunity: a regional collection of communities,25

from which migration occurs at a rate m. Species can also disperse locally, and I assume an exponential26

dispersal kernel with average dispersal distance d. Other model parameters are the mortality rate µ, the27

number of species in the metacommunity and also the size of the community, represented as the side of the28

grid used in the simulations. I use a logseries SAD for the metacommunity, defined by the maximum number29

of individuals (side x side) and the number of species (Fisher et al. 1943).30

The values of the parameters were in the range estimated for BCI from the existing literature (Condit et al.31
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2002; Etienne 2007; Anand & Langille 2010). I performed 50 simulations for each combination of parameters1

given in Table 1. To compute the statistical power I made comparisons of communities with different levels of2

ρ, representing more neutral or hierarchical communities, in which the other parameters were kept constant.3

I also made comparisons between repetitions with the same ρ to calculate the type I error.4

Statistical comparison of methods5

I analyzed the performance of two kinds of methods to differentiate communities. The first consists6

of a set of points or curves: species abundance distributions (SAD), generalized dimensions DSAD
q and7

DSRS
q . For these I used the Anderson-Darling (AD) test (Feigelson & Babu 2012), a non-parametric8

test related to the Kolmogorov-Smirnov test. This measures the differences between the empirical9

distribution functions (EDF) of two datasets as a weighted sum of square deviations between the EDFs.10

In extensive simulations the AD test has proven more sensitive than the Kolmogorov-Smirnov test11

(Stephens 1974). I calculated p-values using randomization with 1000 repetitions, using the package12

kSamples (Scholz & Zhu 2012) in the R statistical statistical language (R Core Team 2014). Scripts13

for all analyses are available at github (https://github.com/lsaravia/SpeciesRankSurface) and figshare14

(http://dx.doi.org/10.6084/m9.figshare.1276105).15

The second kind is based on a single dimension or power exponent: the SAR exponent and the information16

dimension. The SAR exponent is part of the DSAD
q spectra when q = 0 (Borda-de-Água et al. 2002); an17

equivalent single number measure from DSRS
q is the information dimension (Ricotta 2000; Chappell & Scalo18

2001), that is the DSRS
q when q = 1. I calculated the power of these with a T-test using the standard19

deviation (SD) obtained from the box-counting regressions. These SD are obtained with autocorrelated data20

because small squares are nested within big squares (see Multifractal Analysis ). The consequence is that the21

SD may be underestimated, but the slopes estimates are still unbiased (Kutner et al. 2005). This should22

result in an increased type I error rate and also in a spurious increase in power.23

Calculation of power and type I error24

I simulated communities with different degrees of neutral/hierarchical structure, given by the parameter25

ρ of the model. The power of a test is the ability to reject the null hypothesis (H0) when it is false. The26

significance level to reject H0 was set a priori at α = 0.05 in all cases, and the rejection rate of each test was27

calculated as the proportion of P values that less than or equal to α. To estimate power I used independent28

simulations of communities (50 repetitions) with the same parameters except ρ.29
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The type I error is the probability of rejecting H0 when it is true (false positive). In our simulations, H01

is true if two simulated communities have the same ρ (and also are equal in the other parameters). To2

estimate type I error I compared independent simulations of communities with the same set of parameters3

(50 repetitions) and computed the proportion of rejection.4

Results5

A generalized dimension (Dq) can be interpreted like a SAR power law exponent: with larger values, the6

change in the number of species is greater when the scale of observation changes to a larger area. Dq express7

the change of the quantity under study when scale changes, but is modulated by q. When q is positive the8

terms of the sums (equations 2 & 5) with more abundant species have more weight, and become even more9

important when q is greater. When q is negative we have the opposite pattern: less abundant species have10

more weight in the sum, and so Dq reflects the change of rare species. When q is larger in its absolute value,11

Dq is driven by more and more extreme values, and thus Dq will have higher variance. Here I present most12

figures with a range of q from -24 to 24, but for statistical comparisons use a smaller range (from -10 to 10)13

to avoid large variances.14

I calculated two versions of Dq: a) the original definition due to Borda-de-Água (2002) where Dq measures15

the change in SAD as we change scale (DSAD
q ), and b) Dq based on SRS, which measures the change in the16

spatial distribution of species’ ranks as scale changes (DSRS
q ). Dq measures the rate of change with scale17

from a baseline that is defined by D0. When we study SAD, DSAD
0 is the SAR exponent and its value is18

around 0.5. A spatial distribution of species that duplicates its number with a duplication of the side of the19

area studied has a value of exactly 0.5. When we study SRS the DSRS
0 is the fractal dimension of the species20

rank surface. Note that in the simulations here, the individuals completely fill the available space, and thus21

DSRS
0 is equal to 2.22

For the uniform SAD we expected DSAD
0 to be around 0.5, with a symmetric pattern with small deviations23

around this value, as all species have the same abundance and occupy the same area. The symmetric pattern24

was not observed in the regular cases (Figure 2) because the negative part (q < 0) analyzes numbers close25

to 0 and the logarithm enhances the differences between small numbers (Laurie & Perrier 2011). Thus the26

difference ∆Dq =| Dq −D0 | is greater for q < 0.27

Theoretically Dq should be decreasing or constant, but this was not observed in DSAD
q for the randomized28

spatial patterns with fewer species. This is because when changing scales, there is a point at which no new29

species are found, and the scaling relationship breaks. Figure 3 shows an example of Dq fitted using linear30
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relationships for 64 species and a side=256 sites. The scaling for a randomized pattern DSAD
q breaks at 2.4,1

equivalent to an area of 256 units. In contrast, the scaling for the regular pattern DSAD
q shows oscillations2

around the fitted line but no evidence of breaks. When the number of species is higher (256) the DSAD
q is3

similar to the randomized one (Figure 2); this happens because new species appear in the whole range of4

scales used.5

Histograms of the models’ R2 values (Figure 4) indicate the presence of poor fits or a scaling break. The6

DSAD
q for randomized patterns and uniform SAD have the lowest R2 of all cases. Based on all simulations a7

rule of thumb can be derived: 90% of Dq should have an R2 of 0.6 or greater, and 50% should have an R2 of8

0.9 or greater (Appendix table 1); if not, one should check the plots of the fits (Figure 3). Several patterns9

fail to comply this rule–for example, all the uniform randomized patterns, and the logseries randomized with10

8 species metacommunity (Appendix table 1 and Appendix figures 2-4).11

The DSAD
q for logseries had a more symmetric pattern than for uniform SAD (Figure 2), and exhibited better12

fits with higher R2 (Figure 3,4). Comparing regular and randomized spatial patterns, the DSAD
q curves13

were superposed or inside the SD of the other. Thus it seems that DSAD
q cannot distinguish between such14

patterns (only considering the cases where the fits are good). Moreover the range of DSAD
q did not change15

very much with the number of species, as DSAD
q seems to depend mostly on the SAD used to generate the16

spatial pattern.17

For DSRS
q the theoretical decreasing pattern was fulfilled in all cases, and no anomalies were observed (Figure18

2). As in the previous case, an asymmetric pattern, was observed with DSRS
q around 2, an asymmetry more19

pronounced for patterns with uniform SAD than for logseries SAD. This is because logseries SAD have one20

very abundant species, several less abundant and rare species scattered through the pattern (Figure 1). Thus21

the abundant species dominated the spatial pattern and in some cases produces a greater ∆Dq =| Dq −D0 |22

in the positive side of the plot (Figure 2, 8 Species).23

The uniform SAD produced DSRS
q with higher ∆Dq values for regular patterns in the q < 0 side. This is24

because in the regular pattern the species are aggregated, whereas in the randomized pattern there is no25

aggregation so DSRS
q is closer to two. Thus DSRS

q for regular and randomized are more different on the26

negative side, and more similar on the positive side. For logseries SAD, the differences in DSRS
q are similar at27

negative or positive sides of q. In general DSRS
q curves for different spatial patterns and different SADs are28

distinct, except in some cases for 8 species the curves are inside the SD of a different pattern.29

The R2 values for DSRS
q were all >0.9 and higher than DSAD

q , and all complied with the rule of thumb30

described above (Appendix table 1). Their linear trends were also better (Figure 3). An example of linear31
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trends for different number of species and different SADs is shown in the appendix (Appendix figures 2-6).1

The same qualitative patterns of DSAD
q and DSRS

q are observed for simulations with side=512 (Appendix2

figure 1).3

Simulated Neutral communities4

Examples of the patterns simulated by the Neutral/hierarchical model are shown in Figure 5. By definition,5

hierarchical communities have more competitive species with lower index numbers, and neutral communities6

have more abundant species with higher index numbers, as determined by metacommunity abundance (see7

appendix model description). With a greater degree of competitive hierarchy, one or few species dominate8

and several rare species are scattered over the landscape (Figure 6). This produces a mostly uniform pattern9

of dominant species with rare species distributed at random. In neutral communities the most abundant10

species are not so dominant (Figure 6), and leave space for species with intermediate abundances, producing11

a pattern of several aggregated species. Aggregation is produced in this model only because dispersal is12

mainly near the parent.13

For both estimated Dq the R2 values were very good: DSRS
q was always R2>0.9 and DSAD

q had in almost all14

cases R2>0.6 and a 50% or more of the cases greater than 0.9 (Appendix table 2). Thus both satisfy the rule15

of thumb described previously.16

There are two groups of DSAD
q : one composed of neutral like communities for ρ < 0.1 and another composed17

of more hierarchical ones for ρ > 0.1. The curves for hierarchical communities were more separated for18

negative q than for positive q. In neutral communities this pattern was inverted, with positive q having19

more different curves. This reflects the patterns in SAD: hierarchical communities have one or few relatively20

abundant species, resulting in DSAD
q reaching 0 quickly, and no new abundant species are found when21

changing scale. Neutral communities have more species with intermediate densities, producing DSAD
q > 0 on22

the positive side.23

In theory Dq have a constant value when q tends to infinity (negative or positive). Here, DSAD
q spectra24

quickly reached a constant maximum for negative q and a minimum for positive q, and this pattern was more25

pronounced with hierarchical communities because they tended to have two types of species: dominant ones26

reflected on the positive side, and rare species on the negative. When communities are more neutral (ρ < 0.1)27

and there are more species with intermediate densities, DSAD
q tended to reach the asymptotic values more28

slowly in the negative side.29

For DSRS
q a similar groups of neutral or hierarchical communities are also present. We previously saw30
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that DSRS
q is more related to the spatial pattern than DSAD

q , and thus we can interpret DSRS
q in terms of1

randomness and aggregation of species. For hierarchical communities, negative-side DSRS
q is very close to2

2, that is the dimension of a uniform surface, with rare species exerting a very low influence on uniformly-3

distributed dominants. For neutral communities there are more species with low to medium densities, and4

they have greater aggregation, and thus DSRS
q is higher.5

When q is positive, lower values of DSRS
q mean more-intense spatial patterns. Communities with ρ = 16

are the most hierarchical, with one dominant species and a few very rare species (Figure 6). For these7

communities DSRS
q is closer to 2, representing the uniform spatial distribution of dominant species. When8

the metacommunity has more species the local community also has more species (Appendix table 3) and9

DSRS
q starts to deviate from 2 at lower q. DSRS

q for the intermediate hierarchical case (ρ = 0.1) starts higher10

than neutral at q near 0, but crosses neutral curves and ends in the lowest place. The communities have11

more species that also are more abundant. but still have few individuals; this forms very sharp peaks in12

the SRS and produces a DSRS
q farther from 2. The curvature of DSRS

q is thus more pronounced when there13

are more species. For ρ less than 0.1 communities are more neutral and have more species with similar14

densities, forming softer valleys and peaks that result in a DSRS
q intermediate between the two hierarchical15

cases. Simulations with side=512 exhibited similar patterns for Dq (Appendix figure 7).16

Statistical Power and type I errors17

To calculate the power of the methods I compared communities with different ρ values; in this comparison18

the alternative hypothesis is true. Rather than estimating type I error, we need to compare different runs of19

communities simulated with identical parameters. I talk of high power when its value is 0.75 or higher, and20

low power when it is 0.5 or lower.21

For DSAD
q and DSRS

q different ranges of q can be used. High values of q in absolute terms should produce Dq22

with high variances, resulting in a higher spread of values obtained in different simulation runs. Ranges of q23

between -10 and 10 or narrower are generally used (Yakimov et al. 2008; Laurie & Perrier 2011; Saravia et al.24

2012a; Wei et al. 2013) but sometimes the applied range has been wider (Saravia et al. 2012a). I started25

using a q range of -24 to 24, and found that for this range type I error rates were, in all cases, higher than26

the nominal significance level α = 0.5 (Appendix table 4). As a statistical test is valid if the type I error is27

lower or equal to α (Edgington 1995), to assure the validity for these methods a narrower range should be28

used. I thus used a q range between -10 and 10.29

Using only one dimension of the spectra (DSAD
0 and DSRS

1 ) resulted in a power generally below 0.5 (Table 2)30

12
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and the type I error around 0.4, much greater than α. These high type I error values were expected due to the1

presence of spatial autocorrelations in the dependent variable (Legendre et al. 2002). Parameter estimates2

can be corrected in different ways [@Legendre2012], but these procedures should not increase the power of3

DSAD
0 and DSRS

1 .4

For communities with lower species numbers (11 species in the metacommunity) the comparisons made with5

SAD had a constant low power across ∆ρ, so no matter how different the communities are as the points used6

in the test are the number of species the power is low (Table 3). In contrast, the generalized dimensions7

DSAD
q and DSRS

q had a high power but Type I error also greater than α. One way to alleviate this problem is8

to check for a coincidence of the two methods SAD & Dq; another would be to increase the number of points9

used inside the q range, because Dq could be calculated for any real number. I used 21 points (Table 3) but10

that could be increased, as the only restriction is the additional computational time required. In simulated11

communities with more species (86 & 341 species metacommunity) the type I error fell below α for all the12

methods and the overall SAD was slightly more powerful (table 3).13

Differences between communities (∆ρ) influence power. Note that with ∆ρ < 0.1, the communities compared14

are more neutral with a similar number of species and SADs, in comparison with ∆ρ >= 0.1, which are15

between neutral and hierarchical (except for 0.9) communities with different numbers of species and SAD.16

With ∆ρ less than 0.09 the power in most cases was below 0.5, and thus DSAD
q and DSRS

q could not17

discriminate communities with ρ from 0 to 0.01. The exception was SAD for neutral communities, when18

the the metacommunity had 341 species: in this case, the power was near or greater than 0.5. These are19

comparisons with a higher number of points (circa 100) so this results in a greater power. For differences20

greater or equal to 0.09, the power was high (over 0.75) in most cases. The exception was ∆ρ = 0.9, but this21

only happened in comparing two hierarchical communities. In these cases SAD, but particularly DSAD
q , had22

less (below 0.25 in some cases) power.23

Discussion24

In this paper I present a new macroecological metric DSRS
q based on generalized dimensions, and use model25

simulations to compare it with other similar metrics: DSAD
q , SAD, SAR exponent and information dimension.26

While DSAD
q measures the change in species abundance distribution with scale, DSRS

q represents the change27

in the spatial distribution of ranks of species. Thus DSRS
q is related to the spatial pattern of species and28

to its abundance distribution. DSAD
q also reflects changes in spatial pattern; but my results suggest that it29

13
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cannot distinguish between regular and randomized spatial patterns. In contrast, DSRS
q curves differ clearly1

between these patterns.2

All Dq curves can be interpreted in terms of q, a parameter that modulates the weight of abundant and rare3

species in the distribution. Dq for positive q reflects more abundant species or dominance patterns in SAD,4

while Dq for negative q represents rare species patterns. An alternative way to analyze Dq would be to split5

species into ranges of abundances and calculate DSAD
0 or DSRS

1 . This was done for biomass and forest height6

spatial analysis (Seuront & Spilmont 2002; Kellner & Asner 2009), but for species distributions it has several7

drawbacks. First, the species’ spatial distribution is analyzed as a whole, and it is quite possible that the8

complete set of species fits very well but one or more single species do not (Šizling & Storch 2004). Second,9

rare species represent a few points in space, and thus the estimation of Dq will have a high uncertainty. And10

third, the theory developed for Dq would not be valid (Harte 2001).11

In neutral models, the SAR exponent depends on speciation rate (in this case migration from a metacommu-12

nity), dispersal distance, and local community size (Chave et al. 2002; Rosindell & Cornell 2007; Cencini et13

al. 2012). I did not expect to find high statistical power using the SAR exponent (DSAD
0 ) because I did not14

vary migration, dispersal and did not made comparisons between different community sizes. But I found15

high type I error rates for DSAD
0 and the information dimension DSRS

1 . This means that the statistical16

methods should be improved, applying a correction for autocorrelation to lower type I errors, and also a17

greater number of boxes should be used to increase power. In most cases, a range of different Dq values exists,18

meaning that the distribution is a multifractal (Stanley & Meakin 1988) and thus will not be well described19

by only one generalized dimension. To compare communities, DSRS
q and DSAD

q represent an improvement20

over comparisons made with only one dimension like SAR exponent or information dimension.21

The species abundance distribution SAD is the most studied biodiversity pattern in ecology, but it is generally22

studied at one scale. Here I used the whole simulation area, and at this scale the power of SAD is comarable23

to that of generalized dimensions. Several studies regard SAD as not very informative because many different24

models can produce the same patterns, but in my simulations SAD could differentiate models quite well,25

except for low species communities where its power was low. Generally, the performance of SAD depends on26

the number of species used in the comparison. When species are around 100, SAD comparison is the only27

method that can detect differences between very similar neutral communities.28

In comparing between competitive hierarchical communities, the number of species was relatively low, and29

SAD and DSAD
q had a low power, but DSRS

q retained a high power. This highlights the ability of DSRS
q to30

detect differences in spatial patterns of rare species. Spatial pattern is interdependent with the shape of31

SAD; for hierarchical communities there are few dominant species that form patches with size similar to32

14
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the simulation area, and rare species are scattered. This pattern is enhanced by SRS, and thus different1

communities can be detected with high power. For neutral communities the SAD is more equitable and2

there are more species with enough abundances to form species clusters (I do not call them patches because3

species are intermingled). DSAD
q and DSRS

q thus have a high power to detect differences between neutral4

communities except where they are very similar. The advantage of Dq over SAD it is that the power should5

be improved by using a greater number of q values, and this possibility should be the subject of future studies.6

When the communities compared had between 3 and 11 species, SAD had low power, DSRS
q had a type I7

error slightly higher than α, and the DSAD
q type I error was higher. To improve this the number of q used for8

comparison should be greater than that used in this work (n=21).9

In summary, DSRS
q always had better fits than DSAD

q and can be applied in all the cases simulated here. It10

maintained a high power comparing hierarchical communities when the other methods failed. SADs also11

exhibit good performance with the exceptions already mentioned, although a better approach could be to use12

both DSRS
q , SAD, and perhaps add other patterns (Münkemüller et al. 2012). This new macroecological13

metric could be a valuable addition to the already established ones and should be used in the study of the14

scaling of SAD (Borda-de-Água et al. 2012; Rosindell & Cornell 2013).15
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Manuscript tables

Side No. Species µ d m ρ

256 11 0.2 25 0.001 1

512 86 0.1

341 0.01

0.001

0

Table 1: Parameters values used in the simulations of the neutral-hierarchical model
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Side
Metacommunity No.
Species

Mean No.
Species Type Power Type I Error

512 11 5.96 DSRS
1 0.512 0.434

11 5.96 DSAD
0 0.498 0.494

86 36.54 DSRS
1 0.521 0.430

86 36.54 DSAD
0 0.445 0.426

341 111.31 DSRS
1 0.497 0.342

341 111.31 DSAD
0 0.494 0.436

256 11 5.90 DSRS
1 0.491 0.408

11 5.90 DSAD
0 0.471 0.424

86 32.27 DSRS
1 0.501 0.447

86 32.27 DSAD
0 0.474 0.388

341 76.57 DSRS
1 0.490 0.389

341 76.57 DSAD
0 0.443 0.363

Table 2: Power and Type I error rate for T-test comparison of a single dimension of the generalized spectra:
the SAR exponent (DSAD

0 ) and information dimension of the species rank surface (DSRS
1 ). The test use the

standard deviation obtained in the regressions to fit generalized dimensions. The number of comparisons to
calculate the power is n=25000, and for type I error n=6125.
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Side
Metacommunity No.
Species

Mean No.
Species Type Power Type I Error

512 11 5.96 SAD 0.115 0.025

11 5.96 DSRS
q 0.720 0.102

11 5.96 DSAD
q 0.568 0.212

86 36.54 SAD 0.697 0.009

86 36.54 DSRS
q 0.680 0.014

86 36.54 DSAD
q 0.616 0.011

341 111.31 SAD 0.830 0.039

341 111.31 DSRS
q 0.688 0.000

341 111.31 DSAD
q 0.609 0.017

256 11 5.90 SAD 0.175 0.000

11 5.90 DSRS
q 0.654 0.068

11 5.90 DSAD
q 0.704 0.204

86 32.27 SAD 0.675 0.019

86 32.27 DSRS
q 0.657 0.025

86 32.27 DSAD
q 0.613 0.027

341 76.57 SAD 0.799 0.035

341 76.57 DSRS
q 0.670 0.030

341 76.57 DSAD
q 0.610 0.048

Table 3: Power and Type I error rate of Anderson-Darling statistic to test hypothesis of differences in: species
abundance distributions (SAD), generalized dimension based on SAD (DSAD

q ) and generalized dimension
based on SRS (DSRS

q ). The power is calculated testing communities with different ρ and type I error is
calculated for communities with the same ρ. The p-values were estimated using 1000 randomizations. The
number of points used for SAD comparisons is the number of species found in the communities. The number
of points used for multifractal spectra correspond to the q in the range -10 to 10 (n=21), according to the
following set q={-10,-8,-6,-4,-3,-2.5,-2,-1.5,-1,-0.5,0,0.5,1,1.5,2,2.5,3,4,6,8,10}. The number of comparisons for
the power calculations were n=25000 except for SAD with side=500 & metacommunity species=11, where
some comparison with less than 3 species were skipped (n=23800). For type I error the comparisons were
n=6125, and the same exception applies (n=5846).
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Manuscript Figures

Figure 1: Spatial patterns generated with logseries and uniform species abundance distribution (all species
have the same density) with 64 species and a grid with side=256. a) Regular: species are distributed in
vertical bands. b) Randomized: the position of species are distributed at random in space.
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Figure 2: Generalized dimension spectra Dq of simulated species spatial patterns. The points are means of
10 simulated patterns using a spatial grid of side=256. A logseries or uniform species abundance distribution
were used, with 8,64 and 256 species. Two forms of generalized dimensions were estimated: DqSRS, from
species rank surface DSRS

q . DqSAD, estimated from species abundance distribution DSAD
q . I use two spatial

patterns: Regular, the species are distributed in vertical bands, Randomized the spatial distribution of species
was randomized.
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Figure 3: Linear fit from generalized dimension (Dq) estimation showing a range of q from -4 to 4. The
spatial grid has a side=256 occupied with 64 species with a uniform abundance distribution. Two different
spatial patterns were used: a) Regular, a regular spatial pattern with species distributed in vertical bands of
equal width. b) Randomized, the positions of species in the grid are randomized. Two kinds of generalized
dimension were estimated: DqSRS corresponds the fit of DSRS

q (see text) and DqSAD is the fit from the
estimation of DSAD

q (see text). Zq(ε) corresponds to the partition function calculated for a box with side ε in
the SRS case, in SAD case, ε represent the area of the box used.

.
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Figure 4: Coeficient of determination R2 from the regressions to estimate generalized dimension Dq of
simulated species spatial patterns. The moment order q is in the range [-24,24], the simulated pattern
use a spatial grid of side=256 and 64 species with a uniform and logseries abundance distribution. Two
different spatial patterns were used, Regular: a regular spatial pattern, with species distributed in vertical
bands. Randomized, the positions of species in the grid are randomized. Two kinds of generalized dimension
were estimated: DqSAD, the R2 are from the estimation of DSAD

q (see text). DqSRS, the R2 are from the
regressions to estimate DSRS

q (see text).
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Figure 5: Spatial patterns generated with a spatial neutral/hierarchical model. Replacement is the parameter
ρ that determines the degree of neutrality. When this parameter is 0 the model is completely neutral and
there is no competitive replacement of species. When ρ is 1 competitive superior species always replaces
inferior ones and the model is completely hierarchical. The simulations use a metacommunity with a logseries
abundance distribution with 86 species and a simulation grid side=256.
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Figure 6: Rank abundace diagrams of comunities patterns generated with a spatial neutral/hierarchical
model with different number of species in the metacommunity (labelled in each subfigure). Replacement is
the parameter ρ that determines the degree of neutrality. When this parameter is 0 the model is completely
neutral and there is no competitive replacement of species. When ρ is 1 competitive superior species always
replaces inferior ones and the model is completely hierarchical. The simulations use a metacommunity with
a logseries abundance distribution with 11, 86 and 341 species and a simulation grid side=256, the other
parameters used were MortalityRate=0.2, DispersalDistance=0.4 (2.5 grid units), ColonizationRate=0.001.
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Figure 7: Generalized dimension spectra Dq of spatial patterns generated with a spatial neutral/hierarchical
model. Replacement is the parameter ρ, that determines the degree of neutrality. When this parameter is 0
the model is completely neutral and there is no competitive replacement of species. When ρ is 1 competitive
superior species always replaces inferior ones and the model is completely hierarchical. The points are means
and vertical lines are standard deviation of 50 simulated patterns. Simulations use a metacommunity with a
logseries abundance distribution with 11,86 and 341 species. The simulation grid side is 256, and the other
parameters are given in the main text.
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Figure 8: Power of the Anderson-Darling test for the hypothesis that generalized dimensions (Dq) curves
and species abundance distributions (SAD) of simulated neutral/hierarchical communities are different. The
compared communities differ only in parameter ρ that determines the degree of neutrality/hierarchy. ∆ρ is
the difference in the parameter, when is lower the communities are more similar. DqSAD is the generalized
dimension calculated using SAD, and DqSRS is the one calculated using the species rank surface (SRS). The
number of comparisons to calculate the frequency is 2500 in all cases. Simulations use a metacommunity with
a logseries abundance distribution with 11,86 and 341 species; a grid side of 256 sites, the other parameters
are given in the main text.
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