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Organization and distribution of glomeruli in the bowhead

whale olfactory bulb

Takushi Kishida, J. G. M. Thewissen, Sharon Usip, John C George, Robert S Suydam

Although modern baleen whales still possess a functional olfactory systems that includes

olfactory bulbs, cranial nerve I and olfactory receptor genes, their olfactory capabilities

have been reduced profoundly. This is probably in response to their fully aquatic lifestyle.

The glomeruli that occur in the olfactory bulb can be divided into two non-overlapping

domains, a dorsal domain and a ventral domain. Recent molecular studies revealed that all

modern whales have lost olfactory receptor genes and marker genes that are specific to

the dorsal domain, and that a modern baleen whale possess only 60 olfactory receptor

genes. Here we show that olfactory bulb of bowhead whales (Balaena mysticetus,

Mysticeti) lacks glomeruli on the dorsal side, consistent with the molecular data. In

addition, we estimate that there are more than 4,000 glomeruli in the bowhead whale

olfactory bulb. Olfactory sensory neurons that express the same olfactory receptor in mice

generally project to two specific glomeruli in an olfactory bulb, meaning that ratio of the

number of olfactory receptors : the number of glomeruli is approximately 1:2. However, we

show here that this ratio is not applicable to whales, indicating the limitation of mice as

model organisms for understanding the initial coding of odor information among mammals.
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Abstract

Although modern baleen whales still possess a functional olfactory systemsthat includes olfactory

bulbs, cranial nerve I and olfactory receptor genes, their olfactory capabilities have been reduced 
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profoundly. This is probably in response to their fully aquatic lifestyle. The glomeruli that occur 

in the olfactory bulb can be divided into two non-overlapping domains, a dorsal domain and a 

ventral domain. Recent molecular studies revealed that all modern whales have lost olfactory 

receptor genes and marker genes that are specific to the dorsal domain, and that a modern baleen 

whale possess only 60 olfactory receptor genes. Here we show that olfactory bulb of bowhead 

whales (Balaena mysticetus, Mysticeti) lacks glomeruli on the dorsal side, consistent with the 

molecular data. In addition, we estimate that there are more than 4,000 glomeruli in the bowhead 

whale olfactory bulb. Olfactory sensory neurons that express the same olfactory receptor in mice 

generally project to two specific glomeruli in an olfactory bulb, meaning that ratio of the number 

of olfactory receptors : the number of glomeruli is approximately 1:2. However, we show here 

that this ratio is not applicable to whales, indicating the limitation of mice as model organisms for

understanding the initial coding of odor information among mammals.

Introduction

Terrestrial mammals generally possess a well-developed sense of smell that can discriminate 

millions of odors using hundreds or thousands of olfactory receptors (ORs) (Nei et al. 2008). 

Odorants are detected by ORs expressing in the olfactory sensory neurons (OSNs), and the OSNs

are projected to the glomeruli of the olfactory bulbs (OBs). Each OSN express only one OR gene 

(Serizawa et al. 2004), and OSNs expressing the same OR converge their axons to a specific set 

of glomeruli in the olfactory bulb (OB) (Mombaerts et al. 1996). Using mice as model organisms,
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it is reported that any 1 OR is typically represented by two glomeruli (Ressler et al. 1994; Vassar 

et al. 1994). This indicates that the number of glomeruli in the OB is approximately twice that of 

the number of OR genes in its genome.

The glomerular layer of the OB can be classified into two domains, the dorsal (D) domain and the

ventral (V) domain, based on the expression patterns of domain-specific marker genes (Imai & 

Sakano 2007). The D domain is defined by the expression of the OMACS gene (Imai & Sakano 

2007; Oka et al. 2003), and the V domain is defined by the expression of the OCAM gene (Imai 

& Sakano 2007; Yoshihara et al. 1997). All mammalian OR genes can be classified into two 

subfamilies, class I and class II, based on sequence similarities (Niimura & Nei 2006). The OSNs

expressing class I ORs are projected to the D domain of the OB, while OSNs expressing class II 

ORs are projected to both D and V domains (Imai & Sakano 2007; Tsuboi et al. 2006).

Cetaceans are an order of mammals that originated in the early Eocene epoch and that was 

derived from terrestrial artiodactyls (Thewissen et al. 2009). Extant cetaceans are classified into 

two monophyletic suborders, Odontoceti (toothed whales) and Mysticeti (baleen whales). 

Modern cetaceans are known to have reduced the olfactory capabilities profoundly during their 

evolution, and odontocetes have no nervous system structures that mediate olfaction (Oelschläger

et al. 2010). On the other hand, mysticetes have a fully equipped olfactory system and OB 

(Thewissen et al. 2011), but the number of functional OR genes is remarkably reduced. Terrestrial

mammals, including cows that are terrestrial relatives of whales, possess approximately 1,000 

intact OR genes (Niimura et al. 2014; Niimura & Nei 2007), whereas minke whales (Mysticeti) 

possess only 60 intact OR genes, and 56 of these are included in class II (Kishida et al. in press). 

In addition, genomic analyses revealed that all modern mysticetes lack functional OMACS genes 

(Kishida et al. in press). Based on these findings, it appears that, although mysticetes have fully 

equipped olfactory systems, their OB lacks the D domain (Kishida et al. in press).
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These molecular data suggest that mysticetes lack glomeruli on the dorsal side of their OB. In 

addition, because mysticetes possess a very small number of OR genes, it is expected that the 

number of glomeruli in their OB is also very small. However, no detailed study of the distribution

and organization of glomeruli in mysticete OB has been reported to date. In this study, we 

provide the distribution of glomeruli in a mysticete, bowhead whale (Balaena mysticetus 

Linnaeus 1758) and test the “1 OR : 2 glomeruli” assumption in mysticetes.

Materials and methods

Tissues of bowhead whales were sampled under NOAA/NMFS permit 814-1899, and the 

preparation of tissue sections (thickness: 6 um) was described previously (Thewissen et al. 2011).

Glomeruli are labeled by the expression of olfactory marker protein (OMP) (Danciger et al. 1989;

Smith et al. 1991). The ImmunoCruz goat ABC staining system (Santa Cruz Biotechnology, Inc., 

cat no. sc-2023) and a rabbit polyclonal anti-OMP antibody (Santa Cruz Biotechnology, Inc., cat 

no. sc-67219) were used for immunohistochemistry, following the standard protocol attached to 

the ABC staining system kit. Antibody dilution was 1:150. The DAB-stained sections were 

counterstained with thionin, and then mounted on permanent slides. The number of glomeruli on 

each slide was counted manually, as shown in Supplementary Figs. S1, S2, S3, S4 and S5.

In order to reconstruct a 3D image of the OB, horizontal sections of the whole OB of a bowhead 

whale (specimen no. 09B14) were prepared and every 5th slice was stained with thionin, mounted 

on permanent slides and photographed. Using AMIRA software (FEI Visualization Science 

Group) ver. 5.4.1, these images were aligned with manual adjustments, and 3D reconstructed. A 

STL-formatted 3D bowhead whale OB image thus obtained is available upon request 

(Supplemental Data S1, file size: 509MB).
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Results and discussion

Fig. 1 and Supplementary Data S1 show the distribution patterns of glomeruli of the OB of 

bowhead whales. The shape of whale OB is not similar to that of terrestrial mammals such as 

mice. The olfactory ventricle is wide open dorsally and few glomeruli are found in the dorsal side

of whale OB. This is in accordance with our genomic findings that modern mysticetes lack 

receptors and marker proteins that are specific to the D domain of the OB  (Kishida et al. in 

press). We conclude that, from both genomic and morphological points of view, mysticete OB 

lacks the D domain.

In order to test the “1 OR: 2 glomeruli” assumption in mysticetes, we counted the numbers of 

glomeruli on five coronal sections, as shown in Fig. 2. We do observe that the numbers of 

glomeruli shown in Fig. 2 is likely to be an underestimate of the actual number because some 

glomeruli cannot be discriminated clearly and are not counted. Generally, four coronal sections 

were mounted in one slide, and the thickness of each section is 6um. It is estimated that 10 slides,

containing 40 sections, correspond to 240um. Because the largest glomeruli are less than 240um 

in diameters (Supplementary Figs. S1, S2, S3, S4, S5 (coronal sections) and S6 (a horizontal 

section)), it can be expected that new glomeruli should appear at most every 10th slide. Therefore,

we roughly estimated the number of glomeruli in approximately every 10th slide (Supplementary 

Table S1). Surprisingly, the bowhead whale OB is estimated to include approximately 4,000 

glomeruli, a number much higher than that of mice (1,600-1,800) (Royet et al. 1988; Taniguchi et

al. 2003). Given our method, this is an underestimate as explained above, and because slides at 

the rear of slide 518 were not taken into account.
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Whole genome sequence data are required to obtain the repertoire of OR genes , but no bowhead 

whale genome assembly has been reported to date. Therefore, it is impossible to reveal the 

accurate number of OR genes in the bowhead whale genomes. Godfrey et al. showed that the 

olfactory anatomy of modern minke whale, whose whole genome assemblies have been reported 

(Kishida et al. in press; Yim et al. 2014), resembles that of late Eocene archaeocetes (Godfrey et 

al. 2013), suggesting that minke whales may be used as a model taxon for olfactory capabilities 

of all modern mysticetes. In addition, previous PCR-based studies suggest that bowhead whales 

and minke whales possess similar OR gene repertoires (Kishida et al. 2007; Thewissen et al. 

2011). Minke whales are reported to possess 60 intact OR genes (Kishida et al. in press; Yim et 

al. 2014), and we assume that bowhead whales also possess approx. 60 OR genes, much less than 

the number of glomeruli in their OB. At least, the number of OR genes in bowhead whale 

genome should be much less than that in cow genome (~1,000). In any case, it is concluded that 

the “1 OR : 2 glomeruli” rule is not applicable in bowhead whales.

Humans are also reported to possess higher numbers of glomeruli (3,000-9,000) than the number 

of OR genes (350) (Maresh et al. 2008), similar to the case of whales. Both humans and whales 

are known to have reduced their OR gene repertoires profoundly in their evolutionary pathways 

(Kishida et al. in press; Matsui et al. 2010). It is possible that, in whales and humans, the 

evolutionary decline in glomerulus numbers proceeds at a slower rate than the decline of OR 

genes, and that this cause the aberrant ratio. Following this explanation, the ancestors of both 

whales and humans are expected to have a ratio of numbers of OR genes to glomeruli that is 

greater than 0.5. However, cows, the terrestrial relatives of whales, possess approximately 1,000 

OR genes (Niimura & Nei 2007), and the whale ancestors are also expected to possess ~1,000 

OR genes, a much lower number than the number of glomeruli in whale OB. Similarly, the last 

common ancestors of all modern primates have been estimated to possess 585 OR genes (Matsui 

et al. 2010), a much lower number than the number of glomeruli in human OB. We speculate that 
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the “1 OR : 2 glomeruli” rule is applicable in mice or even in all rodents, but that it fails for other 

taxa.

Conclusion

Our results showed that bowhead whale OB lacks glomeruli on the dorsal side, in accordance 

with the molecular data that all modern mysticetes lack receptors and marker proteins that are 

specific to the D domain of the OB.

There is much larger number of glomeruli in the bowhead OB than expected from the number of 

OR genes, indicating that the “1 OR: 2 glomeruli” rule is not applicable to mysticetes.
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Figure legends

Figure 1.

Olfactory bulb of the bowhead whale brain.

a. Dorsal view of the left and right OBs of bowhead whale (specimen no. 09B14). Scale bar, 

10mm.

b. Diagram of the dorsal and ventral view of the bowhead whale right OB. Coronal section (c) 

was cut at approximately the red dashed line.
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c. Coronal section of right olfactory bulb of whale (specimen no. 09B11, section195c). Glomeruli

were stained with DAB using anti-OMP antibody, and the whole tissue was counterstained with 

thionin. D, dorsal; L, lateral; M, medial; V, ventral. Scale bar, 1mm.

d. A schematic view of the distribution of glomeruli of the coronal section of the whale OB.

Figure 2.

Nos. of glomeruli in five coronal sections investigated in this study. Sections were cut at 

approximately the red dashed lines. Detail pictures of the sections are available as Supplementary

Figures S1 (slide no. 32), S2 (slide no. 143), S3 (slide no. 195), S4 (slide no. 391) and S5 (slide 

no. 518).

Supplementary materials

Supplementary Data S1

A 3D image of a bowhead whale olfactory bulb provided as a STL format file (binary STL).

Supplementary Figure S1

A coronal section of the OB of bowhead whale 09B11 (section 32). Glomeruli are labeled with 

anti-OMP antibody, and are indicated with arrows. Scale bar, 1000um.

Supplementary Figure S2

A coronal section of the OB of bowhead whale 09B11 (section 143). Glomeruli are labeled with 

anti-OMP antibody, and are indicated with arrows. Scale bar, 1000um.
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Supplementary Figure S3

A coronal section of the OB of bowhead whale 09B11 (section 195). Glomeruli are labeled with 

anti-OMP antibody, and are indicated with arrows. Scale bar, 1000um.

Supplementary Figure S4

A coronal section of the OB of bowhead whale 09B11 (section 391). Glomeruli are labeled with 

anti-OMP antibody, and are indicated with arrows. Scale bar, 1000um.

Supplementary Figure S5

A coronal section of the OB of bowhead whale 09B11 (section 518). Glomeruli are labeled with 

anti-OMP antibody, and are indicated with arrows. Scale bar, 1000um.

Supplementary Figure S6

A horizontal section of the OB of bowhead whale 09B14 (section 134). Glomeruli are labeled 

with anti-OMP antibody. Scale bar, 1000um. Left, anterior; right, posterior.

Supplementary Table S1

Number of glomeruli on approx. every 10th slide. Nos. of glomeruli with slide nos. in 

parentheses are estimated by taking an average between the glomeruli-counted sections in front 

and in the rear.
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Figure 1(on next page)

Figure 1

Olfactory bulb of the bowhead whale brain. a. Dorsal view of the left and right OBs of

bowhead whale (specimen no. 09B14). Scale bar, 10mm. b . Diagram of the dorsal and

ventral view of the bowhead whale right OB. Coronal section (c) was cut at approximately the

red dashed line.c. Coronal section of right olfactory bulb of whale (specimen no.

09B11,section195c). Glomeruli were stained with DAB using anti-OMP antibody, and the

whole tissue was counterstained with thionin. D, dorsal; L, lateral; M, medial; V, ventral. Scale

bar, 1mm.d. A schematic view of the distribution of glomeruli of the coronal section of the

whale OB.
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Figure 2(on next page)

Figure 2

Nos. of glomeruli in five coronal sections investigated in this study. Sections were cut at

approximately the red dashed lines. Detail pictures of the sections are available as

Supplementary Figures S1 (slide no. 32), S2 (slide no. 143), S3 (slide no. 195), S4 (slide no.

391) and S5 (slide no. 518).
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