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ABSTRACT 7 

Insects have been used as an exemplary model in studying longevity, from extrinsic mortality 8 

pressures to intrinsic senescence. In the highly eusocial insects great degrees of variation in lifespan 9 

exist between morphological castes in relation to extreme divisions of labour, but of particular 10 

interest is the primitively eusocial orders. These species represent the ancestral beginnings of 11 

eusociality, in which castes are flexible and based on behaviour rather than morphology. Here we 12 

present data on the longevity of the primitively eusocial Neotropical paper wasp Polistes canadensis, 13 

in a captive setting removed of all environmental hazards. In comparison to other eusocial wasps9 P. 14 

canadensis had an average lifespan of 193±10.5 days, with one individual living longer than 450 15 

days. Although this is shorter than most highly eusocial bee and ant queens. Natal colony variation 16 

does exist between P. canadensis colonies, possibly due to nutritional and genetic factors. This study 17 

provides a foundation for future investigations on the effects of intrinsic and extrinsic factors on 18 

longevity in primitively eusocial insects, as well as the relationship with caste and genome. 19 

 20 

  21 
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Introduction 22 

Death comes to all, yet many seemingly ordinary insects have evolved some of the most 23 

dramatic and extraordinary lifespans, delaying the call of death for remarkable periods (Finch, 1990). 24 

Variation in insect longevity spans from Ephemera simulans males that live as adults for just 1.6 days 25 

(Carey, 2002) to the ants Pogonomyrmex owyheei and Lasius niger whose queens can live up to 30 26 

years (Porter et al., 1988; Hölldobler et al., 1990). Interestingly, eusocial insects such as ants, wasps 27 

and bees feature heavily as examples of long-lived insects, but great variation exists not only 28 

between these species but also within species and even among genotype. We understand little 29 

about the roles of ecology, evolution, life-history and environment in generating variation in 30 

longevity in social insects, largely due to the difficulty of disentangling intrinsic life-span (hence-forth 31 

referred to as longevity) from survival (the abiotic and biotic environment pressures i.e. extrinsic 32 

mortality) on individuals (Hölldobler & Wilson, 1990; Keller, 1998; Keeler, 2014; Giraldo & Traniello, 33 

2014). 34 

Eusocial insects are one of the most dominant, prolific, and diverse groups of organisms on 35 

the planet (Wilson, 1975). Much of this groups9 success is attributed to the division of labour within 36 

the colony in the form of castes, with few or a single reproductive individual (queen), supported by 37 

tens to millions of non-reproductive individuals (workers) that forage, provision and care for sibling 38 

brood (Crespi, 1993). Caste fate is primarily  determined by environmental conditions, e.g. nutrition 39 

during larval development, and occasionally genetic biasing (Oster & Wilson, 1978; Hölldobler & 40 

Wilson, 1990; Hughes et al., 2003). Level of social complexity appears to be an important predictor 41 

of longevity in the eusocial insects. Within species variation in longevity can be pronounced between 42 

castes with queens living as much as 100-fold longer than their related workers (Ridley, 1993; Keller 43 

& Genoud, 1997; Kramer & Schaible, 2013).  This is a remarkable example of a how a single genome 44 

can display plasticity in aging (Keller, 1998; Fjerdingstad & Crozier, 2006; Keeler, 2014). Few 45 

individuals are selected to specialise in egg production and therefore colony survival is likely to be 46 
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highly associated with and dependent on queen longevity (in the absence of reproductive 47 

succession, see (Bourke, 2007)). These long-lived queens live deep within the nest, sheltered from 48 

extrinsic pressures such as predation (Porter & Jorgensen, 1981; Keller & Genoud, 1997).  Assuming 49 

there are costs associated with longevity, there may be selection for short lifespan in workers, and 50 

long-life span in queens, especially in highly eusocial species where colonies are large enough to 51 

support highly specialised, short-lived workers(Evans, 1958; Carey, 2001; De Loof, 2011; Ferguson-52 

Gow et al., 2014). Castes are unlikely to have been selected for such differential in the primitively 53 

eusocial species, where colonies are small each worker is valuable, and longevity of workers may be 54 

highly variable depending on the type or frequency of task each individual performs (Strassmann, 55 

1985). 56 

Group size may influence worker longevity and this is likely to be due to the changes in 57 

nutrition that developing brood receive through the colony cycle (Matsuura et al. 1990; Schmid-58 

Hempel 1998). At the colony level, the first worker brood  display a shorter lifespan than those 59 

produced later in the colony cycle, and this may be due to the increase in levels of nutrition available 60 

to brood as the colony grows (Oster & Wilson, 1978; Porter & Tschinkel, 1986). Productivity is 61 

therefore maximised when number of workers, and consequently rates of nutritional acquisition, are 62 

low in the early stages of the colony establishment (Oster & Wilson, 1978; Porter & Tschinkel, 1985; 63 

Hölldobler & Wilson, 1990). As the colony grows, the ratio of workers to larvae often increases, and 64 

the larvae will benefit from increased quality and quantity of food, which can result in longer adult 65 

life-spans (e.g. in honey bees: Groot, 1953; Eischen, 1982). To date there have been no studies on 66 

how worker longevity varies with colony size in primitively eusocial insects. We predict the same 67 

patterns will occur, as in the highly eusocial species, since workers emerging early in the colony cycle 68 

are subject to low worker:larvae ratio and therefore low quality nutrition. Conversely, those 69 

emerging late in the colony cycle experience high worker:larvae ratio and thus high quality nutrition 70 

(Sumner et al., 2007).  71 
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Group identity may also influence longevity. This may be due to a genetic effects (VanRaden 72 

& Klaaskate, 1993; Herskind et al., 1996; Vollema & Groen, 1996; Klebanov et al., 2001; Sebastiani et 73 

al., 2012; Gems & Partridge, 2013), for example a genetic propensity to favour heavy or light feeding 74 

of larvae may translate into variable longevity of the resulting workers. Alternatively, the intrinsic 75 

environment of the group may influence longevity, for example through epigenetic effects (Keller & 76 

Jemielity, 2006; Yan et al., 2014). If group effects are important, we predict that variation in 77 

longevity will be greater between groups than within groups, even in the face of group size variation.  78 

Here we provide primary data on longevity of females in captive colonies of the predatory 79 

and primitively eusocial Neotropical Polistes canadensis paper wasps. Primitively eusocial species 80 

such as those of paper wasp genus Polistes, have been used to extensively study the evolution of 81 

eusociality, with their lack of morphological differences and plasticity in caste (Turillazzi & West-82 

Eberhard, 1996). Yet, there are few systematic attempts to quantify longevity, and variation of, in 83 

this well-studied genus. Tropical species lack major seasonal constraints on longevity (Clutton-Brock, 84 

1991) and so offer an excellent system for testing the influence of ecology, evolution and 85 

environment on longevity, in the absence of seasonal curtailment of longevity.  Studying insect 86 

lifespans in captivity, in the absence of predation and parasitism, is a valuable approach that allows 87 

us to quantify longevity in the absence of extrinsic mortality pressures (Chapuisat & Keller, 2002). . 88 

We compare our data with estimates of longevity in other eusocial insects to determine the 89 

importance of level of sociality and ecology (Hypothesis 1). We quantify the effects of colony identity 90 

on worker longevity (Hypothesis 2). We then conduct manipulation experiments to determine the 91 

influence of group size on worker longevity (Hypothesis 3). Understanding variation in longevity in 92 

these organisms provides an excellent foundation to explore similar questions in the higher-order 93 

social vertebrates (Carey, 2001).  94 

Methods 95 
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Collection: Ten colonies of the paper wasp, Polistes canadensis were collected from the 96 

Republic of Panamá in August 2013 for transportation. Adult wasps were captured with full nest 97 

carton containing brood (eggs, larvae, and pupae) during dusk. Nest cartons and wasps were 98 

transferred to individual containers (150mmx150mmx150mm) with wire mesh ventilation. Colonies 99 

were provided with sugar solution and water ad libitum during transfer to the United Kingdom.  100 

Turnaround from capture to settled maintenance in the laboratory was 48 hours.  101 

 Maintenance: Nests were housed in clear transparent acrylic containers 102 

300mmx330mmx340mm each with two 525mm perimeter ventilation ducts (Figure 1). Food 103 

consisting of liquid cane sugar and live wax moth larvae Achroia grisella, along with distilled water 104 

and nest-building materials (cardboard & paper) were all supplied ad libitum. All sugar and food was 105 

obtained in batches and randomly split between colonies to ensure equal food quality provided to 106 

the adults to prevent any longevity variability as a result of adult nutrition (Johanowicz & Mitchell, 107 

2000; Harvey et al., 2012). In addition to food, nest-boxes were also given artificial planting for 108 

environmental enhancement, to provide shelter from female aggression for males (Polak, 2010). 109 

Nest boxes were cleaned regularly and without disturbing wasps or nest. Natural conditions from 110 

the collection sites were mimicked with temperatures of 25±1oC, 70±5% relative humidity, and a 111 

light cycle of 12h light (12h dark). 112 

Data collection: Colonies were monitored and wasp deaths recorded weekly. Any dead 113 

adults found were immediately removed from the nest box. Recording continued until all individuals 114 

deceased. Only adult wasps that developed in the wild were monitored for longevity. This ensured 115 

our adult wasps developed under natural nutritional conditions. Since all nests were collected from 116 

the same field site at the same time, local environmental conditions for development are controlled 117 

for as best as possible, though the colonies will differ from each other genetically.  118 

Because we do not know the eclosion date for each adult wasp, our measures of longevity will be 119 

underestimates. 120 

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.739v1 | CC-BY 4.0 Open Access | rec: 19 Dec 2014, publ: 19 Dec 2014

P
re
P
ri
n
ts



5 

 

Hypothesis 1: If adult longevity correlates with level of social complexity, we expect mean adult 121 

longevity of P. canadensis to be more similar to that of other Polistes species than the more highly 122 

eusocial insects. Peer reviewed articles describing the longevity of eusocial Hymenoptera were 123 

collated to determine the longevity of species (and caste when described) - 124 

https://webofknowledge.com/.  The average longevity of P. canadensis, as found in this study was 125 

included for comparison. 126 

Hypothesis 2: Colony identity (e.g. genotype) explains variance in mean female longevity in P. 127 

canadensis.  Using the data generated from colonies M1-M7, variance in longevity between colonies 128 

was quantified to determine whether colony identity (and by extension, genotype,) explains 129 

variation in wasp longevity better than colony size. 130 

Hypothesis 3:  Group size influences mean female longevity in P. canadensis.  Three colonies (M8, 131 

M9, M10) were monitored every 10 days for a period of 3 months, at which point their group sizes 132 

were of 28, 23 and 23 workers respectively. Each colony was then split, and randomly allocated 133 

between two new nest boxes (remaining with their related groups), giving six new groups in total 134 

and consisting of 18, 13, 12, 8, 8 and 9 females. A non-natal male was added to each new colony so 135 

that females had the opportunity to mate. These colonies were then maintained as above with wasp 136 

deaths monitored weekly for 220 days at which point all individuals were deceased. 137 

 138 

Statistical analyses: Differences in adult survival where analysed using a Cox proportional hazards 139 

regression model where colony was used as a factor. Where differences in survival were found, 140 

pairwise comparisons between nests were made using Kaplan-Meier models with the Breslow χ2 141 

statistic to highlight specific patterns between the colonies. 142 

Results 143 
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Hypothesis 1: The mean adult longevity of P. canadensis will be similar to that of other Polistes 144 

species but differ from those observed in highly eusocial hymenopterans such as ants and bees.  145 

Literature suggests that the average lifespan of wasps can range from a maximum of 209 days in 146 

Polistes lanio down to 14 days in Polistes exclamans, with both studies carried out on wild Polistes 147 

colonies and so unable to account for extrinsic mortaility (Strassmann, 1985; Giannotti & Machado, 148 

1994). The life-span of wasps in more highly eusocial species ranges from 59 days in Vespa vulutina 149 

to 14.5 days in both Vespula germanica and Dolichovespula consobrina (Akre, 1982; Dazhi & 150 

Yunzhen, 1989). Here found that 57% of adult P. canadensis colonies maintained in the lab can 151 

survive beyond 365 days with all but one colony having died after 450 days, providing data on 152 

longevity for 143 wasps in total (Figure 2) On average wasps lived for 193±10.5 days with one 153 

individual still alive after 450 days (Figure 3C; Figure 7).  154 

 155 

Hypothesis 2: Colony identity (e.g. genotype) explains variance in mean female longevity in P. 156 

canadensis.   157 

Colony identity has a significant influence on adult wasp longevity (Cox proportional hazard survival 158 

analyses Wald = 17.134, d.f. = 6, P = 0.009 (Figure 3A-D, Table S1-2)).    159 

 160 

Hypothesis 3: Group size influences mean female longevity in P. canadensis.  .  161 

Group sizes ranged from 9 (M5) to 34 (M7) wasps with average longevity within different nests 162 

ranging from 130±39.4 days (in M5) up to 206±41.3 days (in M6). Comparing the mean adult 163 

longevity of colonies M1-M7 against their original size gives no clear association (Figure 6A). 164 

Colonies M8-M10 showed no difference in survival prior to splitting (Wald = 4.016, d.f. = 2, P = 165 

0.134; Figure 4). However, after splitting into 6 cohorts of variable size, females exhibited 166 
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significantly different longevities (Wald = 12.544, d.f. = 5, p = 0.028; Figure 5). Pairwise analyses 167 

show this is likely due to cohort M8A (the largest) living significantly longer than most other cohorts 168 

(Figure 5D, Table S3-S4). Variation could not be attributed to natal colony identity. Cohorts from M9 169 

(M9A & M9B) and from M10 (M10A & M10B) show no significant difference in adult longevity within 170 

natal colony identity (χ2 = 0.173, P = 0.677; χ2 = 0.394, P = 0.530 respectively), cohorts from colony 171 

M8 (M8A & M8B) do differ from each other and are, incidentally, the 2 cohorts with the largest size 172 

difference (χ2 = 3.829, P = 0.05; Table S6). Group size shows a positive trend with longevity (Figure 173 

6B).  174 

Discussion 175 

Here we show Polistes canadensis to have the greatest longevity of any wasp recorded under 176 

laboratory conditions to date, and 2nd greatest overall, with wasps living on average 193 days, and 177 

up to 450 days.  Our analyses suggest that colony identity and group size explain the variation in 178 

longevity, as predicted by our hypotheses. We discuss the implications of this data in the context of 179 

other species and ecology and evolution of eusociality. 180 

Despite not monitoring the wasps from their day of eclosion (survival will be longer than our 181 

data shows), P. canadensis that developed in the wild have an average longevity of 193 days when 182 

maintained in the lab, free of extrinsic mortality pressures. This exceeds previous lifespan estimates 183 

on Polistes species where workers live approximately one month (Miyano, 1980; Strassmann, 1985; 184 

Giannotti & Machado, 1994; Giannotti, 1997, 2012; Gamboa, Greig & Thom, 2002; Torres, Gianotti & 185 

Antonialli-Jr, 2013). There was no obvious difference in longevity between the 8worker force9 and the 186 

queens (defined by egg-laying). Instead we observe large cohorts of long lived individuals in multiple 187 

colonies. The average longevity found is also greater than the survival of queens in many other wasp 188 

species. This lack of differences between the castes may be, in part, a result of the biology of Polistes 189 

wasps which are a primitively eusocial species with all members able to reproduce and perform like 190 

a queen. Their eusocial structure is based on behaviour rather than the physiological constraints 191 
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observed in higher hymenopterans such as honey bees and many ants, which incidentally display the 192 

largest longevity disparities.  193 

Colony identity was a clear predictor of wasp longevity. All colonies were collected at the 194 

same time from the same field site where adults on all nests would have shared the same 195 

developmental and environmental conditions. The potential causes for the effect of colony identity 196 

could be: 1) Genetic differences between the colonies. Genetic influences on longevity have been 197 

found in a number of model species from mammals to nematodes and insects (VanRaden & 198 

Klaaskate, 1993; Herskind et al., 1996; Vollema & Groen, 1996; Klebanov et al., 2001; Sebastiani et 199 

al., 2012; Gems & Partridge, 2013) and evidence for heritability of increased longevity in the insect 200 

fruit fly and honey bees have been observed (Rinderer, Collins & Brown, 1983; Luckinbill & Clare, 201 

1985) with some gene expression patterns being associated with longevity in queen honey bees 202 

(Corona et al., 2005). 2) Queen 8quality9 which can be the result of extrinsic or intrinsic factors. 203 

Variation in fecundity of reproductive and dominance over other individuals in a colony is known as 204 

Queen quality and this can vary between queens (Harris & Beggs, 1995; Liebig, Monnin & Turillazzi, 205 

2005; Holman, 2012). This queen quality variation can be inherited (Rinderer & Sylvester, 1978; 206 

Corona et al., 2005) or driven by environmental factors (Hatch, Tarpy & Fletcher, 1999; Tarpy et al., 207 

2011). 3) Unobserved differences in extrinsic factors that the nests had experienced before 208 

collection. Since the colonies were not monitored for their entire history, there is the possibility that 209 

something affected each one differently in order to cause varying longevity within their workers.  210 

What we can conclude is that although colony identity was a predictor of longevity in the adult 211 

wasps, this did not correlate with wasp size, and so suggests that the explanation that larger colonies 212 

would produce longer lived workers due to enhanced nutrition during larval development is not 213 

correct.  When groups of sister wasps were manipulated into varying group sizes, the effects of 214 

group size on longevity was diluted and an association with group size and longevity was observed.   215 
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To investigate the underlying variation in longevity in eusocial insects, data from captive 216 

colonies a range of eusocial insects is required. Predatory eusocial insects such as wasps are 217 

underrepresented in the literature. Here, for the first time we quantify longevity of adult P. 218 

canadensis in the absence of extrinsic mortality and provide some tantalising support for the link 219 

between group size and adult longevity. Our results suggest predictions founded on previous 220 

research using higher eusocial species such as honeybees may not be relevant to primitively eusocial 221 

species.  A particular challenge will be for future studies to also control for all of the described 222 

extrinsic and intrinsic factors such as wild nest site condition. It is clear that P. canadensis adults can 223 

live for unexpectedly long periods with the oldest individual being at least 450 days old.  224 

 225 
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 380 

 381 

Figure legends 382 

Figure 1. Captive housing of P. canadensis colonies: A nest carton supported on reinforced celling 383 

with shade; B artificial planting; C ventilation; D access hatch; E provisions and artificial planting. 384 

Figure 2. Comparison of lifespans in a selections of ants (A), bees (B) and all records of wasps (C), 385 

highlighting whether data is attained from wild (Black bars) or assisted (grey bars) colonies with 386 

unknowns also included (grey bars). Data compiled from the result of this study (  above column) 387 

and those found following literature search (Pardi, 1948; Michener, 1969; West-Eberhard, 1969; 388 

Matsuura, 1971; Wilson, 1971; Spradbery, 1973; Miyano, 1980; Haskins & Haskins, 1980; Akre, 1982; 389 

Strassmann, 1985; Goldblatt & Fell, 1987; Dazhi & Yunzhen, 1989; Hölldobler & Wilson, 1990; 390 

O9Donnell & Jeanne, 1992; Giannotti & Machado, 1994; Keller, 1998; Silva-Matos & Garófalo, 2000; 391 

Page Jr & Peng, 2001; Gamboa, Greig & Thom, 2002; Jemielity et al., 2005; Hurd, Jeanne & 392 

Nordheim, 2007; Archer, 2012; Giannotti, 2012; Torres, Gianotti & Antonialli-Jr, 2013; Halcroft, 393 

Haigh & Spooner-Hart, 2013) 394 

 395 

Figure 3. Survival of adults in seven Polistes canadensis colonies shown as raw numbers (A) and 396 

proportions (B) over a period of 15 months post capture whilst maintained under laboratory 397 

conditions. Their longevity estimates of adult wasps for each colony as estimated by Kaplan-Meier 398 

survival analysis (C) with pairwise differences as calculated by the Breslow statistic shown by capped 399 

horizontal bars (D)  400 

 401 

Figure 4. Survival of adults in three Polistes canadensis colonies (92 adults) shown as raw numbers 402 

(A) and proportions (B) over a period of 80 days post capture whilst maintained under laboratory 403 

conditions, along with the survival estimates for each colony as estimated by Kaplan-Meier survival 404 

analysis (C) Estimations used in C-D are limited to the largest survival time due to censorship. 405 

Standard error bars in (D) calculated by Kaplan-Meier model. 406 

 407 

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.739v1 | CC-BY 4.0 Open Access | rec: 19 Dec 2014, publ: 19 Dec 2014

P
re
P
ri
n
ts



15 

 

Figure 5. Survival of 72 adult Polistes canadensis in 6 conspecific groups split from 3 colonies, shown 408 

as raw numbers (A) and proportions (B) over a period of 220 days post split whilst maintained under 409 

laboratory conditions. The survival estimates of these as estimated by Kaplan-Meier survival analysis 410 

are shown (C) with pairwise differences as calculated by the Breslow statistic shown by capped 411 

horizontal bars (D)  412 

 413 

Figure 6. Associations between colony size and mean longevity of adult P. canadensis when 414 

maintained in original colony (A) or when manipulated into cohorts of varying size (B). Standard 415 

error bars calculated by Kaplan-Meier model.  416 

 417 

Figure 7. Individual M1-25, the oldest recorded P. canadensis at 450 days old. 418 

 419 

Figures 420 

Figure 1.  421 

 422 
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Figure 2. 429 
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Figure 3. 431 
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Figure 4. 434 
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Figure 5. 437 
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Figure 6.  448 
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Figure 7. 450 
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