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ABSTRACT 24 

Local increases in sea level caused by global climate change pose a significant threat to the 25 

persistence of many coastal plant species through exacerbating inundation, flooding, and erosion.  26 

In addition to sea level rise (SLR), climate changes in the form of air temperature and 27 

precipitation regimes will also alter habitats of coastal plant species. Although numerous studies 28 

have analyzed the effect of climate change on future habitats through species distribution models 29 

(SDMs), none have incorporated the threat of exposure to SLR.  We developed a model that 30 

quantified the effect of both SLR and climate change on habitat for 88 rare coastal plant species 31 

in San Luis Obispo, Santa Barbara, and Ventura Counties, California, USA. Our SLR model 32 

projects that by the year 2100, 60 of the 88 species will be threatened by SLR.  We found that the 33 

probability of being threatened by SLR strongly correlates with a species9 area, elevation, and 34 

distance from the coast, and that ten species could lose their entire current habitat in the study 35 

region. We modeled the habitat suitability of these 10 species under future climate using a 36 

species distribution model (SDM).  Our SDM projects that 4 of the 10 species will lose all 37 

suitable current habitats in the region as a result of climate change.  While SLR accounts for up 38 

to 9.2 km2 loss in habitat, climate change accounts for habitat suitability changes ranging from a 39 

loss of 1439 km2 for one species to a gain of 9795 km2 for another species. For three species, 40 

SLR is projected to reduce future suitable area by as much as 28% of total area.  This suggests 41 

that while SLR poses a higher risk, climate changes in precipitation and air temperature 42 

represents a lesser known but potentially larger risk and a small cumulative effect from both. 43 

 44 

 45 

 46 
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INTRODUCTION  47 

The average global sea level is rising, with evidence to suggest that the rate is accelerating 48 

(IPCC, 2007; Titus et al., 2009; Nicholls & Cazenave, 2010). As increasing atmospheric 49 

concentrations of greenhouse gases warm the atmosphere and oceans, sea level is rising due to 50 

thermal expansion of waters and the melting of glaciers and ice sheets (Nicholls & Cazenave, 51 

2010). While global mean sea level has been gradually increasing for at least 20,000 years, this 52 

trend has accelerated in the last 15 to 20 years in response to climate change (IPCC, 2007).  53 

According to recent projections, global mean sea level could rise as much as 32 cm in the next 54 

40 years and rise 75 to 190 cm over the next century (Pfeffer et al., 2008; Vermeer & Rahmstorf, 55 

2009; Nicholls & Cazenave, 2010; Rignot et al., 2011; Slangen et al., 2012).  Rising sea level 56 

and the potential for stronger storms pose an increasing threat to coastal communities, 57 

infrastructure, beaches, and ecosystems.   58 

 59 

Given the dynamic nature of the coastal zone, the response of coastal areas to SLR is more 60 

complex than simple inundation.  In addition to inundating low-lying areas, rising sea levels can 61 

increase flooding events, coastal erosion, wetland loss, and saltwater intrusion into estuaries and 62 

freshwater aquifers.  Moreover, climate change will likely result in altered patterns of 63 

precipitation and warmer temperatures in some coastal areas along with increasing the risk of 64 

extreme high sea level events.  This is expected to be especially common during high tides, 65 

particularly when exacerbated by winter storms and El Niño events (Cayan et al., 2008a).   The 66 

combined effects of SLR and other climate change factors, including changes in fog, may cause 67 

rapid and irreversible coastal changes that will have significant effects on coastal habitats and 68 

species.   69 
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 70 

In the United States, climate-related changes are already being observed in the form of rising 71 

temperature and sea level, storms, early snowmelt, lengthening of growing seasons, and 72 

alterations in river flows, among others (Karl et al., 2009). Furthermore, these changes are 73 

projected to intensify over the coming century (Karl et al., 2009).  Climate change in the form of 74 

increasing air temperature and varying precipitation will also affect coastal plant species in 75 

California (Hayhoe et al., 2004). Climatic factors are known to be important drivers of species9 76 

distributions (Woodward & Williams, 1987); climate change could alter the current distribution 77 

of a species by shrinking or enlarging and ranges shifting its climatic envelope (Jones et al., 78 

2013; Smale & Wernberg, 2013). Many coastal species are also adapted to specific temperature 79 

ranges, and an increase in temperatures will likely change the distribution of these species (Titus 80 

et al., 2009).  Rare and threatened native plants are more susceptible to extinction caused by 81 

climate change due principally to their small population sizes and specific habitat requirements. 82 

Gradual migration to new habitats can be especially difficult for rare plant species with small 83 

populations, since they may be constrained by low dispersal ability, genetic diversity, and limited 84 

habitat (Maschinski et al., 2011).  Furthermore, unlike more mobile species, plant migration 85 

depends on a variety of dispersal agents (Howe, 1982) that also may also be negatively affected 86 

by climate change.  Some studies estimate that endemic plant species9 ranges may shift up to 90 87 

miles under drastic climate change; however, the rate of movement over that distance would be 88 

far slower than the rate of climate change (Loarie et al., 2008).   89 

 90 

Numerous studies have analyzed the effect of climate change on future habitats through species 91 

distribution modeling (SDM) (Guisan & Zimmermann, 2000; Bakkenes et al., 2002; Thomas et 92 
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al., 2004; Guisan & Thuiller, 2005; Thuiller et al., 2005), which statistically relates multiple 93 

abiotic habitat characteristics with observed occurrences of a species (Kearney & Porter, 2004; 94 

Guisan & Thuiller, 2005; Araújo & Guisan, 2006).  In California, Loarie et al. (2008) estimated 95 

that approximately 66% of California9s endemic plant species may experience decreases of up to 96 

80% in the size of their ranges within the next 100 years as a result of climate change. Although 97 

numerous studies have been published evaluating climate change effects on species distributions, 98 

to our knowledge no studies have incorporated the threat of exposure to SLR with species 99 

distribution under climate change.  There is a pressing need to identify the existence of 100 

interacting effects between climate change and habitat loss and, if so, to quantify the magnitude 101 

of their impact (Mantyka-pringle et al., 2011).   102 

 103 

Conceptually, the combined influence of climate change and SLR may result in three distinct 104 

patterns (Figure 1).  In the first case, climate change could shift species inland and thus away 105 

from the threat of SLR (Figure 1A).  Second, climate change could shift species toward the 106 

coast, thus threatening species that would not have otherwise been affected by SLR (Figure 1B).  107 

In the third case, climate change could shift species habitats along the coast, which depending on 108 

the coastline could result in no net change in the threat of SLR to the species (Figure 1C) (Loarie 109 

et al., 2008).  110 

 111 

Our study evaluated the effect of SLR on 88 rare, largely endemic, coastal plant species within 112 

California9s Tri-County Area (San Luis Obispo, Santa Barbara, and Ventura Counties) by the 113 

end of this century. We then developed an SLR risk analysis model to evaluate the relationship 114 

between a plant9s characteristics and its likelihood of exposure to SLR in the future. We used 115 
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MaxEnt (Phillips et al., 2006) to project species9 distributions under current and future climate 116 

and then compared that to the relative impact of SLR.   117 

 118 

We addressed the following questions: (1) What is the extent of the impact of SLR on rare plant 119 

species along the central California coast; (2) Which plant characteristics are the best predictors 120 

of exposure to SLR; (3) To what extent will climate change shift the current habitat of rare 121 

coastal plant species in the future; (4) What is the relative impact of climate change compared to 122 

SLR on the habitat of species?   123 

 124 

 125 

 126 

 127 

 128 

 129 

 130 

 131 

 132 

 133 

 134 

 135 

 136 

 137 

 138 
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MATERIALS AND METHODS 139 

Species Occurrence Data 140 

Using the CalFlora Plant Database available from The CalFlora Database 141 

(http://www.calflora.org), we selected 88 species in the Tri-County Area that were likely 142 

candidates for exposure to SLR, given their occurrence at low elevations (0-30 meters).  The 143 

selected 88 species represent 31 different taxonomic families; 6 habitat types including coastal 144 

fresh and brackish marshes, coastal dunes, scrub, coastal bluffs, and meadows and grasslands; 145 

multiple life histories including annuals, herbs, succulents, woody, and deciduous shrubs; a 146 

variety of elevation ranges; and a mix of state and federally listed species, as well as unlisted but 147 

rare species (Table S-1).  148 

 149 

Species occurrence data were extracted from the 8RareFind9 dataset of the California Natural 150 

Diversity Database (CNDDB) (http://www.dfg.ca.gov/biogeodata/cnddb/).  CNDDB maintains 151 

information about the natural history and locations of rare, threatened, endangered, and special 152 

status species and natural communities of California and has been used for a variety of species 153 

distribution models (Hernandez et al., 2006; Williams et al., 2009; Regan et al., 2012).  In 154 

CNDDB, location data for a species takes the form of polygonal occurrences, which are a rough 155 

proxy for populations. An occurrence is defined as the area of a cluster of individuals within ¼ 156 

mile of one another and separated by at least that distance from other occurrences.  We excluded 157 

all occurrences recorded before 1970 and any that were greater than 4 km in diameter in order to 158 

minimize outdated and uncertain values. Due to incomplete and unknown data on a number of 159 

individuals present within each occurrence, we assumed that populations were distributed evenly 160 

across occurrences. Thus, we included occurrences regardless of the number of individuals or 161 
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clusters of populations known to be extant within them.  The 88 species accounted for a total of 162 

1091 occurrences used in our analyses. 163 

 164 

SLR Projections  165 

The SLR scenarios in this study were generated as part of the California Climate Impact 166 

Assessments which were produced from a downscaled global climate model (GCM) analyzed by 167 

the Scripps Institution of Oceanography (Cayan et al. 2009). The <high scenario= was a 1.4 m 168 

rise by 2100, while the <low= scenario was a 1.0 m rise by 2100 (Cayan et al. 2009).  The coastal 169 

hazards of erosion and flooding associated with the impacts of the GCM outputs were projected 170 

for a variety of planning horizons using a total water level (tides + wave run-up) methodology 171 

(Revell et al. 2011). Coastal erosion model projections mapped all of San Luis Obispo County 172 

and most of Santa Barbara County, while the coastal flood extents were projected and mapped 173 

for the entire state of California. These projections of future coastal hazards were made available 174 

by the Pacific Institute, which conducted an initial statewide vulnerability assessment identifying 175 

critical infrastructure, habitats, and social demographics at risk from SLR (Heberger et al. 2011).  176 

 177 

For coastal flooding, the mapped hazard extent was extrapolated from existing FEMA 100-year 178 

coastal Base Flood Elevations (BFEs), escalated by the projected amount of sea level rise.  A 179 

100-year flood is defined as a flood extent that has a 1% chance of being equaled or exceeded in 180 

a given year (FEMA, 2005). These BFEs, which calculated a maximum elevation of wave run-up 181 

at the shoreline, were mapped inland using a simple bathtub approach (FEMA, 2005). This 182 

approach likely overestimates the inland extent of coastal flooding, but in areas of combined 183 

fluvial and coastal flooding, may suitably represent the joint probability of a combined fluvial 184 
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and coastal storm event (Revell, et al. 2011). The coastal erosion hazards contained 3 185 

components in the projected outputs: the effects of shoreline transgression from SLR, historic 186 

trends in shoreline change which provided an indirect accounting of sediment budget 187 

considerations, and the impact on erosion of a 100-year storm wave event (Revell et al. 2011).  188 

Inundation was mapped as the current extent of Mean High Water elevated by the SLR scenario 189 

over time by using a bathtub approach and ignoring hydraulic connectivity (Heberger et al. 190 

2011). 191 

 192 

SLR Threat Analysis 193 

In order to analyze the threat of SLR to each species, the occurrences for the 88 species were 194 

combined with the above SLR threat layers for the year 2100, including inundation, flooding, 195 

and cliff and dune erosion in the Tri-County Area. We compared the geographic area of the 196 

occurrence data with the geographic area of the SLR threat layers to determine the area of 197 

overlap. We used the area of overlap to calculate the percent of each occurrence exposed to SLR 198 

for each species. We examined the area of exposure by aggregating the geographic areas of the 199 

four SLR-related threats to determine where any threat might occur.  200 

 201 

SLR Risk Analysis 202 

In order to determine the best predictors of exposure to SLR for our 88 species, we gathered 203 

several physical, spatial, and biological characteristics related to each species, including life 204 

history, federal and California listing status, as well as each occurrence9s area, elevation, and 205 

distance from the coast (See Table S-1). These variables included both continuous (e.g. 206 

elevation, distance) and categorical (e.g. life history, listing status) data. The continuous 207 
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variables all had occurrence-level specificity, whereas the categorical variables only had species-208 

level specificity. We ran multiple logistic regressions using R 2.15.1 (R Core Development 209 

Team, 2012), to determine which variables (including interactions) resulted in the best predictive 210 

models for exposure to SLR. We selected the best model based on two measures: the lowest 211 

Akaike Information Criterion (AIC) value (Akaike, 1973; Bozdogan, 1987) and statistically 212 

significant coefficients.  213 

 214 

Species Distribution Modeling 215 

We modeled current and future habitat suitability using MaxEnt version 3.3.3k (Phillips et al., 216 

2006), a machine-learning technique often used to model the spatial distribution of a species 217 

using environmental variables and species9 occurrence data (Gogol-Prokurat, 2011).  Species 218 

provides presence only data.  Although many SDMs require both presence and absence data to 219 

predict distributions, MaxEnt has been recognized to be particularly effective with presence only 220 

data (Phillips et al. 2006; Regan et al., 2012).  Moreover, MaxEnt can partially compensate for 221 

incomplete and small data sets on species occurrence and perform with nearly maximal accuracy 222 

level under these conditions (Hernandez et al., 2006). This is ideal for rare species that typically 223 

have small populations.  224 

 225 

Based on the results of the SLR Risk Analysis, we identified the 10 species that were most likely 226 

to be substantially impacted by SLR in the Tri-County Area. These were Centromadia parryi 227 

ssp. australis, Chloropyron maritimum ssp. maritimum, Cirsium rhothophilum, Dithyrea 228 

maritima, Erigeron blochmaniae, Lasthenia glabrata ssp. coulteri, Monardella crispa, 229 

Monardella frutescens, Scrophularia atrata, and Suaeda californica. We examined the effect of 230 
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climate change on each species by modeling current and future habitat suitability in MaxEnt, 231 

based on current location data calculated from centroid of species occurrence polygons in 232 

California and six environmental inputs consisting of four bioclimatic and two edaphic variables 233 

(i.e. Mean Diurnal Range; Annual Precipitation; Precipitation in the Wettest Quarter; Growing 234 

degree days above 5 C; Soil pH; and Available Water Holding Capacity). These environmental 235 

inputs have been used previously to model plant species distributions (Fitzpatrick et al., 2008; 236 

Riordan & Rundel, 2009; O9Donnell et al., 2012; Sheppard, 2013) because these variables were 237 

general factors influencing the distribution of a wide range of plant taxa (Woodward, 1987).  The 238 

inclusion of soil characteristics has also been known to improve SDM performance when 239 

assessing climate change impacts (Austin & Van Niel, 2011) and has been used in various SDM 240 

studies (Syphard & Franklin, 2009; Regan et al., 2012; Belgacem & Louhaichi, 2013; Conlisk et 241 

al., 2013).  242 

 243 

Historical climate was obtained from the Parameter-Elevation Regressions on Independent 244 

Slopes Model (PRISM) at Oregon State University, a method for extrapolating the measured 245 

historical data (Daly et al., 2002). Due to the large variability in long-range climatic predictions 246 

for 2100, we selected two GCMs: the Parallel Climate Model (PCM) (Washington et al., 2000) 247 

and the Geophysical Fluid Dynamics Lab (GFDL) (Delworth et al., 2006; Knutson et al., 2006) 248 

model, both used by the State of California for assessing climate change impacts because they 249 

produce accurate simulations of California's recent historical climate but show different levels of 250 

sensitivity to greenhouse gas forcing (Cayan et al., 2008b). As all GCMs, GFDL and PCM 251 

project warmer conditions for southern California by the end of the 21st century, but PCM 252 

projects a more modest annual temperature increase (2.5 °C for PCM vs. 4.4 °C for GFDL) and 253 
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winter precipitation change (+8% for PCM vs. −26% for GFDL) while the GFDL projects a 254 

generally drier future based on the IPCC9s A2 emissions scenario (i.e. business-as-usual) (Regan 255 

et al., 2012). We used downscaled monthly climate data from the two GCMs and PRISM 256 

(historical climate) at a grid size of 90-meter resolution (Flint & Flint, 2012), and then calculated 257 

bioclimatic parameters based on the methods described in Sork et al. (2010) for Growing Degree 258 

Days and used the WORLDCLIM database (www.worldclim.org) for other bioclimatic 259 

parameters.  The time horizon for this data is centered on 2085, as opposed to 2100, though it 260 

represents an end-of-century 30-year average with 2085 being the median (Flint & Flint, 2012). 261 

 262 

We calibrated the MaxEnt model using the default value settings suggested by Philips et al. 263 

(2006). We set the random test percentage to 33%, which retains a percentage of the occurrences 264 

at random in order to evaluate the model and the rest of the occurrences were used to build the 265 

final models. We ran 10 replicate runs and averaged the results. We evaluated our models under 266 

the current climate by using the area underneath the receiver operating curve statistic (AUC) 267 

(Philips et al., 2006). The AUC produces a single number between 0 and 1, where a higher AUC 268 

indicates a better model fit (Fielding & Bell, 1997; Giannini et al., 2012).  269 

 270 

MaxEnt outputs are continuous probability layers for species occurrence under: (i) the historical 271 

climate with the PRISM climate model; and (ii) the two future projected climates with PCM and 272 

GFDL climate models. We converted the continuous probability maps from MaxEnt into binary 273 

presence/absence layers using a threshold value that minimizes the sum of sensitivity and 274 

specificity of the model (Jiménez-Valverde & Lobo, 2006). After removing current urban areas, 275 

which we deemed as unsuitable, from each of the three binary layers, we calculated the area of 276 
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presence data to compare the relative gain or loss in habitat between the current and future 277 

scenarios. This then allowed us to quantitatively compare the habitat change from impacts of 278 

climate change with SLR.  279 

 280 

Evaluating relative impacts of SLR and climate change 281 

We quantified the relative impact of SLR on suitable habitat by overlapping the suitable habitat 282 

layers with the SLR threat layers to determine how much future suitable habitat will be lost to 283 

SLR.  We calculated the total change in habitat area (H), the change in habitat area due to 284 

climate changes in air temperature and precipitation (C), the change in area due to SLR (S), and 285 

the interaction between them (I):   286 ÿ =  �� − �          eq. 1 287 � = � − �          eq. 2 288 � = � − ��          eq. 3 289 Ā =  ÿ − (� − �)         eq. 4 290 

P (PRISM) is the present projected habitat layer based on the historical climate; F (Future, either 291 

GFDL or PCM) is the area of the future projected habitat layer; Fs (SLR) is the area of the future 292 

projected habitat layer after loss from SLR; and Ps is the area of the present projected habitat 293 

layer including the theoretical future loss from SLR.  C and S are the direct effects of climate 294 

change and SLR, respectively. The difference between them and the total change in habitat area 295 

(Eq. 4) is the interaction between them, which can be positive (Figure 1A), negative (Figure 1B) 296 

or zero (Figure 1C). 297 

 298 

We also calculated the proportional impact of SLR on habitat area under the future climate, A: 299 
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� = 1 − (��� )          eq. 5 300 

 301 

 302 

 303 

 304 

 305 

 306 

 307 

 308 

 309 

 310 

 311 

 312 

 313 

 314 

 315 

 316 

 317 

 318 

 319 

 320 

 321 

 322 
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RESULTS 323 

SLR effects on current occurrences  324 

We found that under the SLR projections for the year 2100, 17% of the 1091 occurrences of all 325 

species in our analysis would be affected by SLR, with a total of 10.6% threatened by routine 326 

inundation, 15.6% by a 100-year coastal flood, 5.9% by dune erosion, and 4.6% by cliff erosion.   327 

On the species level, we found that 65% of the 88 studied species are projected to have at least 328 

one occurrence impacted by SLR, with 12% of species having all of their occurrences within the 329 

SLR hazard zones (Figure 2). However, nearly two thirds (63%) of the species are projected to 330 

have less than 20% of their occurrences at risk.  The risk profile of the remaining species is fairly 331 

uniformly distributed between 20% and 100% (Figure 2). Among all SLR threats, the threat 332 

profile from flooding alone closely mirrors the aggregate SLR threat profile.  By contrast, 333 

inundation, dune erosion, and cliff erosion, are projected to affect almost 50% of species, with 334 

less than 5% of the species having all occurrences in the hazard zone (Figure 3). 335 

 336 

SLR risk as a function of elevation and distance  337 

The best-fitted logistic regression model to explain the SLR exposure of species occurrences 338 

incorporated occurrence area, elevation, and distance from the coast (Table 1).  None of the 339 

species-level variables (life history and listing status) were significant predictors of exposure to 340 

SLR (Table S-1). Adding interaction terms did not improve the model. SLR threat to a species 341 

occurrence increases with occurrence area but decreases with elevation and distance from the 342 

coast (Table 1, Figure 4). Occurrences that are within 0.25 km of the coast and below 100 m in 343 

elevation are predicted to have a 100% chance of exposure to SLR. 344 

 345 
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The probability of exposure to inundation and flooding is qualitatively similar to that for the 346 

aggregate threat, with risk from flooding extending further inland than inundation (Table 2, 347 

Figure 5). In contrast, exposure to dune and cliff erosion depends only on distance from coast 348 

and occurrence area, but not elevation (Table 2, Figure 5).  349 

 350 

Effects of Climate Change and SLR on Habitat (Species Distribution Modeling) 351 

All runs for our 10 species consistently produced high AUC values greater than 0.95, indicating 352 

that MaxEnt modeled and predicted the current distribution of species effectively. Four species 353 

(Cirsium rhothophilium, Erigeron blochmaniae, Monardella crispa, and Monardella frutescens) 354 

were projected to have no habitat left in the study region under both the PCM and GFDL future 355 

climate models.   356 

 357 

Under the GFDL climate model, four species (C. maritimum ssp. maritimum, C. parryi ssp. 358 

parryi, D. maritimum, and L. glabrata ssp. coulteri) are projected to significantly expand 359 

habitats with minimal loss to current modeled habitat (Figure 6).  With SLR, only C. maritimum 360 

ssp. maritimum loses as much as 40% of the current habitat. S. atrata is projected to have only a 361 

very small amount of future suitable habitat, and this habitat does not overlap with the current 362 

habitat projected for this species.  S. californica is projected to maintain about 25% of its current 363 

habitat under the GFDL model, with a very modest habitat expansion into new areas and no 364 

significant losses to SLR. 365 

 366 

The PCM climate model primarily projects a contraction in future habitat (Figure 7).  Only two 367 

species are projected to gain significant habitat under the PCM climate model; L. glabrata ssp. 368 
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coulteri will gain extensive suitable habitat (+339% habitat relative to current habitat) and C. 369 

parryi ssp. parryi will gain some new suitable habitat (+65% habitat relative to current habitat) 370 

All species, except L. glabrata ssp. coulteri, maintain less than 45% of their current habitat under 371 

the PCM future climate model, with notable losses from SLR for C. maritiumum ssp. maritimum 372 

(Figure 7).   373 

 374 

The total loss of current habitat due to SLR is projected to be similar across species (Table 3). In 375 

contrast, the projected changes in habitat resulting from climate change are much more variable 376 

across species and climate models. In terms of the area of habitat lost, the impact of SLR can be 377 

as much as half the magnitude of the projected impact of climate change (C. maritimum under 378 

PCM), but is generally a much smaller component of future habitat change (as little as 0.1%). 379 

Comparing the percent area lost due to SLR for the current and future climate models reveals 380 

that the proportional impact of SLR is generally less in the future than at present (the exceptions 381 

are D. maritima and S. californica under the PCM climate model).  Additionally, the interaction 382 

between SLR and climate change is insignificant statistically, but it is also small in absolute 383 

terms because it only encompasses a fraction of the total habitat change (Table 3). 384 

  385 

 386 

 387 

 388 

 389 

 390 

 391 
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DISCUSSION  392 

Using the most recent projections of SLR-related threats to the Tri-County Area for 2100, we 393 

have identified rare and endangered species that could be at risk from inundation, flooding, cliff 394 

and dune erosion. Our results indicate that SLR alone could cause the regional extinction of more 395 

than 12% of the species considered in this study (Figure 2). Model simulations by Nicholls et al. 396 

(1999) predicted that by 2080, SLR alone could cause the loss of up to 22% of the world9s 397 

coastal wetlands.  Another study, using the IPCC estimates of SLR for 2100, suggests that salt 398 

marshes could decline in area by 20% - 45%, and that tidal freshwater marshes could either 399 

increase by 2% or decrease by 39% (Craft et al., 2009).  Our results align with these predictions 400 

in which some species will either gain or lose suitable habitat depending on the future climate 401 

scenario and the effects of SLR. 402 

 403 

Although we used plant characteristics along with geographical parameters in our model to 404 

predict the SLR risks on each species, we found that area, elevation, and distance from the coast 405 

were the best predictors of a species9 exposure to SLR.  Thus, plant species that are closer to the 406 

coast, lower in elevation, and smaller in terms of their area of occurrence would be most likely to 407 

face exposure to SLR independent from species characteristics.  In particular, species found at 408 

very low elevations are very likely to be exposed to SLR (Figure 2, 3).  These species may face a 409 

high extinction risk without active management to improve their resilience.  410 

 411 

Our results also suggest that climate change may cause a substantial shift in suitable habitat for 412 

many rare coastal plant species by the end of the century (Figure 4). However, there is a high 413 

degree of uncertainty in this outcome, as the habitat of species generally expanded under the 414 
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GFDL model, whereas the PCM model predicted a contraction in most species9 habitats.  415 

However, for 4 of the 10 species analyzed, both climate models identified no future habitat in the 416 

Tri-County Area.  This result suggests that regardless of how climate may change in California, 417 

some rare species will be lost without appropriate preventative action.   418 

Our results are consistent with research on the impacts of climate change on terrestrial plants, 419 

which has found a wide range in the extent of predicted habitat loss. A number of European 420 

studies have found habitat loss ranging from as high as 32% - 83% under the A1F1, high 421 

emissions scenario, to as low as 2.3-28.6% under the B2, low emissions scenario (Bakkenes et 422 

al., 2002; Randin et al., 2009), and response of individual plant species to the forecasted climate 423 

change was diverse (Bakkenes et al., 2002).  A small-scale study in the Austrian Alps, for 424 

example, found that 40-50% of plant species could go extinct as a result of climate change 425 

(Dirnböck et al., 2003).  A similar study in the European Alps found that while 60% of plant 426 

species experienced low rates of habitat loss (2-5%), the other 40% of species would lose more 427 

than 90% of their suitable habitat (Theurillat & Guisan, 2001).   428 

 429 

When comparing the relative impact of climate change and SLR on species9 habitat, it is 430 

important to acknowledge that SLR is a direct effect of climate change, but our analysis treats 431 

them as two separate events. SLR is a more certain and predictable threat than climate change 432 

impacts on species distributions because the effect of climate change on habitat suitability 433 

depends on climate predictions/models (Figure 6 and 7).  We found that while SLR poses a 434 

threat, range shifting due to climate change presents a much larger and more immediate threat.  435 

Therefore, the relative impact of SLR could vary substantially depending in part on future habitat 436 

predictions of each species (Table 3). If future habitat is predicted to shrink or shift towards the 437 
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coast, the relative impact of SLR will be larger (Figure 1A) than if future habitat expands or 438 

shifts inland (Figure 1B).  Our study did not find a significant interaction between SLR and 439 

climate change (Table 3).  Thus we expect that there will be no cumulative effect on the loss of 440 

habitat from both.  However, under a plausible worst-case scenario, the combination of SLR and 441 

climate change could eliminate all suitable habitats for some species.  For example, the only 442 

suitable habitat for S. atrata, a primarily coastal species, was found near the inland edge of Santa 443 

Barbara County with no remaining coastal habitat. 444 

 445 

As in most cases, our study includes a number of critical assumptions. First, the SLR projections 446 

did not capture other abiotic interactions that may prove important factors in influencing future 447 

species distributions, such as fluvial flooding and in particular, salt-water intrusion into coastal 448 

aquifers and wetlands. While many coastal species have some degree of tolerance to saltwater, 449 

SLR will likely increase inundation rates, allowing saltwater to contaminate fresh ground and 450 

surface water stores, which could alter vegetation drastically (Heberger et al. 2009). Saltwater 451 

intrusion would likely expand the extent of our SLR models farther inland than predicted at an 452 

accelerating rate over time (Heberger et al., 2009). 453 

 454 

In projecting future habitat ranges of species, SDMs have a number of limitations. SDMs do not 455 

typically account for limits to a species9 dispersal; they simply aim to predict the potential range 456 

of a species under a new climate. The ability of a species to migrate at a sufficient rate to keep 457 

pace with changing climate depends on the dispersal characteristics of that species (Collingham 458 

& Huntley, 2000).  Plant species are far more limited in their dispersal capability that motile 459 

species, and rare plant species tend to be further limited (Graham & Grimm, 1990; Collingham et 460 
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al., 1996).  Given the limited rate of dispersal for most plants, and the discontinuities in suitable 461 

habitat (Figure 6 and 7), the actual future range of most of our species will be far smaller than the 462 

projected future range.   463 

 464 

As with any SDM, MaxEnt assumes that species will not exhibit phenotypic adaptation to new 465 

environmental conditions  (Hoagland et al., 2011) or rapid evolutionary change in response to 466 

shifting climate conditions (Wiens et al., 2009).  Given that we are studying rare and frequently 467 

sensitive species, these are valid assumptions.  Further, MaxEnt assumes that the current 468 

distribution of a species encompasses its entire climatic range, which may not be the case for rare 469 

species with only a handful of occurrences. Lastly, MaxEnt does not account for certain inter-470 

specific interactions, such as dependence on pollinators, competition with invasive species, and 471 

herbivory (Fitzpatrick et al., 2008). For example, the geographic and ecological distribution of C. 472 

maritimum is largely dependent on the distribution of its host plant and pollinators such as bees 473 

and flies (USFWS, 2009).  474 

 475 

Our SDM random sampling area (background) included the entire state of California, which may 476 

have led to our model overestimating available suitable habitat, largely because dispersal to far-477 

flung areas is unlikely.  Our model also may not have captured local adaptations or the effect of 478 

microhabitats.  Along with abiotic environmental variables, other factors such as inter-species 479 

interactions, ecosystem dynamics, and land use changes could influence whether species could 480 

survive in what would otherwise appear to be suitable habitat. For example, promising research 481 

has begun to evaluate the ability of salt marsh species to migrate upslope, which could improve 482 

any future modeling efforts (Feagin et al., 2010; Wasson et al., 2013).  483 
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 484 

For most rare species, we do not know which climatic and edaphic variables are most important 485 

for predicting suitable habitat (USFWS, 2009; USFWS, 2010). As such, there is a high level of 486 

uncertainty about which environmental inputs are appropriate for use in MaxEnt.   It was not 487 

feasible to model the distributions of our 10 species using more tailored, species-specific sets of 488 

environmental variables, as data on habitat preferences for many rare species are not available. 489 

Future modeling efforts that select more species-specific environmental variables may yield 490 

more accurate results. It would also be useful to expand our selection to the 88 species as well as 491 

to currently non-coastal species that could become coastal as sea levels rise. 492 

 493 

This research represents an important first step in assessing the emerging threats to coastal plant 494 

species by addressing the factors relating to SLR and climate change.  Our research implies that 495 

there is a need for human-assisted migration or similar management approached to preserve 496 

species that are unlikely to survive the effects of SLR and climate change.  Further study and 497 

proactive management are required to ensure the survival of coastal plant species against both 498 

the short- and long-term threats of SLR and climate change. 499 

 500 

 501 

 502 

 503 

 504 

 505 

 506 
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Figure 1. Conceptual Model of Suitable Habitat Shifts as a Result of Climate Change and the 737 

Resulting Impact of SLR on that Habitat.  In Panel A, climate change shifts species range away 738 

from the coast, thus decreasing the threat of SLR.  In Panel B, climate change shifts species 739 

range towards the coast, thus increasing the threat of SLR.  In Panel C, climate change shifts 740 

species range up the coast (North), thus having no significant change to the threat of SLR.  741 
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Figure 2. Histogram of percent of the 1091 species9 occurrences threatened by sea level rise by 747 

percent of species.  This indicates the extent of threat for each species and the cumulative threat 748 

to all species. 749 

 750 

 751 

 752 

 753 

 754 

 755 

 756 

 757 

 758 

 759 

 760 

 761 

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.711v1 | CC-BY 4.0 Open Access | rec: 17 Dec 2014, publ: 17 Dec 2014

P
re
P
ri
n
ts



35 

 

Figure 3. Histograms of percent of 1091 occurrences threatened by sea level rise threats: (a) 762 

inundation, (b) flooding, (c) dune erosion, and (d) cliff erosion by percent of species. 763 
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Figure 4. Contour plot showing probability of exposure to aggregated sea level rise threats for 775 

any combination of elevation and distance from the coast using the mean occurrence area.   776 
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Figure 5. Contour plot showing probability of exposure to sea level rise threats (a) inundation, 785 

(b) flooding, (c) dune erosion, and (d) cliff erosion for any combination of elevation and distance 786 

from the coast using a mean occurrence area. The darker the area, the greater the probability of 787 

threat. 788 
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Figure 6. Current and future habitat projected by the GFDL climate model within the Tri-County 790 

Area, expressed as percent of current habitat.  The first set of columns for each species indicates 791 

all areas within the Tri-County, so current habitat is 100%.  The second set of columns for each 792 

species indicates all areas within the Tri-County Area after loss to sea level rise.  Current habitat 793 

is represented by everything above the x-axis.  Unsuitable habitat is habitat that will become 794 

unsuitable in the future due to climate change.  Suitable habitat is current habitat that will remain 795 

suitable even with climate change.  New habitat is future habitat that will be created as a result of 796 

climate change and is represented by everything below the x-axis.  797 
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Figure 7. Current and future habitat projected by the PCM climate model within the Tri-County 799 

Area.  The first set of columns for each species indicates all area within the Tri-County.  The 800 

second set of columns for each species indicates all area within the Tri-County Area after loss to 801 

sea level rise.   Current habitat is represented by everything above the x-axis.  Unsuitable habitat 802 

is habitat that will become unsuitable in the future due to climate change.  Suitable habitat is 803 

current habitat that will remain suitable even with climate change.  New habitat is future habitat 804 

that will be created as a result of climate change and is represented by everything below the x-805 

axis. 806 
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Table 1.  Coefficients table for Aggregate SLR risk model 811 

 Estimate Std. Error Z value Pr(>|z|) 

(Intercept) 1.8792 0.2443 7.692 1.44e-14 

Area (km2) 0.8787 0.1201 7.317 2.54e-13 

Elevation (km) -7.5795 3.2419 -2.388 0.0194 

Distance (km) -3.0909 0.3844 -8.041 8.88e-16 
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Table 2. Parameter Estimates for Inundation Risk Model 828 

Parameter Inundation Flooding Dune Erosion Cliff Erosion 

(Intercept) 0.5871* 1.5221*** -0.52014* -0.88882** 

Area (km2) 0.7189*** 0.8693*** 0.48797*** 0.48498*** 

Elevation (km) -7.9667* -12.4263**   

Distance (km) -2.9035*** -2.6919*** -2.65244*** -2.58650 *** 

* <0.05, ** <0.001, ***<0.0001 829 
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Table 3. Changes in modeled habitat areas under climate change scenarios and projected SLR. 845 

Negative values indicate habitat contraction, whereas positive values indicate habitat expansion.  846 

Present habitat (P) is the total current habitat projected under the historical climate (PRISM).  847 

Total habitat change (H) is calculated as the present projected habitat subtracted from the future 848 

projected habitat under SLR.  Habitat change due to climate change (C) was calculated as the 849 

present projected habitat subtracted from the future projected habitat without accounting for 850 

SLR.  Habitat change due to SLR (S) was calculated as present projected habitat under SLR 851 

subtracted from present projected habitat. The percent area lost to SLR (A) is the percent of total 852 

suitable habitat that will be exposed to SLR. 853 

Species 

Present 
Habitat 
(P) (sq 

km) 
Total Habitat Change 

(H) (sq km) 

Habitat Change due 
to Climate Change 

(C) (sq km) 

Habitat 
Change 
due to 
SLR 

(S) (sq 
km) 

Interaction (I) 
(sq km) 

Percent Area Lost to SLR 
(A) (%) 

PRISM PCM GFDL PCM GFDL PRISM PCM GFDL PRISM PCM GFDL 

C. maritimum 212.3 -14.7 +22.0 -12.2 +29.3 -6.5 4.0 -0.8 30.63 27.78 14.52 

C. parryi  585.3 -83.0 +3,222.2 -80.3 +3,236.8 -7.1 4.3 -7.5 1.21 0.55 0.38 

D. maritime 214.9 -123.9 +552.0 -114.9 +562.0 -9.2 0.2 -0.8 4.30 9.01 1.29 

L. glabrata 1,265.5 +4,271.8 +9,777.7 +4,283.4 +9,795.5 -9.2 -2.3 -8.6 0.73 0.21 0.16 

S. atrata 1,499.2 -1,439.2 -1,436.9 -1,439.2 -1,436.9 -6.1 6.1 6.1 0.40 0.00 0.00 

S. californica 1,032.1 -1,008.7 -726.5 -1,007.3 -725.3 -8.7 7.4 7.6 0.85 5.31 0.37 
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