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Parcellating connectivity in spatial maps

A common goal in biological sciences is to model a complex web of connections using a

small number of interacting units. We present a general approach for dividing up elements

in a spatial map based on their connectivity properties, allowing for the discovery of local

regions underlying large-scale connectivity matrices. Our method is specifically designed

to respect spatial layout and identify locally-connected clusters, corresponding to plausible

coherent units such as strings of adjacent DNA base pairs, subregions of the brain, animal

communities, or geographic ecosystems. Instead of using approximate greedy clustering,

our nonparametric Bayesian model infers a precise parcellation using collapsed Gibbs

sampling. We utilize an infinite clustering prior that intrinsically incorporates spatial

constraints, allowing the model to search directly in the space of spatially-coherent

parcellations. After showing results on synthetic datasets, we apply our method to both

functional and structural connectivity data from the human brain. We find that our

parcellation is substantially more effective than previous approaches at summarizing the

brain's connectivity structure using a small number of clusters, produces better

generalization to individual subject data, and reveals functional parcels related to known

retinotopic maps in visual cortex. Additionally, we demonstrate the generality of our

method by applying the same model to human migration data within the United States.

This analysis reveals that migration behavior is generally influenced by state borders, but

also identifies regional communities which cut across state lines. Our parcellation

approach has a wide range of potential applications in understanding the spatial structure

of complex biological networks.

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.709v1 | CC-BY 4.0 Open Access | rec: 17 Dec 2014, publ: 17 Dec 2014

P
re
P
ri
n
ts



1

Parcellating connectivity in spatial maps1

Christopher Baldassano1,∗, Diane M. Beck2, Li Fei-Fei12

1 Department of Computer Science, Stanford University, Stanford, CA, USA3

2 Beckman Institute and Department of Psychology, University of Illinois at4

Urbana-Champaign, Urbana, IL, USA5

∗ Corresponding author. chrisb33@cs.stanford.edu; 353 Serra Mall, Rm 240,6

Stanford, CA 94305; (650) 723-23007

Introduction8

When studying biological systems at any scale, scientists are often interested not only in the9

properties of individual molecules, cells, or organisms, but also in the web of connections10

between these units. The rise of massive biological datasets has enabled us to measure11

these second-order interactions more accurately, in domains ranging from protein-protein12

interactions, to neural networks, to ecosystem food webs. We can often gain insight into the13

overall structure of a connectivity graph by grouping elements into clusters based on their14

connectivity properties. Many types of biological networks have been modeled in terms of15

interactions between a relatively small set of “modules” (Barabási and Oltvai, 2004; Hartwell16

et al., 1999), including protein-protein interactions (Rives and Galitski, 2003), metabolic17

networks (Ravasz et al., 2002), bacterial co-occurrence (Freilich et al., 2010), pollination18

networks (Olesen et al., 2007), and food webs (Krause et al., 2003). In fact, it has been19

proposed that modularity may be a necessary property for any network that must adapt20

and evolve over time, since it allows for reconfiguration (Alon, 2003; Hartwell et al., 1999).21

There are a large number of methods for clustering connectivity data, such as k-means (Kim22

et al., 2010; Golland et al., 2008; Lee et al., 2012), Gaussian mixture modeling (Golland et al.,23

2007), hierarchical clustering (Mumford et al., 2010; Cordes et al., 2002; Gorbach et al., 2011),24

normalized cut (van den Heuvel et al., 2008), infinite relational modeling (Morup et al., 2010),25

force-directed graph layout (Crippa et al., 2011), weighted stochastic block modeling (Aicher26

et al., 2014), and self-organized mapping (Mishra et al., 2014; Wiggins et al., 2011).27

The vast majority of these methods, however, ignore the fact that biological networks28

almost always have some underlying spatial structure. As described by Legendre and Fortin:29

“In nature, living beings are distributed neither uniformly nor at random. Rather, they are30

aggregated in patches, or they form gradients or other kinds of spatial structures. . . the spatio-31

temporal structuring of the physical environment induces a similar organization of living32

beings and of biological processes, spatially as well as temporally” (Legendre and Fortin,33

1989). In many biological datasets, we therefore wish to constrain possible clustering solutions34

to consist of spatially-contiguous parcels. For example, when dividing a DNA sequence into35

protein-coding genes, we should enforce that the genes are contiguous sequences of base36

pairs. Similarly, if we want to identify brain regions that could correspond to local cortical37

modules, we need each discovered cluster to be a spatially-contiguous region. Without spatial38

information, the discovered clusters may be difficult to interpret; for example, clustering39

functional brain connectivity data without spatial information yields spatially-distributed40

clusters that confound local modularity and long-distance interactions (Lee et al., 2012).41

The problem is thus to a parcellate a spatial map into local, contiguous modules such42
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that all elements in a module have the same connectivity properties (Fig. 1). In this paper43

we present the first general solution to this problem, using a generative probabilistic model44

to parcellate a spatial map into local regions with connectivity properties that are as uniform45

as possible. Scientific insights can be gained from both the clusterings themselves (which46

identify the local spatial sources of the interaction matrix) as well as the connections between47

the parcels, which summarize the original complex connectivity matrix. Our method yields48

better results than other approaches such as greedy clustering, and can help to determine49

the correct number of parcels in a data-driven way.50

One of the most challenging spatial parcellation problems is in the domain of neuroscience.51

Modern human neuroimaging methods can estimate billions of connections between different52

locations in the brain, with complex spatial structures that are highly nonuniform in size53

and shape. Correctly identifying the detailed boundaries between brain regions is critical54

for understanding distributed neural processing, since even small inaccuracies in parcellation55

can yield major errors in estimating network structure (Smith et al., 2011).56

Obtaining a brain parcellation with spatially coherent clusters has been difficult, since57

it is unclear how to extend standard clustering methods to include the constraint that only58

adjacent elements should be clustered together. Biasing the connectivity matrix to encourage59

local solutions can produce local parcels in some situations (Cheng and Fan, 2014; Tomassini60

et al., 2007), or distributed clusters can be split into their connected components after clus-61

tering (Abraham et al., 2013), but these approximations will not necessarily find the best62

parcellation of the original connectivity matrix. It is also possible to add a Markov Random63

Field prior (such as the Ising model) onto a clustering model to encourage connected parcels64

(Jbabdi et al., 2009; Ryali et al., 2013), but in practice this does not guarantee that clusters65

will be spatially connected (Honnorat et al., 2014).66

Currently, finding spatially-connected parcels is often accomplished using agglomera-67

tive clustering (Thirion et al., 2014; Heller et al., 2006; Blumensath et al., 2013; Moreno-68

Dominguez et al., 2014), which iteratively merges neighboring elements based on similarity69

in their connectivity maps. There are a number of disadvantages to this approach; most70

critically, the solution is only a greedy approximation (only a single pass over the data is71

made, and merged elements are never unmerged), which as will be shown below can lead72

to poor parcellations when there is a high level of noise. Edge detection methods (Cohen73

et al., 2008; Wig et al., 2014; Gordon et al., 2014) define cluster boundaries based on sharp74

changes in connectivity properties, which are also sensitive to localized patches of noisy data.75

Spectral approaches such as normalized cut (Craddock et al., 2012) attempt to divide the76

spatial map into clusters by maximizing within-cluster similarity and between-cluster dis-77

similarity, but this approach has a strong bias to choose clusters that all have similar sizes78

(Blumensath et al., 2013). It is also possible to incorporate a star-convexity prior into an79

MRF to efficiently identify connected parcels (Honnorat et al., 2014). This approach, how-80

ever, constrains clusters to be convex (in connectivity space); as will be shown below, our81

method finds structures in real datasets violating this assumption, such as nested regions in82

functional brain connectivity data. All of these methods require explicitly setting the spe-83

cific number of desired clusters, and are optimizing a somewhat simpler objective function;84

they seek to maximize the similarity between the one-dimensional rows or columns of the85

connectivity matrix, while our method takes into account reordering of the both the rows86

and columns to make the between-parcel 2D connectivity matrix as simple as possible.87
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Figure 1. Parcellating connectivity in spatial maps. Given a set of elements
arranged on a spatial map (such as points within the human cortex) as well as the
connectivity between each pair of elements, our method finds the best parcellation of the
spatial map into connected clusters of elements that all have similar connectivity
properties. Brain image by Patrick J. Lynch, licensed under CC BY 2.5.

Our model is highly robust to noise, has no constraints on the potential sizes and shapes88

of brain regions, and makes many passes over the data to precisely identify region boundaries.89

We validate that our method outperforms previous approaches on synthetic datasets, and90

then show that we can more efficiently summarize both functional and structural brain con-91

nectivity data. Our parcellation of human cortex generalizes more effectively across subjects,92

and reveals new structure in the functional connectivity properties of visual cortex.93

To demonstrate the wide applicability of our method, we apply the same model to find94

spatial patterns in human migration patterns within the United States. Despite the fact95

that this is an entirely different type of data at a different spatial scale, we are able to96

find new insights into how state borders shape migratory behavior. Our results on these97

diverse datasets suggest that our analysis could have a wide range of potential applications in98

understanding biological networks. It is also important to note that the “spatial adjacency”99

constraint of our method could also be used for other, nonspatial notions of adjacency;100

for example, clustering an organism’s life into contiguous temporal segments based on its101

changing social interactions.102

Materials and Methods103

Probabilistic Model104

Intuitively, we wish to find a parcellation z which identifies local regions, such that all ele-105

ments in a region have the same connectivity “fingerprint.” Specifically, for any two parcels106

m and n, all pairwise connectivities between an element in parcel m and an element in parcel107

n should have a similar value. Our method uses the full distribution of all pairwise con-108

nectivities between two parcels, and finds a clustering for which this distribution is highly109

peaked. This makes our method much more robust than approaches which greedily merge110

similar clusters (Thirion et al., 2014; Blumensath et al., 2013) or define parcel edges where111

neighboring voxels differ (Thirion et al., 2006; Wig et al., 2014; Gordon et al., 2014). The112

goal of identifying modules with similar connectivity properties is conceptually similar to113

weighted stochastic block models (Aicher et al., 2014), but it is unclear how these models114

could be extended to incorporate the spatial-connectivity constraint.115

We would like to learn the number of regions automatically from data, and additionally116
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impose the requirement that all regions must be spatially-connected. We can accomplish117

both goals more efficiently in a single framework, by using an infinite clustering prior on118

our parcellation z which simultaneously constrains regions to be spatially coherent and does119

not limit the number of possible clusters. Specifically, since the mere existence of a element120

(even with unknown connectivity properties) changes the spatial connectivity and thus affects121

the most likely clustering, we must employ a nonparametric prior which is not marginally122

invariant. Other Bayesian nonparametric models allow for spatial dependencies between123

datapoints, but the only class of CRPs which is not marginally invariant is the distance-124

dependent Chinese Restaurant Process (dd-CRP) (Blei and Frazier, 2011). Instead of directly125

sampling a label for each element, the dd-CRP prior assigns each element i a link to a126

neighboring element ci. The actual parcel labels z(c) are then defined implicitly as the127

undirected connected components of the link graph. Intuitively, this allows for changes in128

the labels of many elements when a single connection ci is modified, since it may break apart129

or merge together two large connected sets of elements. Additionally, this construction allows130

the model to search freely in the space of parcel links c, since every possible setting of the131

parcel links corresponds to a parcellation satisfying the spatial-coherence constraint.132

Mathematically, our generative clustering model is:

c ∼ dd-CRP(α, f)

Amn, σ
2
mn ∼ Normal-Inverse-χ2(µ0, κ0, σ

2
0, ν0)

Dij|z(c) ∼ Normal(Az(c)iz(c)j , σ
2
z(c)iz(c)j

)

For N elements and K parcels: c is a vector of length N which defines the cluster links for all133

elements (producing a region labeling vector z(c) of length N , taking values from 1 to K); α134

and f are the scalar hyperparameter and N ×N distance function defining the dd-CRP; A135

and σ2 are the K×K connectivity strength and variance between regions; µ0 and κ0 are the136

scalar prior mean and precision for the connectivity strength; σ2
0 and ν0 are the scalar prior137

mean and precision for the connectivity variance; and D is the N ×N observed connectivity138

between individual elements.139

The probability of choosing a particular ci in the dd-CRP is defined by a distance function140

f ; we use fij = 1 if i and j are neighbors, and 0 otherwise, which guarantees that all clusters141

will be spatially connected. A hyperparameter α controls the probability that a voxel will142

choose to link to itself. Note that, due to our choice of distance function f , a random143

partition drawn from the dd-CRP can have many clusters even for α = 0, since elements are144

only locally connected.145

The connectivity strength Amn and variance σ2
mn between each pair of clusters m and n146

is given by a Normal-Inverse-χ2 (NIχ2) distribution, and the connectivity Dij between every147

element i in one region and j in the other is sampled based on this strength and variance.148

The conjugacy of the Normal-Inverse-χ2 and Normal distributions allows us to collapse over149

Amn and σ2
mn and sample only the clustering variables ci. Empirically, we find that the only150

critical hyperparameter is the expected variance σ2
0, with lower values encouraging parcels to151

be smaller (we set α = 10, µ0 = 0, κ0 = 0.0001, ν0 = 1 for all experiments).152

To allow the comparison of hyperparameter values between problems with the same num-153

ber of elements (e.g. the functional and structural datasets), we normalize the input matrix154

D to have zero mean and unit variance. We then initialize the model using the Ward clus-155

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.709v1 | CC-BY 4.0 Open Access | rec: 17 Dec 2014, publ: 17 Dec 2014

P
re
P
ri
n
ts



5

tering (see below) with the most likely number of clusters under our model, and setting the156

links c to form a random spanning tree within each cluster.157

In summary, we have introduced a novel connectivity clustering model which (a) uses158

the full distribution of connectivity properties to define the parcellation likelihood, and (b)159

employs an infinite clustering model which automatically chooses the number of parcels and160

enforces that parcels be spatially-connected.161

Derivation of Gibbs Sampling Equations162

To infer a maximum a posteriori (MAP) parcellation z based on the dd-CRP prior, we
perform collapsed Gibbs sampling on the element links c. A link ci for element i is drawn
from

p(c
(new)
i |c−i, D) ∝ p(c

(new)
i )p(D|z(c−i ∪ c

(new)
i )) = p(c

(new)
i )p(D|z(new))

∝

{

α if c
(new)
i = i

1 else

} |z(new)|
∏

k1,k2=1

p(D
z
(new)
k1

,z
(new)
k2

) (1)

To compare the likelihood term for different choices of c
(new)
i , we first remove the current

link ci, giving the induced partition z(c−i) (which may split a region). If we resample ci to
a self-loop or to a neighbor j that does not join two regions, the likelihood term is based on
the partition z(c−i) = z. Alternatively, ci can be resampled to a neighbor j such that two

regions K ′ and K ′′ in z(c−i) are merged into one region K in z(c−i ∪ c
(new)
i ) = ẑ. Numbering

the regions so that zi ∈ {1 · · · (K − 1), K ′, K ′′} and ẑi ∈ {1 · · · (K − 1), K} gives

p(D|ẑ)

p(D|z)
=

∏K
k=1 p(Dẑk,ẑK )

∏K−1
k=1 p(DẑK ,ẑk)

∏K′

k=1 p(Dzk,zK′
)
∏K′′

k=1 p(Dzk,zK′′
)
∏K−1

k=1 p(DzK′ ,zk)
∏K′

k=1 p(DzK′′ ,zk)
(2)

Each term p(Dzm,zn) is a marginal likelihood of the NIχ2 distribution, and can be com-
puted in closed form as shown in (Murphy, 2007):

p(Dzm,zn) =
Γ(νmn/2)

Γ(ν0/2)

(

κ0

κmn

) 1
2 (ν0σ

2
0)

ν0/2

(νmnσ2
mn)

νmn/2
(π)−n/2

L = |zm||zn| κmn = κ0 + L; νmn = ν0 + L µmn =
κ0µ0 + Ld̄

κmn

d̄ =
1

L

∑

i∈zm
j∈zn

Dij s =
∑

i∈zm
j∈zn

(Dij − d̄)2 σ2
mn =

1

νmn

(ν0σ
2
0 + s+

Lκ0

κ0 + L
(µ0 − d̄)2)

Intuitively, eq. 2 computes the probability of merging or splitting two regions at each163

step based on whether the connectivities between these regions’ elements and the rest of the164

regions are better fit by one distribution or two.165

In practice, the time-consuming portion of each sampling iteration is computing the sum
of squared deviations s. This can be made more efficient by computing the s values for the
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merged ẑ in closed form. Given that the connectivities DK′ = {DiK′}i∈k between parcel k
and K ′ have sum of squares deviations sK′ and mean d̄K′ , and similarly for K ′′, then the sum
of squares sK for the connectivities between parcel k and the merged parcel K (merging K ′

and K ′′) is:

sK =
∑

d∈DK′∪DK′′

(d− d̄)2

=





∑

d∈DK′∪DK′′

d2



− (|DK′ |+ |DK′′ |) ·

(

|DK′ | · d̄K′ + |DK′′ | · d̄K′′

|DK′ |+ |DK′′ |

)2

=





∑

d∈DK′∪DK′′

d2



−
|DK′ |2

|DK′ |+ |DK′′ |
d̄2K′ −

|DK′′ |2

|DK′ |+ |DK′′ |
d̄2K′′ − 2

|DK′ ||DK′′ |

|DK′ |+ |DK′′ |
d̄K′ d̄K′′

=





∑

d∈DK′

d2 − |DK′ |d̄2K′



+





∑

d∈DK′′

d2 − |DK′′ |d̄2K′′



+
|DK′ ||DK′′ |

|DK′ |+ |DK′′ |

(

d̄2K′ + d̄2K′′ − 2d̄K′ d̄K′′

)

=sK′ + sK′′ +
|DK′ ||DK′′ |

|DK′ |+ |DK′′ |
(d̄K′ − d̄K′′)2

Comparison Methods166

In order to evaluate the performance of our model, we compared our results to those of
four existing methods. All of them require computing a dissimilarity measure between the
connectivity patterns of elements i and j. For a connectivity matrix D,

Wi,j =

√

∑

a 6=i,j

(Di,a −Dj,a)2 +
∑

a 6=i,j

(Da,i −Da,j)2 (3)

“Local similarity” computes the edge dissimilarity Wi,j between each pair of neighboring167

elements, and then removes all edges above a given threshold. Here we set the threshold168

in order to obtain a desired number of clusters. This type of edge-finding approach has169

been used extensively for neuroimaging parcellation (Cohen et al., 2008; Wig et al., 2014;170

Gordon et al., 2014). Additionally, this is equivalent to using a spectral clustering approach171

(Thirion et al., 2006) if clustering in the embedding space is performing using single-linkage172

hierarchical clustering.173

“Normalized cut” computes the edge similarity Si,j = 1/Wi,j between each pair of neigh-174

boring elements, then runs the normalized cut algorithm of (Shi and Malik, 2000). This draws175

partitions between elements a and b when their edge similarity Sa,b is low relative to their176

similarities with other neighbors. Although computing the globally optimal normalized cut177

is NP-complete, an approximate solution can be found quickly by solving a generalized eigen-178

value problem. This approach has been specifically applied to neuroimaging data (Craddock179

et al., 2012).180

“Region growing” is based on the approach described in (Blumensath et al., 2013). First,181

a set of seed points is selected which have high similarity to all their neighbors, since they are182

likely to be near the center of parcels. Seeds are then grown by iteratively adding neighboring183
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elements with high similarity to the seed. Once every element has been assigned to a region,184

Ward clustering (see below) was used to cluster adjacent regions until the desired number of185

regions is reached.186

“Ward clustering” requires computing Wi,j between all pairs of elements (not just neigh-187

boring elements). Elements are each initialized as a separate cluster, and neighboring clusters188

are merged based on Ward’s variance-minimizing linkage rule (Ward, 1963). This approach189

has been previously applied to neuroimaging data (Thirion et al., 2014; Eickhoff et al., 2011).190

We also compared to random clusterings. Starting with each element in its own cluster,191

we iteratively picked a cluster uniformly at random and then merged it with a neighboring192

cluster (also picked uniformly at random from all neighbors). The process continued until193

the desired number of clusters remained.194

Synthetic Data195

To generate synthetic connectivity data, we created three different parcellation patterns on196

an 18x18 grid (see Fig. 2), with the number of regions K = 5, 6, 9. Each element of the KxK197

connectivity matrix A was sampled from a standard normal distribution. For a given noise198

level σ, the connectivity value Di,j between element i in cluster zi and element j in cluster199

zj is sampled from a normal distribution with mean Azi,zj and standard deviation σ. This200

data matrix was then input to our method with σ2
0 = 0.01, which returned the MAP solution201

after 30 passes through the elements (approximately 10,000 steps). Both our method and all202

comparison methods were run for 20 different synthetic datasets for each noise level σ and203

the results were averaged.204

Parcellations were evaluated by calculating their normalized mutual information (NMI)
with the ground truth labeling. We calculate NMI as in (Strehl and Ghosh, 2002). This
measure ranges from 0 to 1, and does not require any explicit “matching” between parcels.
For N total elements, if z assigns nh elements to cluster h, zgt assigns n

gt
l elements to cluster

l, and nh,l elements are assigned to cluster h by z and cluster l by zgt, this is given by

NMI(z, zgt) =
I(z, zgt)

√

H(z)H(zgt)
=

∑

h

∑

l nh,l log(Nnh,l/(nhn
gt
l ))

√

(
∑

h nh log(nh/N))
(
∑

l n
gt
l log(ngt

l /N)
)

(4)

Human Brain Functional Data205

We utilized group-averaged resting-state functional MRI correlation data from 468 subjects,206

provided by the Human Connectome Project’s 500 Subjects release (Van Essen et al., 2013).207

Using a specialized Siemens 3T “Connectome Skyra” scanner, data was collected during208

four 15-minute runs, during which subjects fixated with their eyes open on a small cross-209

hair. A multiband sequence was used, allowing for acquisition of 2.0mm isotropic voxels at210

a rate of 720ms. Data for each subject was cleaned using motion regression and ICA+FIX211

denoising (Smith et al., 2013; Salimi-Khorshidi et al., 2014) and then combined across subjects212

using an approximate group-PCA method yielding the strongest 4500 spatial eigenvectors213

(Smith et al., 2014). The symmetric 59412 by 59412 functional connectivity matrix Da,b was214

computed as the correlation between the 4500-dimensional eigenmaps of voxels a and b. For215

each of σ2
0 = 2000, 3000, 4000, 5000, we ran Gibbs Sampling for 10 passes (approximately216
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600,000 steps) to find the MAP solution. For comparison with individual subjects, we also217

computed functional connectivity matrices for the first 20 subjects with resting-state data in218

the 500 Subjects release.219

The map of retinotopic regions in visual cortex was created by mapping the volume-based220

atlas from (Wang et al., 2014) onto the Human Connectome group-averaged surface.221

Human Brain Structural Data222

We obtained diffusion MRI data for 10 subjects from the Human Connectome Project’s Q3223

release (Van Essen et al., 2013). This data was collected on the specialized Skyra described224

above, using a multi-shell acquisition over 6 runs. Probabilistic tractgraphy was performed225

using FSL (Jenkinson et al., 2012), by estimating up to 3 crossing fibers with bedpostx226

(using gradient nonlinearities and a rician noise model) and then running probtrackx2 using227

the default parameters and distance correction. 2000 fibers were generated for each of the228

1.7·106 white-matter voxels, yielding 3.4·109 total sampled tracks per subject (approximately229

34 billion tracks in total). We assigned each of the endpoints to gray-matter voxels using the230

32k/hemisphere Conte69 registered standard mesh distributed for each subject, discarding231

the small number of tracks that did not have both endpoints in gray matter (e.g. cerebellar232

or spinal cord tracks). Since we are using distance correction, the weight of a track is set233

equal to its length. In order to account for imprecise tracking near the gray matter border,234

the weight of a track whose two endpoints are closest to voxels a and b is spread evenly235

across the connection between a and b, the connections between a and b’s neighbors, and the236

connections between a’s neighbors and b. Since the gray-matter mesh has a correspondence237

between subjects, we can compute the group-average number of tracks between every pair238

of voxels. Finally, since connectivity strengths are known to have a lognormal distribution239

(Markov et al., 2014), we define the symmetric 59412 by 59412 structural connectivity matrix240

Da,b as the log group-averaged weight between voxels a and b. The hyperparameter σ2
0 was241

set to 3000, and Gibbs Sampling was run for 10 passes (approximately 600,000 steps) to find242

the MAP solution.243

Human Migration Data244

We used the February 2014 release of the 2007-2011 county-to-county U.S. migration flows245

from the U.S. Census Bureau American Community Survey (ACS). This dataset includes246

estimates of the number of annual movers from every county to every other county, as well247

as population estimates for each county. We restricted our analysis to the continential U.S.248

To reduce the influence of noisy measurements from small counties, we preprocessed the249

dataset by iteratively merging the lowest-population county with its lowest-population neigh-250

bor (within the same state) until all regions contained at least 10000 residents. This process251

produced 2594 regions which we continue to refer to as “counties” for simplicity, though 306252

cover multiple low-population counties. For visualization of counties and states, we utilized253

the KML Cartographic Boundary Files provided by the U.S. Census Bureau (KML).254

One major issue with analyzing this migration data is that counties have widely varying
populations (even after the preprocessing above), making it difficult to compare the absolute
number of movers between counties. We correct for this by normalizing the migration flows
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relative to chance flows driven purely by population. If we assume a chance distribution in
which a random mover is found to be moving from county a to county b based purely on
population, then the normalized flow matrix is

Da,b =
Ma,b

(

∑

i,j Mi,j

)

· PaPb

(
∑

i Pi)
2

(5)

where Mi,j is the absolute number of movers from county i to county j, and Pi is the popula-255

tion of county i. This migration connectivity matrixD is therefore a nonnegative, asymmetric256

matrix in which values less than 1 indicate below-chance migration, and values greater than257

1 indicate above-chance migration. Setting σ2
0 = 10, we ran Gibbs Sampling for 50 passes258

(approximately 130,000 steps) to find the MAP solution.259

Results260

Comparison on Synthetic Data261

In order to understand the properties of our model and quantitatively compare it to alter-262

natives on a dataset with a known ground truth, we performed several experiments with263

synthetic datasets. We compared against random parcellations (in which elements were ran-264

domly merged together) as well as four existing methods: local similarity, which simply265

thresholds the similarities between pairwise elements (similar to (Thirion et al., 2006; Cohen266

et al., 2008; Wig et al., 2014; Gordon et al., 2014)); normalized cut (Craddock et al., 2012)267

which finds parcels maximizing the within-cluster similarity and between-cluster difference;268

region growing (Blumensath et al., 2013), an agglomerative clustering method which selects269

stable points and iteratively merges similar elements; and Ward clustering (Thirion et al.,270

2014), an agglomerative clustering method which iteratively merges elements to minimize the271

total variance. Since these methods cannot automatically discover the number of clusters,272

they (and the random clustering) are set to use the same number of clusters as inferred by273

our method. We varied the noise level of the synthetic connectivity matrix from low to high,274

and evaluated the learned clusters using the normalized mutual information with the ground275

truth, which ranges from 0 to 1 (with 1 indicating perfect recovery).276

As shown in Fig. 2, our method identifies parcels that best match the ground truth,277

across all three datasets and all noise levels. The naive local similarity approach performs278

very poorly under even mild noise conditions, and becomes worse than chance for high279

noise levels (for which most parcellations consist of single noisy voxels). Normalized cut280

is competitive only when the ground-truth parcels are equally sized (matching results from281

(Blumensath et al., 2013)), and is near-chance in the other cases. Region growing is more282

consistent across datasets, but does not reach the performance of Ward clustering, which283

outperforms all methods other than ours. Our model correctly infers the number of clusters284

with moderate amounts of noise (using the same hyperparameters in all experiments), and285

finds near-perfect parcellations even at very high noise levels (see Fig. 2c).286
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Figure 2. Results on synthetic data. (a) In three different synthetic datasets, our
method is consistently better at recovering the ground-truth parcellation than alternative
methods. This advantage is most pronounced when the parcels are arranged nonuniformly
with unequal sizes, and the noise level is relatively high. Results are averaged across 20
random datasets for each noise level, and the gray region shows the standard deviation
around random clusterings. (b) Our model can correctly infer the number of underlying
clusters in the dataset for moderate levels of noise, and becomes more conserative about
splitting elements into clusters as the noise level grows. (c) Example clusterings under the
next-best clustering method and our model on the stripes dataset, for σ = 6. Although
greedy clustering achieves a reasonable result, it is far noisier than the output of our
method, which perfectly recovers the ground truth except for incorrectly merging the two
smallest clusters.
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Functional connectivity in the human brain287

To investigate the spatial structure of functional connectivity in the human brain, we applied288

our model to data from the Human Connectome Project (Van Essen et al., 2013). Combining289

data from 468 subjects, this symmetric 59412 by 59412 matrix gives the correlation between290

fMRI timecourses of every pair of vertices on the surface of the brain (at 2mm resolution)291

during a resting-state scan (in which subjects fixated on a blank screen). Using the anatomical292

surface models provided with the data, we defined vertices to be spatially adjacent if they293

were neighbors along the cortical surface.294

Evaluating cortical parcellations is challenging since there is no clear ground truth for295

comparison, and different applications could require parcellations with different types of296

properties (e.g. optimizing for fitting individual subjects or for stability across subjects297

(Thirion et al., 2014)). One simple measure of an effective clustering is the fraction of vari-298

ance in the full 3.5 billion element matrix which is captured by the connectivity between299

parcels (consisting of only tens of thousands of connections). As shown in Fig. 3(a), our par-300

cellation explains more variance for a given number of clusters than greedy Ward clustering;301

in order to achieve the same level of performance as our model, the simpler approach would302

require approximately 30 additional clusters. We can also measure how well this group-level303

parcellation (using data averaged from hundreds of subjects) fits the data from 20 individual304

subjects. Although the variance explained is substantially smaller for individual subjects,305

due both to higher noise levels and inter-subject connectivity differences, our model explains306

significantly more variance than Ward clustering with 140 clusters (t19 = 2.97, p < 0.01 one-307

tailed t-test), 155 clusters (t19 = 3.67, p < 0.01), or 172 clusters (t19 = 1.77, p < 0.05). The308

220-cluster solutions from our model and Ward clustering generalize equally well, suggesting309

that our method’s largest gains over greedy approximation occur in the more challenging310

regime of small numbers of clusters.311

One part of the brain in which we do have prior knowledge about cortical organization is in312

visual cortex, which is segmented into well-known retinotopic field maps (Wang et al., 2014).313

We can qualitatively examine the match between our 172-cluster parcellation (Fig. 3(c)) and314

these retinotopic maps on an inflated cortical surface, shown in Fig. 3(d). First, we observe315

a wide variety in the size and shape of the learned parcels, since the model places no explicit316

constraints on the clusters except that they must be spatially connected. We also see that we317

correctly infer very similar parcellations between hemispheres, despite the fact that bilateral318

symmetry is not enforced by the model. The earliest visual field maps (V1, V2, V3, hV4, LO1,319

LO2) all radiate out from a common representation of the fovea (Brewer and Barton, 2012),320

and in this region, our model generates ring parcellations which divide the visual field based321

on distance from the fovea. The parcellation also draws a sharp border between peripheral322

V1 and V2. In the dorsal V3A/V3B cluster, V3A and V3B are divided into separate parcels.323

In medial temporal regions, parcel borders show an approximate correspondence with known324

VO and PHC borders, with an especially close match along the PHC1-PHC2 border. Overall,325

we therefore see a transition from an eccentricity-based parcellation in the early visual cluster326

to a parcellation corresponding to known field maps in the later dorsal and ventral visual327

areas.328
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Figure 3. Results on functional brain connectivity. (a) Our model consistently
provides a better fit to the data than greedy clustering, explaining the same amount of
variance with 30 fewer clusters (different points were generated from different values of the
hyperparameter σ2

0). (b) When using our group-learned clustering to explain variance in 20
individual subjects, we consistently generalize better than the greedy clusters for cluster
sizes less than 200 (* p < 0.05, ** p < 0.01). (c) A sample 172-cluster parcellation from our
method. (d) Comparison between our parcels and retinotopic maps, showing a transition
from eccentricity-based divisions to field map divisions.
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Structural connectivity in the human brain329

Based on diffusion MRI data from the Human Connectome Project (Van Essen et al., 2013),330

we used probabilistic tractography (Behrens et al., 2007) to generate estimates of the strength331

of the structural fiber connections between each pair of 2mm gray-matter voxels. Approx-332

imately 34 billion tracts were sampled across 10 subjects, yielding a symmetric 59412 by333

59412 matrix in which about two-thirds of the elements are non-zero. Applying our method334

to this matrix parcellates the brain into groups of voxels that all had the same distribution335

of incident fibers. This problem is even more challenging than in the functional case, since336

this matrix is much less spatially smooth.337

Fig. 4(a) shows a 190-region parcellation. Our clustering outperforms greedy clustering338

by an even larger margin than with the functional data, explaining as much variance as a339

greedy parcellation with 55 additional clusters. Fig. 4(b) also shows how the model fit evolves340

over many rounds of Gibbs sampling, when initialized with the greedy solution. Since our341

method can flexibly explore different numbers of clusters, it is able (unlike a greedy method)342

to perform complex splitting and merging operations on the parcels. Qualitatively evaluating343

our parcellation is even more challenging than in the previous functional experiment, but we344

find that our parcels match the endpoints of major known tracts. For example, Fig. 4(c) shows345

35,000 probabilistically-sampled tracts intersecting with a parcel in the left lateral occipital346

sulcus, which (in addition to many short-range fibers) connects to the temporal lobe through347

the inferior longitudinal fasciculus, to the frontal lobe through the inferior fronto-occipital348

fasciculus, and to homologous regions in the right hemisphere through the corpus callosum349

(Wakana et al., 2004). Note that the full connectivity matrix was constructed from a million350

times as many tracks as shown in this figure, in order to estimate the pairwise connectivity351

between every pair of gray-matter voxels.352

Human migration in the United States353

Given our successful results on neuroimaging data, we then applied our method to an entirely354

distinct dataset: internal migration within the United States. Using our probabilistic model,355

we sought to summarize the (asymmetric) matrix of migration between US counties as flows356

between a smaller number of contiguous regions. The model is essentially searching for357

a parcellation such that all counties within a parcel have similar (in- and out-) migration358

patterns. Note that this is a challenging dataset for clustering analyses since the county-level359

migration matrix is extremely noisy and sparse, with only 3.8% of flows having a nonzero360

value.361

As shown in Fig. 5(a), we identify 83 regions defined by their migration properties. There362

are a number of interesting properties of this parcellation of the United States. Many clusters363

share borders with state borders, even though no information about the state membership of364

different counties was used during the parcellation. This alignment was substantially more365

prominent than when generating random 83-cluster parcellations, as shown in Fig. 5(b).366

As described in the Discussion, this is consistent with previous work showing behavioral367

differences caused by state borders, providing the first evidence that state membership also368

has an impact on intranational migration patterns. Greedy clustering performs very poorly369

on this sparse, noisy matrix, producing many clusters containing only one or a small number370
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Figure 4. Results on structural brain connectivity. (a) A 190-cluster parcellation of
the brain based on structural tractography patterns. (b) This parcellation fits the data
substantially better than greedy clustering, which would require an additional 55 clusters to
explain the same amount of variance. The blue path shows how our model fit improves over
the course of Gibbs sampling when initialized with the greedy solution. (c) An example of
35,000 tracks (from one subject) connected to a parcel in the lateral occipital sulcus,
marked with an asterisk in (a). These include portions of major fascicles such as the
inferior longitudinal fasciculus (ILF), inferior fronto-occipital fasciculus (IFO), and corpus
callosum (CC).
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Figure 5. Results on migration dataset. (a) Our parcellation identified 83 contiguous
regions within the continental US, such that migration between these regions summarizes
the migration between all 2594 counties. (b) This parcellation was better aligned with state
borders than an 83-cluster random parcellation (95% confidence interval shown) or an
83-cluster greedy Ward parcellation. (c) The top 10 clusters (by population) are shown,
with arrows indicating above-chance flows between the clusters. The 20 most populous US
cities are indicated with black dots for reference. (d) A portion of the migration matrix,
showing the 1051 counties covered by the top 10 clusters.
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of counties, and has a lower NMI with state borders than even the random parcellations.371

The 10 most populous clusters (Fig. 5(c)) cover 18 of the 20 largest cities in the US, with372

the two largest parcels covering the Northeast and the west coast. Some clusters roughly373

align with states or groups of states, while other divide states (e.g. the urban centers of374

east Texas) or cut across multiple states (e.g. the “urban midwest” cluster consisting of375

Columbus, Detroit, and Chicago). As shown in Fig. 5(d), our method succeeds in reordering376

the migration matrix to be composed of approximately piecewise constant blocks. In this377

case (and in many applications) the blocks along the main diagonal are most prominent, but378

this assortative structure is not enforced by the model. Though largely symmetric, some379

flows do show large asymmetries. For example, the two most asymmetrical flows by absolute380

difference are between the urban midwest and Illinois (out of Illinois = 1.3, into Illinois =381

2.0), and Florida and Georgia (out of Georgia = 1.3, into Georgia = 2.0).382

Discussion383

In this work we have introduced a new generative nonparametric model for parcellating a384

spatial map based on connectivity information. After showing that our model outperforms385

existing baselines on synthetic data, we applied it to three distinct real-world datasets: func-386

tional brain connectivity, structural brain connectivity, and US migration. In each case our387

method showed improvements over the current state-of-the-art, and was able to capture hid-388

den spatial patterns in the connectivity data. The gap between our approach and past work389

varied with the difficulty of the parcellation problem; hierarchical clustering would require390

17% more clusters for the relatively smooth functional connectivity data and 29% more391

clusters for the more challenging structural connectivity data, and fails completely for the392

most noisy migration dataset.393

Finding a connectivity-based parcellation of the brain’s cortical surface has been an im-394

portant goal in recent neuroimaging research, for two primary reasons. First, the shapes and395

locations of connectivity-defined regions may help inform us about underlying modularity in396

cortex, providing a relatively hypothesis-free delineation of regions with distinct functional397

or structural properties. For example, connectivity clustering has been used to identify398

substructures in the posterior medial cortex (Bzdok et al., 2014), temporoparietal junction399

(Mars et al., 2012), medial frontal cortex (Johansen-Berg et al., 2004; Kim et al., 2010; Crippa400

et al., 2011; Klein et al., 2007), occipital lobes (Thiebaut de Schotten et al., 2014), frontal401

pole (Moayedi et al., 2014; Liu et al., 2013), lateral premotor cortex (Tomassini et al., 2007),402

lateral parietal cortex (Mars et al., 2011; Ruschel et al., 2013), amygdala (Cheng and Fan,403

2014; Mishra et al., 2014), and insula (Cauda et al., 2011). Second, an accurate parcellation404

is necessary for performing higher-level analysis, such as analyzing distributed connectivity405

networks among parcels (Power et al., 2013; Andrews-Hanna et al., 2010; van den Heuvel and406

Sporns, 2013), using connectivity as a clinical biomarker (Castellanos et al., 2013), or pooling407

voxel features for classification (Xu et al., 2010). Consistent with our results, previous work408

has found that greedy Ward clustering generally fits the datasets best (in terms of variance409

explained) among these existing methods (Thirion et al., 2014).410

Our finding of eccentricity-based resting-state parcels in early visual areas is consistent411

with previous results showing a foveal vs. peripheral division of visual regions based on412
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connectivity (Yeo et al., 2011; Lee et al., 2012). Since our parcellation is much higher-413

resolution, we are able to observe nested clusters at multiple eccentricities. Our results are414

the first to suggest that higher-level retinotopic regions, especially PHC1 and PHC2, have415

borders that are related to changes in connectivity properties.416

Parcellation based on structural tractography has generally been limited to specific regions417

of interest (Mars et al., 2012; Johansen-Berg et al., 2004; Crippa et al., 2011; Klein et al.,418

2007; Thiebaut de Schotten et al., 2014; Moayedi et al., 2014; Liu et al., 2013; Tomassini et al.,419

2007; Mars et al., 2011; Ruschel et al., 2013), in part due to the computational difficulties420

of computing and analyzing a full voxel-by-voxel connectivity matrix. Our parcellation for421

this modality is somewhat preliminary; probabilistic tractography algorithms are still in their422

infancy, with recent work showing that they produce many tracts that are not well-supported423

by the underlying diffusion data (Pestilli et al., 2014) and are of questionable anatomical424

accuracy (Thomas et al., 2014). As diffusion imaging and tractography methods continue to425

improve, the input connectivity matrix to our method will become higher quality and allow426

for more precise parcellation.427

There has been detailed scientific study of both inter- and intra-national migration pat-428

terns for over a century, beginning with the 1885 work of Ravenstein (Ravenstein, 1885). Even429

in this initial study (within the UK), it was clear that migration properties varied with spa-430

tial location; for example, rural areas showed large out-migration, while metropolitan areas431

showed greater in-migration, including long-distance migrants. The impact of state borders432

on migration behavior has not, to our knowledge, been specifically addressed, but there is433

a growing literature documenting differences in behaviors across state lines. Neighboring434

counties across state lines are less politically similar than those within a state, suggesting435

that a state border “creates a barrier to, or contains, political and economic institutions,436

policies, and possibly movement” (Tam Cho and Nicley, 2008). State borders also play a437

role in isolating communities economically; this phenomenon gained a great of attention af-438

ter Wolf’s 2000 study (Wolf, 2000), showing that trade was markedly lower between states439

than within states (controlling for distance using a gravity model). Our results demonstrate440

in a hypothesis-free way that migration behavior is influenced by state identities, since our441

method discovers a parcellation related in many regions to state borders, without being given442

any information about the state membership of each county. Our results also show that state443

borders alone are not sufficient to capture the complexities of migration behavior, since other444

factors can override state identities to create other types of communities (such as in our445

“Urban midwest” parcel).446

Since our algorithm is searching a much larger space of potential parcellations compared447

to previous methods, it does take longer to find the most likely clustering. There are a448

number of possible approaches for speeding up inference which could be explored in future449

work. One possibility is parallelize inference by performing Gibbs sampling on multiple450

elements simultaneously; although this would no longer be guaranteed to converge to the true451

posterior distribution, in practice this may not be an issue. Another option is to compute452

the Gibbs sampling probabilities only approximately (Korattikara et al., 2014), by using453

only a random subset of connectivities in a large matrix to approximate the likelihood of a454

proposed parcellation. It also may be possible to increase the performance of our algorithm455

even further by starting with many different initializations and selecting the solution with456

highest MAP probability.457
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Conclusions458

In summary, we have proposed the first general-purpose probabilistic model to intrinsically459

incorporate spatial information in its clustering prior, allowing us to search directly in the460

space of contiguous parcellations using collapsed Gibbs sampling. Our approach is far more461

flexible and precise than previous work, with no constraints on the sizes and shapes of the462

learned parcels. This makes our model more resilient to noise in synthetic tests, and provides463

better fits to real-world data drawn from three different domains. This diverse set of results464

suggests that our model could be applied to a large set of biological network datasets to465

reveal fine-grained structure in spatial maps.466
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