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ABSTRACT6

Here we share a rich gait data set collected from fifteen subjects walking at three speeds on an

instrumented treadmill. Each trial consists of 120 seconds of normal walking and 480 seconds

of walking while being longitudinally perturbed during each stance phase with pseudo-random

fluctuations in the speed of the treadmill belt. A total of approximately 1.5 hours of normal walking

(> 5000 gait cycles) and 6 hours of perturbed walking (> 20,000 gait cycles) is included in the

data set. We provide full body marker trajectories and ground reaction loads in addition to a

presentation of processed data that includes gait events, 2D joint angles, angular rates, and joint

torques along with the open source software used for the computations. The protocol is described

in detail and supported with additional elaborate meta data for each trial. This data can likely be

useful for validating or generating mathematical models that are capable of simulating normal

periodic gait and non-periodic, perturbed gaits.
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INTRODUCTION9

The collection of dynamical data during human walking has a long history beginning with the first10

motion pictures and now with modern marker based motion capture techniques and high fidelity11

ground reaction load measurements. Even though years of data on thousands of subjects now exist,12

this data is not widely disseminated, well organized, nor available with few or no restrictions. David13

Winter’s published normative gait data (Winter, 1990) is widely used in biomechanical studies, yet14

it comes from few subjects and only a small number of gait cycles per subject. This small source15

has successfully enabled many other studies, such as powered prosthetic control design (Sup et al.,16

2008) but success in other research fields using large sets of data for discovery lead us to believe17

that more elaborate data sets may benefit the field of human motion studies. To enable such work,18

biomechanical data needs to be shared extensively, organized, and curated to enable future analysts.19

There are some notable gait data sets and databases besides Winter’s authoritative set that20

are publicly available. The International Society of Biomechanics has maintained a web page21

(http://isbweb.org/data) since approximately 1995 that includes data sets for download and mostly22

unencumbered use. For example, the kinematic and force plate measurements from several subjects23

from Vaughan et al. (1992) is available on the site. At another website, the CGA Normative Gait24

Database, Kirtley (2014) curates and shares normative clinical gait data collected from multiple labs25

and these datasets have influenced other studies, for example van den Bogert (2003) made use of the26
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average gait cycles from the child subjects.27

Chester et al. (2007) report on a large gait database comparison where one database contained28

kinematic data of 409 gait cycles of children from 1 to 7 years old but the data does not seem to29

be publicly available. This is, unfortunately, typical. Tirosh et al. (2010) recognized the need for a30

comprehensive data base for clinical gait data and created the Gaitabase. This database may contain31

a substantial amount of data but it is encumbered by a complicated and restrictive license and sharing32

scheme. Yun et al. (2014) provides lower body kinematic data of single gait cycles from over one33

hundred subjects extracted from the large KIST Human Gait Pattern Data database which may also34

include a substantial amount of raw data but it is private. However, there are examples of data with35

less restrictions. The University of Wisconsin at LaCrosse has an easily accessible normative gait36

data set (Willson and Kernozek, 2014) from 25 subjects with lower extremity marker data from37

multiple gait cycles and force plate measurements from a single gait cycle. The CMU Graphics Lab38

Motion Capture Database (Hodgins, 2015) is also a good example and contains full body marker39

kinematics for a fair number of trials with small number of gait cycles during both walking and40

running.41

More recent examples of biomechanists sharing their data alongside publications are: van den42

Bogert et al. (2013) which includes full body joint kinematics and kinetics from eleven subjects43

walking on an instrumented treadmill and Wang and Srinivasan (2014) who includes a larger set of44

data from ten subjects walking for five minutes each at three different speeds but only a small set of45

lower extremity markers are present. The second is notable because it publishes the data in Dryad, a46

modern citable data repository. It is also worth noting purely visual data collections of gait, like the47

one presented in Makihara et al. (2012), which contain videos of subjects walking on a treadmill in48

full clothing. This database is also unfortunately tightly secured with an extensive release agreement49

for reuse.50

The amount of publicly available gait data is small compared to the number of gait studies that51

have been performed over the years. The data that is available generally suffers from limitations52

such as few subjects, few gait cycles, few markers, highly clinical, no raw data, limited force plate53

measurements, lack of meta data, non-standard formats, and restrictive licensing. To help with this54

situation we are making the data we collected for our research purposes publicly available and free55

of the previously mentioned deficiencies. Not only do we provide a larger set of normative gait data56

that has been previously available, we also include an even larger set of data in which the subject57

is being perturbed, something that does not currently exist. We believe both of these sets of data58

can serve a variety of use cases and hope that we can save time and effort for future researchers by59

sharing it.60

But our reasons are not entirely altruistic, as governments and granting agencies are also61

encouraging researchers to share data with recent policy changes. For example, the European62

Commission (2012) has outlined publicly funded data’s role in innovation and the White House63

(2013) laid out a plan for public access to publications and data in 2013. The National Science64

Foundation, which partially funds this work, was ahead of the White House and required all grants to65

include a data management plan in 2011. This work is a partial fulfillment of the grant requirements66

laid out in our grant’s data management plan and we hope that this work can be a good model for67

dissemination of biomechanical data.68

Our use case for the data is centered around the need for bio-inspired control systems in emerging69

powered prosthetics and orthotics. Ideally, a powered prosthetic would behave in such a way that70

the user would feel like their limb was never disabled. There are a variety of approaches to71
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developing bio-inspired control systems, some of which aim to mimic the reactions and motion72

of an able-bodied person. A modern gait lab is able to collect a variety of kinematic, kinetic, and73

physiological data from humans during gait. This data can potentially be used to drive the design of74

the human-mimicking controller. With a rich enough data set, one may be able to identify control75

mechanisms used during a human’s natural gait and recovery from perturbations. We hypothesize76

that by forcing the human to recover from external perturbations, the resulting reactive actions can77

be used along with system identification techniques to expose the feedback related relationships78

among the human’s sensors and actuators. With this in mind, we have collected data that is richer79

than previous gait data sets and may be rich enough for control identification. The data can also80

be used for verification purposes for controllers that have been designed in other manners, such as81

those constructed from first principles (Geyer and Herr, 2010).82

With all of this in mind, we collected over seven and a half hours of gait data from fifteen able83

bodied subjects which amounts to over 25,000 gait cycles. The subjects walked at three different84

speeds on an instrumented treadmill while we collected full body marker locations and ground85

reaction loads from a pair of force plates. The final protocol for the majority of the trials included two86

minutes of normal walking and eight minutes of walking under the influence of pseudo-random belt87

speed fluctuations. The data has been organized complete with rich meta data and made available in88

the most unrestrictive form for other research uses following modern best practices in data sharing89

(White et al., 2013).90

Furthermore, we include a small Apache licensed open source software library for basic gait91

analysis and demonstrate its use in the paper. The combination of the open data and open software92

allow the results presented within to be computationally reproducible and instructions are included93

in the associated repository 1 for reproducing the results.94

METHODS95

In this section, we describe our experimental design beginning with descriptions of the participants96

and equipment. This is then followed by the protocol details and specifics on the perturbation design.97

Participants98

Fifteen able bodied subjects including four females and eleven males with an average age of 24±499

years, height of 1.75±0.09 m, mass of 74±13 kg participated in the study. The study was approved100

by the Institutional Review Board of Cleveland State University (# 29904-VAN-HS) and written101

informed consent was obtained from all participants. The data has been anonymized with respect102

to the participants’ identities and a unique identification number was assigned to each subject. A103

selection of the meta data collected for each subject is shown in Table 1.104

Equipment105

The data were collected in the Laboratory for Human Motion and Control at Cleveland State106

University, using the following equipment:107

• A R-Mill treadmill which has dual 6 degree of freedom force plates, independent belts for108

each foot, along with lateral translation and pitch rotation capabilities (Forcelink, Culemborg,109

Netherlands).110

1https://github.com/csu-hmc/perturbed-data-paper
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Table 1. Information about the 15 study participants in order of collection date. The subjects are

divided into those that were used for the protocol pilot trials, i.e. the first three, and those used for

the final protocol. The final three columns provide the trial numbers associated with each nominal

treadmill speed. The measured mass is computed from the mean total vertical ground reaction force

just after the calibration pose event, if possible. If the mass is reported without an accompanying

standard deviation, it is the subject’s self-reported mass. Additional trials found in the data set with

a subject identification number 0 are trials with no subject, i.e. unloaded trials that can be used for

inertial compensation purposes, and are not shown in the table. Generated by

src/subject_table.py.

Id Gender Age [yr] Height [m] Mass [kg] 0.8 m/s 1.2 m/s 1.6 m/s

1 male 25 1.87 101 NA 6, 7, 8 NA

11 male 22 1.85 80 9 10 11

4 male 30 1.76 74 12, 15 13 14

7 female 29 1.72 64.5±0.8 16 17 18

8 male 20 1.57 74.9±0.9 19 20 21

9 male 20 1.69 67±2 25 26 27

5 male 23 1.73 71.2±0.9 32 31 33

6 male 26 1.77 86.8±0.6 40 41 42

3 female 32 1.62 54±2 46 47 48

12 male 22 1.85 74.2±0.5 49 50 51

13 female 21 1.70 58±2 55 56 57

10 male 19 1.77 92±2 61 62 63

15 male 22 1.83 80.5±0.8 67 68 69

17 male 23 1.86 88.3±0.8 73 74 75

16 female 28 1.69 56.2±0.6 76 77 78
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• A 10 Osprey camera motion capture system paired with the Cortex 3.1.1.1290 software111

(Motion Analysis, Santa Rosa, CA, USA).112

• USB-6255 data acquisition unit (National Instruments, Austin, Texas, USA).113

• Four ADXL330 Triple Axis Accelerometer Breakout boards attached to the treadmill (Spark-114

fun, Niwot, Colorado, USA).115

• D-Flow software (versions 3.16.1 to 3.16.2) and visual display system, (Motek Medical,116

Amsterdam, Netherlands).117

The Cortex software delivers high accuracy 3D marker trajectories from the cameras along118

with data from the force plates and analog sensors (e.g. EMG/Accelerometer) through a National119

Instruments USB-6255 data acquisition unit. D-Flow then receives streaming data from Cortex and120

any other digital sensors. It is also responsible for controlling the treadmill’s motion (lateral, pitch,121

belts). D-Flow can process the data in real time and/or export data to file.122

Our motion capture system’s coordinate system is such that the X coordinate points to the right,123

the Y coordinate points upwards, and the Z coordinate follows from the right-hand-rule, i.e. points124

backwards with respect to the walking direction. The camera’s coordinate system is aligned to an125

origin point on treadmill’s surface during camera calibration. The same point is used as the origin of126

the ground reaction force measuring system. Figure 1 shows the layout of the equipment.127

Early on, we discovered that the factory setup of the R-Link treadmill had a vibration mode as128

low as 5Hz that was detectable in the force measurements, likely due to the flexible undercarriage129

and pitch motion mechanism. Trials 6–8 are affected by this vibration mode. During trials 9–15 the130

treadmill was stabilized with wooden blocks. During the remaining trials (> 15) the treadmill was131

stabilized with metal supports; both ones we fabricated in-house and ones supplied by the vendor.132

These supports aimed to improve the stiffness and frequency response of the force plate system. See133

the Data Limitations Section for more details.134

The acceleration of the treadmill base was measured during each trial by the ADXL330 ac-135

celerometers placed at the four corners of the machine. These accelerometers were intended to136

provide information for inertial compensation purposes when the treadmill moved laterally or in137

pitch, but are extraneous for trials greater than number 8 due to the treadmill being stabilized in138

those degrees of freedom by the aforementioned supports.139

Protocol140

The experimental protocol consisted of both static measurements and walking on the treadmill for141

10 minutes under unperturbed and perturbed conditions. Before a set of trials on the same day, the142

motion capture system was calibrated using the manufacturer’s recommended procedure. Before143

each subject’s gait data were collected, the subject changed into athletic shoes, shorts, a sports bra, a144

baseball cap 2, and a rock climbing harness. All 47 markers were applied directly to the skin at the145

landmarks noted in Table 2 except for the heel, toe, and head markers, which were placed on the146

respective article of clothing. 3 Then the subject self-reported their age, gender, and mass. Finally,147

their height was measured by the experimentalist and four reference photographs (front, back, right,148

left) were taken of subject’s marker locations.149

2A cap was used to avoid having to shave participants’ hair at the expense of accuracy.
3The sacrum and rear pelvic markers were placed on the shorts for a small number of the subjects.
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Table 2. Descriptions of the 47 subject markers used in this study. The “Set” column indicates

whether the marker exists in the lower and/or full body marker set. The label column matches the

column headers in the mocap-xxx.txt files and/or the marker map in the meta-xxx.yml file.

Set # Label Name Description

F 1 LHEAD Left head Just above the ear, in the middle.

F 2 THEAD Top head On top of the head, in line with the LHEAD and RHEAD.

F 3 RHEAD Right head Just above the ear, in the middle.

F 4 FHEAD Forehead Between line LHEAD/RHEAD and THEAD a bit right from center.

L/F 5 C7 C7 On the 7th cervical vertebrae.

L/F 6 T10 T10 On the 10th thoracic vertbrae.

L/F 7 SACR Sacrum bone On the sacral bone.

L/F 8 NAVE Navel On the navel.

L/F 9 XYPH Xiphoid process Xiphoid process of the sternum.

F 10 STRN Sternum On the jugular notch of the sternum.

F 11 BBAC Scapula On the inferior angle fo the right scapular.

F 12 LSHO Left shoulder Left acromion.

F 13 LDELT Left deltoid muscle Apex of the deltoid muscle.

F 14 LLEE Left lateral elbow Left lateral epicondyle of the elbow.

F 15 LMEE Left medial elbow Left medial epicondyle of the elbow.

F 16 LFRM Left forearm On 2/3 on the line between the LLEE and LMW.

F 17 LMW Left medial wrist On styloid process radius, thumb side.

F 18 LLW Left lateral wrist On styloid process ulna, pinky side.

F 19 LFIN Left fingers Center of the hand. Caput metatarsal 3.

F 20 RSHO Right shoulder Right acromion.

F 21 RDELT Right deltoid muscle Apex of deltoid muscle.

F 22 RLEE Right lateral elbow Right lateral epicondyle of the elbow.

F 23 RMEE Right medial elbow Right medial epicondyle of the elbow.

F 24 RFRM Right forearm On 1/3 on the line between the RLEE and RMW.

F 25 RMW Right medial wrist On styloid process radius, thumb side.

F 26 RLW Right lateral wrist On styloid process ulna, pinky side.

F 27 RFIN Right fingers Center of the hand. Caput metatarsal 3.

L/F 28 LASIS Pelvic bone left front Left anterior superior iliac spine.

L/F 29 RASIS Pelvic bone right front Right anterior superior iliac spine.

L/F 30 LPSIS Pelvic bone left back Left posterior superio iliac spine.

L/F 31 RPSIS Pelvic bone right back Right posterior superior iliac spine.

L/F 32 LGTRO Left greater trochanter of the femur On the cetner of the left greater trochanter.

L/F 33 FLTHI Left thigh On 1/3 on the line between the LFTRO and LLEK.

L/F 34 LLEK Left lateral epicondyle of the knee On the lateral side of the joint axis.

L/F 35 LATI Left anterior of the tibia On 2/3 on the line between the LLEK and LLM.

L/F 36 LLM Left lateral malleoulus of the ankle The center of the heel at the same height as the toe.

L/F 37 LHEE Left heel Center of the heel at the same height as the toe.

L/F 38 LTOE Left toe Tip of big toe.

L/F 39 LMT5 Left 5th metatarsal Caput of the 5th metatarsal bone, on joint line midfoot/toes.

L/F 40 RGTRO Right greater trochanter of the femur On the cetner of the right greater trochanter.

L/F 41 FRTHI Right thigh On 2/3 on the line between the RFTRO and RLEK.

L/F 42 RLEK Right lateral epicondyle of the knee On the lateral side of the joint axis.

L/F 43 RATI Right anterior of the tibia On 1/3 on the line between the RLEK and RLM.

L/F 44 RLM Right lateral malleoulus of the ankle The center of the heel at the same height as the toe.

L/F 45 RHEE Right heel Center of the heel at the same height as the toe.

L/F 46 RTOE Right toe Tip of big toe.

L/F 47 RMT5 Right 5th metatarsal Caput of the 5th metatarsal bone, on joint line midfoot/toes.
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Figure 1. The treadmill with coordinate system, cameras (circled in orange), projection screen,

and safety rope. The direction of travel is in the −z direction.

After obtaining informed consent and a briefing by the experimentalist on the trial protocol, the150

subject followed the verbal instructions of the experimentalist and the on-screen instructions from151

the video display. The final protocol for a single trial was as follows:152

1. Subject stepped onto the treadmill and markers were identified with Cortex.153

2. The safety rope was attached loosely to the rock climbing harness such that no forces were154

acting on the subject during walking, but so that the harness would prevent a full fall.155

3. The subject started by stepping on sides of treadmill so that feet did not touch the force plates156

and the force plate signals are zeroed. This corresponds to the “Force Plate Zeroing” event.157

4. Once notified by the video display, the subject stood in the calibration pose: standing straight158

up, looking forward, arms out by their sides (approximately 45 degree abduction) and the159

event, “Calibration Pose”, was manually recorded by the operator.160

5. A countdown to the first normal walking phase was displayed. At the end of the countdown161

the event “First Normal Walking” was recorded and the treadmill ramped up to the specified162

speed and the subject was instructed to walk normally, to focus on the “endless” road on the163

display, and not to look at their feet.164

6. After 1 minute of normal walking, the longitudinal perturbation phase begun and was recorded165

as “Longitudinal Perturbation”.166

7. After 8 minutes of walking under the influence of the perturbations, the second normal walking167

phase begun and was recorded as “Second Normal Walking”.168

8. After 1 minute of normal walking, a countdown was shown on the display and the treadmill169

decelerated to a stop.170
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9. The subject was instructed to step off of the force plates for 10 seconds and the “Unloaded171

End” event was recorded.172

10. The subject could then take a rest break before each additional trial.173

Pilot Protocols174

Trials 3–15 were pilot tests for finalizing the protocol design an thus have some slight variations175

with respect to the subsequent trials. We include these trials due to the uniqueness of trials 6–8 and176

the fact that the kinematic data is valid. We believe there may be useful analyses that only require177

the kinematic data. Additional information needed to interpret the data in the pilot trials can be178

found in the associated meta data files and the Data Limitations Section of this paper.179

Trials 3–8 use an early experimental protocol which divided the walking period into three180

sections: no perturbation, longitudinal perturbation, and a combination of longitudinal and lateral181

perturbation. The calibration pose and zeroing events are present in the data but lumped into one182

event. These trials only use the lower body marker set described in Table 2. Additionally, there are183

five markers that have labels beginning with ROT that were attached to the treadmill base to capture184

the lateral motion. Trials 9–15 use the final protocol but have corrupt ground reaction loads due to185

the wooden treadmill base stabilizers.186

Perturbation Signals187

As previously described, the protocol included a phase of normal walking, followed by longitudinal188

belt speed perturbations, and ended with a second segment of normal walking. Three pseudo-random189

belt speed control signals, with mean velocities of 0.8 m s−1, 1.2 m s−1 and 1.6 m s−1, were pre-190

generated with MATLAB and Simulink (Mathworks, Natick, Massachusetts, USA) and are available191

for download from Zenodo (Hnat et al., 2015). The same control signal was used for all trials at that192

given speed.193

To create the signals, we started by generating random acceleration signals, sampled at 100 Hz,194

using the Simulink discrete-time Gaussian white noise block followed by a saturation block set at the195

maximum belt acceleration of 15 m s−2. The signal was then integrated to obtain belt speed and high-196

pass filtered with a second-order Butterworth filter to eliminate drift. One of the three mean speeds197

were then added to the signal and limited between 0 m s−1 to 3.6 m s−1. The cutoff frequencies198

of the high-pass filter, as well as the variance in the acceleration signal, were manually adjusted199

until acceptable standard deviations for each mean speed were obtained: 0.06 m s−1, 0.12 m s−1 and200

0.21 m s−1 for the three speeds, respectively. These ensured that the test subjects were sufficiently201

perturbed at each speed, while remaining within the limits of our equipment and testing protocol.202

To ensure that the treadmill belts could accelerate to the desired values, the high performance203

mode in the D-Flow software was enabled. The MATLAB script and Simulink model produce a204

comma-delimited text file of with the desired belt speed signals indexed by the time stamp.205

Figure 2 gives an idea of the effect of the treadmill and controller dynamics by plotting the206

measured speed of the treadmill belts from loaded trials (76, 77, 78) against the commanded treadmill207

control input signal. The system introduces a delay and seems to act as a low pass filter. The standard208

deviations of the measured speeds do not significantly differ from those of the commanded speeds:209

0.05 m s−1, 0.12 m s−1 and 0.2 m s−1 for the three speeds, respectively.210

Figure 3 gives a frequency domain view of the effects of the treadmill dynamics. These spectral211

density plots were created by averaging a spectrogram of a twenty second Hamming window. For212
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Figure 2. Commanded treadmill belt speed (red) and the recorded speed (blue) for average belt

speeds of 0.8 m s−1, 1.2 m s−1 and 1.6 m s−1, respectively. Generated by

src/input_output_plot.m.

Table 3. A list of unloaded trials collected for each speed. Each loaded trial includes a

compensation file listed in its meta data which matches it to these unloaded trials. Generated by

src/subject_table.py.

Speed Trial Numbers

0.8 m/s 22, 30, 34, 43, 52, 58, 64, 70, 79

1.2 m/s 3, 4, 5, 23, 29, 35, 44, 53, 59, 65, 71, 80

1.6 m/s 24, 28, 36, 45, 54, 60, 66, 72, 81

all speeds, the frequency content of the commanded and measured time series show similarity below213

4 Hz and attenuation in the measured spectral density above 4 Hz.214

When belt speed is not constant, the inertia of the rollers and motor will likely induce error in215

the force plate x axis moment, and hence, the anterior-posterior coordinate (z axis) of the center216

of pressure that is measured by the instrumentation in the treadmill. This error may or may not be217

pertinent to different analyses. If needed, this error can be partially compensated by a linear model218

as shown in Hnat and van den Bogert (2014). The model coefficients can be identified from the219

unloaded trials given in Table 3. The error due to inertia is random and does not affect the averaged220

joint moments presented in Figure 5. Compensation should, however, be done if joint moments from221

individual gait cycles are of interest rather than the ensemble average.222

In addition to the longitudinal perturbations, lateral perturbations were also prescribed for a223

duration of four minutes in the pilot trials 3–8. Figure 4 shows an example of the measured lateral224

deviation of the treadmill base. These signals were generated in a similar manner using MATLAB225

and Simulink in which a Gaussian white noise block was twice integrated to obtain the lateral226

deviation. The signal was then high-pass filtered with a second-order Butterworth filter to eliminate227
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Figure 3. Power spectral density of the commanded treadmill belt speed (red) and the recorded

speed (blue) for average belt speeds of 0.8 m s−1, 1.2 m s−1 and 1.6 m s−1, respectively. Generated

by src/frequency_analysis.m.

drift and then saturated so that the signal remained within the 5 cm lateral range of the physical228

hardware. The same perturbation signal was used for each of the three trials.229

RESULTS230

Here we present some basic results. We first provide a detailed description of the raw data followed231

by an overview of several computed variables that give an idea of the characteristics of both the232

unperturbed and perturbed gait.233

Raw Data234

The raw data consists of a set of ASCII tab delimited text files output from both the “mocap” and235

“record” modules in D-Flow in addition to a manually generated YAML 4 file that contains all of the236

necessary meta data for the given trial. These three files are stored in a hierarchy of directories with237

one trial per directory. The directories are named in the following fashion T001/ where T stands238

for “trial” and the following three digits are provide a unique trial identification number.239

mocap-xxx.txt240

The output from the D-Flow mocap module is stored in a tab separated value (TSV) file named241

mocap-xxx.txt where xxx represents the trial id number. The file contains a number of time242

series. The numerical values of the time series are provided in decimal fixed point notation with243

6 decimals of precision, e.g. 123456.123456, regardless of the units. The first line of the file244

holds the header. The header includes time stamp column, frame number column, marker position245

columns, force plate force/moment columns, force plate center of pressure columns, and other246

analog columns. The columns are further described below:247

4YAML is a human readable data serialization format. See Listing 1 for an example.
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Figure 4. The measured lateral deviation of the treadmill base from trial 6. Generated by

src/lateral_perturbation_plot.m.

TimeStamp The monotonically increasing computer clock time when D-Flow receives a frame248

from Cortex. These are recorded approximately at 100 Hz sampling rate and given in seconds.249

FrameNumber Monotonically increasing positive integers that correspond to each frame received250

from Cortex.251

Marker Coordinates Any column that ends in .PosX, .PosY, or .PosZ are marker coordinates252

expressed in Cortex’s Cartesian reference frame. The prefixes match the marker labels given253

in Table 2. These values are in meters.254

Ground Reaction Loads There are three ground reaction forces and three ground reaction moments255

recorded by each of the two force plates in Newtons and Newton-Meters, respectively. The256

prefix for these columns is either FP1 or FP2 and represents either force plate 1 (left) or257

2 (right). The suffixes are either .For[XYZ], .Mom[XYZ] for the forces and moments,258

respectively. The force plate voltages are sampled at a much higher frequency than the259

cameras, but delivered at the Cortex camera sample rate, approximately 100 Hz, through the260

D-Flow mocap module. A force/moment calibration matrix stored in Cortex converts the261

voltages to forces and moments before sending it to D-Flow. The software also computes the262

center of pressure from the forces, moments, and force plate dimensions. These have the same263

prefixes for the plate number, have the suffix .Cop[XYZ], and are given in meters.264

Analog Channels Several analog signals are recorded under column headers Channel[1-99].Anlg.265

These correspond to analog signals sampled by Cortex and correspond to the 96 analog chan-266

nels in the National Instruments USB-6255. The first twelve are the voltages from the force267

plate load cells. We also record the acceleration of 4 points on the treadmill base in analog268

channels 61–72 that were in place in case inertial compensation for the lateral treadmill269

movement was required.270
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We make use of the full body 47 marker set described in van den Bogert et al. (2013) and271

presented in detail in Table 2. As with all camera based motion capture systems, the markers272

sometimes go missing in the recording. When a marker goes missing, if the data was recorded in a273

D-Flow version less than 3.16.2rc4, D-Flow continues to record the last non-missing value in all274

three axes until the marker is visible again. In D-Flow versions greater than or equal to 3.16.2rc4, the275

missing markers are indicated in the TSV file as either 0.000000 or -0.000000. The D-Flow276

version must be provided in the meta data YAML file to be able to distinguish this detail.277

record-xxx.txt278

The record module also outputs a tab delimited ASCII text file with numerical values at six decimal279

digits. It includes a Time column which records the D-Flow system time in seconds. This time280

corresponds to the time recorded in the TimeStamp column in mocap module TSV file which is281

necessary for time synchronization. There are two additional columns RightBeltSpeed and282

LeftBeltSpeed which provide the independent belt speeds measured in meters per second by a283

factory installed encoder in the treadmill.284

Additionally, the record module is capable of recording the time at which various preprogrammed285

events occur, as detected or set by D-Flow. It does this by inserting commented (#) lines in between286

the rows when the event occurred. The record files have several events that delineate the different287

phases of the protocol:288

A: Force Plate Zeroing Marks the time at the beginning of the trial at which there is no load on289

the force plates and when the force plate voltages were zeroed.290

B: Calibration Pose Marks the time at which the person is in the calibration pose.291

C: First Normal Walking Marks the time when the treadmill begins Phase 1: constant belt speed.292

D: Longitudinal Perturbation Marks the time when the treadmill begins Phase 2: longitudinal293

perturbations in the belt speed.294

E: Second Normal Walking Marks the time when phase 3 starts: constant belt speed.295

F: Unloaded End Marks the time at which there is no load on the force plates and the belts are296

stationary.297

meta-xxx.yml298

Each trial directory contains a meta data file in the YAML format named in the following style299

meta-xxx.yml where xxx is the three digit trial identification number. There are three main300

headings in the file: study, subject, and trial. An example meta data file is shown in301

Listing 1.302

The study section contains identifying information for the overall study, an identification303

number, name, and description. This is the same for all meta data files in the study. Details are given304

below:305

id An integer specifying a unique identification number of the study.306

name A string giving the name of the study.307

description A string with a basic description of the study.308
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The subject section provides key value pairs of information about the subject in that trial.309

Each subject has a unique identification number along with basic anthropomorphic data. The310

following details the possible meta data for the subject:311

age An integer age in years of the subject at the time of the trial.312

ankle-width-left A float specifying the width of the subjects left ankle.313

ankle-width-right A float specifying the width of the subjects right ankle.314

ankle-width-units A string giving the units of measurement of the ankle widths.315

id An unique identification integer for the subject.316

gender A string specifying the gender of the subject.317

height A float specifying the measured height of the subject (with shoes and hat on) at the time of318

the trial.319

height-units A string giving the units of the height measurement.320

knee-width-left A float specifying the width of the subjects left knee.321

knee-width-right A float specifying the width of the subjects right knee.322

knee-width-units A string giving the units of measurement of the knee widths.323

mass A float specifying the self-reported mass of the subject.324

mass-units A string specifying the units of the mass measurement.325

The trial section contains the information about the particular trial. Each trial has a unique326

identification number along with a variety of other information, detailed below:327

analog-channel-map A mapping of the strings D-Flow assigns to signals emitted from the analog328

channels of the NI USB-6255 to names the user desires.329

cortex-version The version of Cortex used to record the trial.330

datetime A date formatted string giving the date of the trial in the YYYY-MM-DD format.331

dflow-version The version of D-Flow used to record the trial.332

events A key value map which prescribes names to the alphabetic events recorded in the record file.333

files A key value mapping of files associated with this trial where the key is the D-Flow file type334

and the value is the path to the file relative to the meta file. The compensation file corresponds335

to an unloaded trial collected on the same day that could be used for inertial compensation336

purposes, if needed.337

hardware-settings There are tons of settings for the hardware in both D-Flow, Cortex, and the338

other software in the system. This contains any non-default settings.339
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high-performance A boolean value indicating whether the D-Flow high performance setting340

was on (True) or off (False).341

id An unique three digit integer identifier for the trial. All of the file names and directories associated342

with this trial include this number.343

marker-map A key value map which maps marker names in the mocap file to the user’s desired344

names for the markers.345

marker-set Indicates the HBM (van den Bogert et al., 2013) marker set used during the trial, either346

full, lower, or NA.347

nominal-speed A float representing the nominal desired treadmill speed during the trial.348

nominal-speed-units A string providing the units of the nominal speed.349

notes Any notes about the trial.350

pitch A boolean that indicates if the treadmill pitch degree of freedom was actuated during the trial.351

stationary-platform A boolean that indicates whether the treadmill sway or pitch motion was352

actuated during the trial. If this flag is false, the measured ground reaction loads must be353

compensated for the inertial affects and be expressed in the motion capture reference frame.354

subject-id An integer corresponding to the subject in the trial.355

sway A boolean that indicates if the treadmill lateral degree of freedom was actuated during the356

trial.357

Processed Data358

We developed a toolkit for data processing, GaitAnalysisToolKit v0.1.2 (Moore et al., 2014b) for359

common gait computations and provide an example processed trial to present the nature of the360

data. The tool was developed in Python, is dependent on the SciPy Stack [NumPy (Walt et al.,361

2011), SciPy (Jones et al., 2001), matplotlib (Hunter, 2007), Pandas (McKinney, 2010), etc] and362

Octave (Octave community, 2014), and provides two main classes: one to do basic gait data cleaning363

from D-Flow’s output files, DFlowData, and a second to compute common gait variables of364

interest, GaitData.365

The DFlowData class collects and stores all the raw data presented in the previous section and366

applies several “cleaning” operations to transform the data into a usable form. The cleaning process367

follows these steps:368

1. Load the meta data file into a Python dictionary.369

2. Load the D-Flow mocap module TSV file into Pandas DataFrame.370

3. Relabel the column headers to more meaningful names if this is specified in the meta data.371

4. Optionally identify the missing values in the mocap marker data and replace them with372

numpy.nan.373
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5. Optionally interpolate the missing marker values and replaces them with interpolated estimates374

using a variety of interpolation methods.375

6. Load the D-Flow record module TSV file into a Pandas DataFrame.376

7. Extract the events and create a dictionary mapping the event names in the meta data to the377

events detected in the record module file.378

8. Inertially compensate the ground reaction loads based on whether the meta data indicates379

there was treadmill motion.380

9. Merge the data from the mocap module and record module into one data frame at the maximum381

common constant sample rate.382

Once the data is cleaned there are two methods that allow the user to extract the cleaned data:383

either extract sections of the data bounded by the events recorded in the record-xxx.txt file or384

save the cleaned data to disk. These operations are available as a command line application and as385

an application programming interface (API) in Python. An example of the DFlowData API in use386

is provided in Listing 2.387

The GaitData class is then used to compute gait events (toe off and heel strike times), basic388

2D kinematics and inverse dynamics, and to store the data into a Pandas Panel with each gait cycle389

on the item axis at a specified sampling rate. This object can also be serialized to disk in HDF5390

format. An example of using the Python API is shown in Listing 3.391

A similar work flow was used to produce Figure 5 which compares the mean and standard392

deviation of sagittal plane joint angles and torques from the perturbed gait cycles and the unperturbed393

gait cycles computed from trial 20. This gives an idea of the more highly variable dynamics required394

to walk while being longitudinally perturbed.395

For more insight into the difference in the unperturbed and perturbed data, Figure 6 compares396

the distribution of a few gait cycle statistics. One can see that the perturbed strides have a much397

larger variation in frequency and length and even larger variation in stride width. It is also interesting398

to note that the coupled nature of system’s degrees of freedom can be exploited to increase the399

stride width with only longitudinal perturbations, although not relatively as much as is in the other400

statistics.401

Data Limitations402

The data is provided in good faith with great attention to detail but as with all data there are anomalies403

that may affect the use and interpretation of results emanating from the data. The following lists404

give various notes and warnings about the data that should be taken into account before use.405

All Trials406

• Be sure to read the notes in each meta data file for details about possible anomalies in that407

particular trial. Things such as marker dropout, ghost markers, and marker movement are the408

more prominent notes. Details about variations in the equipment on the day of the trial are409

also mentioned.410

• The subject identification number 0 represents the “null subject” and was used whenever data411

was collected from the system with no subject on the treadmill, for example during the trials412
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Figure 5. Right leg mean and 3σ (shaded) joint angles and torques from both unperturbed (red)

and perturbed (blue) gait cycles from trial 20. We define the nominal configuration, i.e. all joint

angles equal to zero, such that the vectors from the shoulder to the hip, the hip to the knee, the knee

to the ankle, and the heel to the toe are all aligned. Produced by

src/unperturbed_perturbed_comparison.py.
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which compare 120 unperturbed (U: red) and 519 perturbed (P: blue) gait cycles. The median is

given with the box bounding the first and third quartiles and the whiskers bound the range of the

data. Produced by src/unperturbed_perturbed_comparison.py.
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that were intended to be used for inertial compensation purposes. These trials play through413

the exact protocol as those with a human subject and the matching trials are indicated in the414

meta data. Matching unloaded trials were recorded on the same day as the loaded trials and is415

noted in the trial:files:compensation section of the meta data file. See Table 3 for416

a list of all the compensation trials.417

• Trials 1 and 2 were not recorded as part of this study. Those trial identification numbers were418

reserved for early data exploration from data collected in other studies and are not included in419

this dataset.420

• Trials 37, 38, and 39 do not exist. The numbers were accidentally skipped.421

• The ankle joint torques computed from subject 9’s data in trials 25–27 are abnormal and422

should be used with caution or not at all. We were not able to locate the source of the error,423

but it is likely related to the force calibration.424

Pilot Trials425

• Subject 1 walked only at a single speed with three trial repetitions.426

• Trials 6–8 included a calibration pose at the start of the trial but the event was not explicitly427

recorded. In those trials, the “TreadmillPerturbation” event marks the beginning of longitudinal428

perturbations and the “Both” event marks the beginning of combined longitudinal and lateral429

perturbations. The force plate zeroing at the end was also not explicitly recorded.430

• Trials 6–8’s force measurements are affected by the treadmill vibration mode mentioned in431

the equipment section and the force plate data should not be used.432

• Trials 9–11 used a slightly different event definition where the calibration poses were not433

explicitly tagged by an event, yet the protocol was identical to the following trials. The434

calibration pose will have to be determined manually.435

• During trials 9–15, we used wooden blocks to fix the treadmill to the concrete floor to eliminate436

the treadmill’s low vibration mode. But these blocks seem to have corrupted the force plate437

measurements by imposing frictional stresses on the system. The force plate measurements438

should not be used from these trials.439

• We did not record unloaded compensation trials for trials 9–15. Regardless, they would likely440

be useless due to the corruption from the wooden blocks and are not needed because the441

treadmill base is fixed.442

CONCLUSION443

We have presented a rich and elaborate data set of motion and ground reaction loads from human444

subjects during both normal walking and when recovering from perturbations. The raw data is445

provided for reuse with complete meta data. In addition to the data, we provide software that can446

process the data for both cleaning purposes and to produce typical sagittal plane gait variables of447

interest. Among other uses, we believe the dataset is ideally suited for control identification purposes.448

Many researchers are working on mathematical models for control in gait and this dataset provides449

both a way to validate these models and a source for generating them.450
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DATA AVAILABILITY451

The data set (Moore et al., 2014a) is available via the Zenodo data repository. Two approximately452

1.2GB gzipped tar balls contain the data and a README file with a short description of the contents.453

The data is released under the Creative Commons CC0 license (http://creativecommons.org/about/cc0)454

following best practices for sharing scientific data.455

SOFTWARE AVAILABILITY456

The tables, figures, and the paper can be reproduced from the source repository shared on Github:457

https://github.com/csu-hmc/perturbed-data-paper. Along with the source code in the repository, the458

computations depend on version 0.1.2 of the GaitAnalysisToolKit (Moore et al., 2014b) which can459

be downloaded from Zenodo or the Python Package Index (http://pypi.python.org).460
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study:

id: 1

name: Gait Control Identification

description: Perturb the subject during walking and running.

subject:

id: 8

age: 20

mass: 70.0

mass-units: kilograms

height: 1.572

height-units: meters

knee-width-left: 107.43

knee-width-right: 107.41

knee-width-units: millimeters

ankle-width-left: 70.52

ankle-width-right: 67.66

ankle-width-units: millimeters

gender: male

trial:

id: 58

subject-id: 8

datetime: 2014-03-28

notes: >

The subject did a somersault during this trial instead of following

instructions to walk. Will have to use for another study.

nominal-speed: 0.8

nominal-speed-units: meters per second

stationary-platform: True

pitch: False

sway: False

hardware-settings:

high-performance: True

dflow-version: 3.16.1

cortex-version: 3.1.1.1290

marker-map:

M1: LHEAD

M2: THEAD

M3: RHEAD

M4: FHEAD

M5: C7

analog-channel-map:

Channel1.Anlg: F1Y1

Channel2.Anlg: F1Y2

Channel3.Anlg: F1Y3

Channel4.Anlg: F1X1

events:

A: Force Plate Zeroing

B: Calibration Pose

C: First Normal Walking

D: Longitudinal Perturbation

E: Second Normal Walking

F: Unloaded End

files:

compensation: ../T057/mocap-057.txt

mocap: mocap-058.txt

record: record-058.txt

meta: meta-058.yml

Listing 1. A fictitious example of a YAML formatted meta data file. Examples of all of the

possible keys in the data set are shown.
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>>> from gaitanalysis.motek import DFlowData

>>> data = DFlowData(’mocap-020.txt’, ’record-020.txt’,

... ’meta-020.yml’)

>>> mass = data.meta[’subject’][’mass’]

>>> data.clean_data()

>>> event_df = data.extract_processed_data(

... event=’Longitudinal Perturbation’)

Listing 2. Python interpreter session showing how one could load a trial into memory, extract the

subject’s mass from the meta data, run the data cleaning process, and finally extract a Pandas

DataFrame containing all of the time histories for a specific event in the trial.

>>> from gaitanalysis.gait import GaitData

>>> gdata = GaitData(event_df)

>>> gdata.inverse_dynamics_2d(left_markers, right_markers,

... left_loads, right_loads, mass, 6.0)

>>> gdata.grf_landmarks(’Right Fy’, ’Left Fy’, threshhold=20.0)

>>> gdata.split_at(’right’)

>>> gdata.plot_gait_cycles(’Left Hip Joint Torque’, mean=True)

>>> gdata.save(’gait-data.h5’)

Listing 3. Python interpreter session showing how one could use the GaitData class to load in

the result of DFlowData and compute the inverse dynamics (joint angles and torques), identify the

gait events (e.g. heel strikes), split the data with respect to the gait events into a Pandas Panel, plot

the mean and standard deviation of one time history with respect to the gait cycles, and save the data

to disk.
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