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ABSTRACT10

Aim: In recent years, connectivity studies using neuroimaging data have increased

the understanding of the organization of large-scale structural and functional brain

networks. However, data analysis is time consuming as rigorous procedures must be

assured, from structuring data and pre-processing to modality specific data procedures.

Until now, no single toolbox was able to perform such investigations on truly multimodal

image data from beginning to end, including the combination of different connectivity

analyses. Thus, we have developed the Multimodal Imaging Brain Connectivity Analy-

sis (MIBCA) toolbox with the goal of diminishing time waste in data processing and to

allow an innovative and comprehensive approach to brain connectivity. Materials and

Methods: The MIBCA toolbox is a fully automated all-in-one connectivity toolbox that

offers pre-processing, connectivity and graph theoretical analyses of multimodal im-

age data such as diffusion-weighted imaging, functional magnetic resonance imaging

(fMRI) and positron emission tomography (PET). It was developed in MATLAB environ-

ment and pipelines well-known neuroimaging softwares such as Freesurfer, SPM, FSL,

and Diffusion Toolkit. It further implements routines for the construction of structural,

functional and effective or combined connectivity matrices, as well as, routines for the

extraction and calculation of imaging and graph-theory metrics, the latter using also

functions from the the Brain Connectivity Toolbox. Finally, the toolbox performs group

statistical analysis and enables data visualization in the form of matrices, 3D brain

graphs and connectograms. In this paper the MIBCA toolbox is presented by illustrating

its capabilities using multimodal image data from a group of 35 healthy subjects (19-73

years old) with volumetric T1-weighted, diffusion tensor imaging, and resting state fMRI

data, and 10 subjets with 18F-Altanserin PET data also. Results: It was observed both

a high inter-hemispheric symmetry and an intra-hemispheric modularity associated

with structural data, whilst functional data presented lower inter-hemispheric symmetry

and a high inter-hemispheric modularity. Furthermore, when testing for differences

between two subgroups (<40 and >40 years old adults) we observed a significant

reduction in the volume and thickness, and an increase in the mean diffusivity of most

of the subcortical/cortical regions. Conclusion: While bridging the gap between the

high numbers of packages and tools widely available for the neuroimaging community

in one toolbox, MIBCA also offers different possibilities for combining, analysing and

visualising data in novel ways, enabling a better understanding of the human brain.
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INTRODUCTION13

For a long time there has been an interest in unravelling the mechanisms and circuitry14

that allow the human being to perform very complex tasks. At the microscale, one of the15

first attempts was to undergo post-mortem dissections of neural tissue and try to infer16

the architecture of different neuro-anatomical systems (Buren and Baldwin, 1958). To17

distinguish between different types of neurons (the functional and structural unit of the18

central nervous system) histological staining was used (Eickhoff et al., 2006). However,19

these studies were not able to show how structure is linked to individual functions. The20

first results were obtained by the use of different techniques such as animal axonal21

tracing, which allows to undercover the neural connections from its origin to where22

they project (Schmahmann et al., 2007). Although such studies lead to an increased23

knowledge of the neural connectivity patterns at the microscale, a further step is still24

necessary to understand brain connectivity at a macroscale level (Dell’Acqua et al.,25

2013).26

The motivation of the study of macroscale brain connectivity is then to map different27

patterns of activation and different routes of information that link highly specialized28

centres of information and explain their integration in the major network (Rubinov and29

Sporns, 2010).30

Macroscale Brain Connectivity31

Brain connectivity is generally assessed at various different levels, but it can be mainly32

subdivided into structural, functional, and effective connectivity (Figure 1). Structural33

connectivity is linked to the routes of information in our brain and how they allow34

information to be transmitted. It can be measured using diffusion-weighted magnetic35

resonance imaging (dMRI) where the displacement of water molecules is used to36

trace a three dimensional reconstruction of their path in the brain via tractography37

(Catani et al., 2013). Tractography is not only extremely useful to localize tracts on an38

subject, but also to register tracts into an atlas, and to understand or predict dysfunction39

caused by (structural) disconnections in specific locations (Catani and Mesulam, 2008).40

Additionally, it is also very important in the study of brain connectivity, even with41

limited spatial resolution (Jbabdi and Johansen-Berg, 2011). Functional connectivity42

on the other hand demonstrate how different areas with similar pattern of activation43

enable brain function at rest and in response to external stimuli (van den Heuvel et al.,44

2009). It has helped undercover concepts about the basal level of activations in our brain45

which is reflected in the more commonly described resting state networks, of which46

the default mode network has been one of the more exploited (Behrens and Sporns,47

2012). Finally, effective connectivity may be seen as a way of combining the two48

types of connectivity described above, where there is the intent of inferring a causal49

relation between functionally linked activated areas and how they can be related through50

structural connections depicted independently (Frye, 2011).51

Different types of analysis have been reported for brain connectivity studies and52

a large interest has arisen in the field of network theory and connectomics (Sporns53

et al., 2000), in which connectivity metrics are extracted from functional and structural54

neuroimaging techniques. These techniques assume that the information collected55

from neuroimaging data, representing different aspects of brain anatomy and function,56

2/25

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.699v1 | CC-BY 4.0 Open Access | rec: 16 Dec 2014, publ: 16 Dec 2014

P
re
P
ri
n
ts



can be encoded as a graph (Ginestet et al., 2011). A graph is a collection of nodes57

linked with each other via edges which represent a relationship between nodes. In58

this mind-set, the nodes of a graph can represent different brain regions and the edges59

display information that is somehow relating those regions. Depending on the type of60

information one can have undirected or directed graphs, if the information holds no61

directionality or entails some sort of casual response, respectively (Bassett and Bullmore,62

2006). Also these graphs might be weighted or unweighted if the information that is63

being assessed provides insights on the relative strength for specific cases or if is of64

similar ”importance”, respectively (Figure 1).65

Figure 1. Macroscopic Brain Connectivity display through 3D Graphs. Left: undirect

and weighted Structural Connectivity (different number of connections); Middle:

undirect and weighted Functional Connectivity (different node strength connexion);

Right: direct and weighted Effective Connectivity (different directionality connections).

Brain Connectivity Analysis Toolboxes66

There are several available toolboxes that use a single and, to some extent, more than67

one neuroimaging technique to perform individual connectivity analysis but not in a68

truly multimodal fashion, where information is combined from the very beginning to the69

desired goal, by combination of different connectivity analysis (Cui et al. (2013); Zhou70

et al. (2009); Song et al. (2011); Chao-Gan and Yu-Feng (2010); Zang et al. (2012); Lei71

et al. (2011a,b); He et al. (2011); Whitfield-Gabrieli and Nieto-Castanon (2012); Seth72

(2010); Hadi Hosseini et al. (2012); Marques et al. (2013)). In this work we summarize73

the different toolboxes divided into Structural, Functional, Effective and Multimodal.74

Structural connectivity Toolboxes75

Pipeline for Analysing braiN Diffusion imAges (PANDA) (Cui et al., 2013): This toolbox76

allows fully automated processing of brain diffusion images. The tool uses processing77

modules of established packages, including FMRIB Software Library (FSL (Smith78

et al., 2004)), Pipeline System for Octave and Matlab (The MathWorks Inc., Natick,79

MA, 2000), PSOM1, Diffusion Toolkit (Wang et al., 2007) and MRIcron (Rorden et al.,80

2007). Using any number of raw dMRI datasets from different subjects, in either81

DICOM or NIfTI format, PANDA can automatically perform a series of steps to process82

DICOM/NIfTI and extract metrics with the diffusion tensor imaging (DTI) formalism83

that are ready for statistical analysis at the voxel-level, the atlas-level and the Tract-Based84

Spatial Statistics (TBSS)-level.85

1https://code.google.com/p/psom/
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Functional connectivity Toolboxes86

MATLAB toolbox for functional connectivity (Zhou et al., 2009): This toolbox calculates87

functional connectivity measures extracted from both resting state functional magnetic88

resonance imaging (rs-fMRI) and task based blood oxygen level dependent (BOLD) data,89

using a free and user-friendly interface available through MATLAB. These measures are90

categorized into two groups: whole time-series and trial-based approaches, including91

zero-order and cross-correlation, cross-coherence, mutual information, peak correlation,92

and functional canonical correlation.93

RESting-state fMRI data analysis Toolkit (REST) (Song et al., 2011): Based on94

MATLAB, REST can exchange files/data with SPM, AFNI, and FSL under the NIfTI95

or ANALYZE formats. After data preprocessing with SPM or AFNI, a few analytic96

methods can be performed in REST, including functional connectivity analysis based97

on linear correlation, regional homogeneity, amplitude of low frequency fluctuation98

(ALFF), and fractional ALFF. To increase the processing capability and usability of99

REST, an extension was implemented: Data Processing Assistant for Resting-State100

fMRI (DPARSF) (Chao-Gan and Yu-Feng, 2010).101

Conn (Whitfield-Gabrieli and Nieto-Castanon, 2012): Conn is able to spatially and102

temporally pre-process fMRI data, as well as, performing first- and second- level analysis.103

The toolbox also offers a batch processing environment facilitating the implementation104

of functional connectivity analysis. Conn is further able to derive Graph theory measures105

from fMRI measures.106

Effective connectivity Toolboxes107

Multimodal Functional Network Connectivity (mFNC) (Lei et al., 2011a): The mFNC108

toolbox was proposed for the fusion of Electroencephalography (EEG) and fMRI in109

network space. First, functional networks (FNs) are extracted using spatial independent110

component analysis (ICA) in each modality separately. Then the interactions among111

FNs in each modality are explored by Granger causality (GC) analysis. The fMRI FNs112

are then matched to EEG FNs in the spatial domain using network based source imaging113

(NESOI (Lei et al., 2011b)).114

Electrophysiological Connectome (eConnectome) (He et al., 2011): Major functions115

of eConnectome include EEG and Electrocorticography (ECoG) preprocessing, scalp116

spatial mapping, cortical source estimation, connectivity analysis, and visualization.117

Granger causal connectivity analysis (GCCA) (Seth, 2010): The GCCA toolbox118

provides a range of MATLAB functions (but without a Graphical User Interface (GUI))119

enabling the application of Granger-causality analysis to a broad range of neuroscience120

data.121

REST-Granger causality analysis (REST-GCA) (Zang et al., 2012) (Seth, 2010):122

REST-GCA is the second extension of the REST toolbox. It integrates two algorithms of123

GCA and provides a transformation programme of residual-based F to normal-distributed124

Z scores.125

Structural-Functional connectivity Toolboxes126

Graph-Theoretical Analysis Toolbox (GAT) (Hadi Hosseini et al., 2012): GAT provides127

a GUI that facilitates construction and analysis of brain networks, comparison of re-128

gional and global topological properties between networks, analysis of network hub and129
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modules, and analysis of resilience of the networks to random failure and targeted attack.130

GAT does not, however, provide a preprocessing pipeline for the different modalities131

and is not yet able to analyse weighted and directed networks.132

The UCLA Multimodal Connectivity Database (UMCD) (Brown et al., 2012):The133

UMCD is a web platform for connectivity matrix data repository, sharing and analysis.134

The platform is able to analyse connectivity matrices derived from imaging techniques135

such as DTI or rs-fMRI using graph theory, and builds a report of the data. Like the136

previous toolbox, the platform does not provide a preprocessing pipeline.137

BrainCAT (Marques et al., 2013): BrainCAT implements a predefined pipeline for138

fMRI and DTI data preprocessing, ICA of the fMRI data and combination with DTI139

tractography analysis. BrainCAT does not yet apply connectivity analysis such as graph140

theory, or easily allow the combination of different modalities in more complex ways.141

Connectome Visualization Utility (CVU) (LaPlante et al., 2014): CVU is a visualiza-142

tion software for connectivity analysis that includes matrix visualization, Connectogram143

view, and 3d Graph view for different modalities. The visualization features of CVU are144

however limited to single-edged, undirected networks, i.e. effective connectivity cannot145

be visualized through this software. Further, CVU is unable to represent networks from146

multiple modalities in the same file.147

Anatomical-Structural-Functional-Effective connectivity Toolbox148

In this paper we propose a fully automated all-in-one connectivity analysis toolbox -149

Multimodal Imaging Brain Connectivity Analysis toolbox (MIBCA) - that offers pre-150

processing, connectivity and graph theoretical analyses of multimodal image data such151

as anatomical MRI (aMRI), dMRI, fMRI and Positron Emission Tomography (PET).152

MIBCA was developed as an effort to diminish research time waste by pipelining state-153

of-the-art methods and to allow an innovative approach to brain connectivity research154

via multimodal matrix analysis and graph theory metrics.155

In this paper we present the MIBCA toolbox and several of its applications, demon-156

strated with data from the International Consortium for Brain Mapping (ICBM) dataset2.157

MATERIAL AND METHODS158

MIBCA159

MIBCA is an application developed in MATLAB (Figure 2) and combines multiple160

freely available tools in order to optimize and automate data processing pipeline, and to161

combine different imaging modalities into the same framework.162

Currently, MIBCA’s framework is able to process aMRI from volumetric T1-163

weighted data, dMRI from DTI data, resting state or task-based fMRI, and PET. Suc-164

cinctly, MIBCA is organized as follows: pre-processing of the data from the different165

modalities, connectivity matrix estimation and graph theory analysis, and visualization166

Figure 3.167

A default pipeline is recommended to perform a typical analysis, even though the168

user has the option to add or remove certain steps, as well as modifying the processing169

parameters for each step.170

2 http://www.loni.usc.edu/ICBM/
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Figure 2. Main interface of the MIBCA toolbox.

After technique/modality specific connectivity matrix computation, MIBCA enables171

matrix operations to generate new connectivity data (e.g. Structural+Functional) and172

also intra-modality and inter-modality group analysis. Finally, MIBCA allows the user to173

visualize the computed connectivity data in a matrix form (Figure 4), 3D-graph (Figure174

5) and/or connectogram (Figure 9).175

Preprocessing176

For each subject raw data (aMRI, dMRI, fMRI and PET) are automatically preprocessed177

using state-of-the-art processing toolboxes, namely Freesurfer (aMRI) (Fischl, 2012),178

Diffusion Toolkit (dMRI) (Wang et al., 2007), FSL (fMRI) (Smith et al., 2004) and PET179

(SPM) (Friston, 1995). Following, intra-modality and inter-modality group analysis is180

performed using processed data. A summary of the generated files is shown in Table 1.181

Preparing the data for analysis In neuroimaging studies, different imaging tech-182

niques and/or modalities are often used to acquire data from several healthy subjects or183

patients, thus resulting in large datasets.184

To reduce the manual burden of researchers in sorting such amount of data, the185

developed toolbox is able to identify and process data following two simple rules. First,186

data must be organized in the following way: ”Study-Subject-Acquisition-Images”. This187

allows the toolbox to differently pre-process images acquired with different imaging188

techniques or modalities (aMRI, dMRI, fMRI, PET), and to combine them in subsequent189

steps (Figure 3 - top row). Further, this organization allows the toolbox to identify190

different subjects and uses this information to automatically estimate group connectivity191

metrics (e.g. mean and standard deviation), as well as to perform group statistical tests192

(Figure 3 - bottom row). Second, although it is not required from the user to use fixed193
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Table 1. Generated files and folders description. Due to the large amount of generated

files during the pre-processing step only the most relevant files are described here.

Filename Contents

..\[subjectName]\sMRI\aparc+aseg.nii Cortical and sub-cortical atlas image registered to aMRI

..\[subjectName]\sMRI\[subjectName] smri data.mat Matlab file (.mat) with extracted aMRI connectivity metrics

..\[subjectName]\sMRI\[run#]\[run#].nii.gz NIFTI 3d raw T1 image

..\[subjectName]\DTI\aparc+aseg2DTI.nii Cortical and sub-cortical atlas image registered to dMRI

..\[subjectName]\DTI\[subjectName] dti data.mat Matlab file (.mat) with extracted dMRI connectivity metrics

..\[subjectName]\DTI\[run#]\[run#].nii.gz NIFTI 4d raw diffusion image

..\[subjectName]\DTI\[run#]\[run#].bvec gradient vector file

..\[subjectName]\DTI\[run#]\[run#].bval b-value file

..\[subjectName]\DTI\[run#]\[run#].dt\ DIFFUSION TOOLKIT folder with intermediate files

..\[subjectName]\fMRI\aparc+aseg2fMRI.nii Cortical and sub-cortical atlas image registered to fMRI

..\[subjectName]\fMRI\[subjectName] fmri data.mat Matlab file (.mat) with extracted fMRI connectivity metrics

..\[subjectName]\fMRI\[run#]\[run#].nii.gz NIFTI 4d raw functional MR image

..\[subjectName]\fMRI\[run#]\[run#].feat\ FEAT folder with intermediate files

..\[subjectName]\fMRI\[run#]\[run#].ica\ MELODIC folder with intermediate files

..\[subjectName]\PET\aparc+aseg2PET.nii Cortical and sub-cortical atlas image registered to PET

..\[subjectName]\PET\[subjectName] pet data.mat Matlab file (.mat) with extracted PET connectivity metrics

..\[subjectName]\PET\[run#]\[run#].nii.gz NIFTI 4d raw PET image

..\[subjectName]\PET\[run#]\[run#].pet\ Generated PET folder with intermediate files

names for each acquisition image (e.g. aMRI, dMRI, fMRI, PET), it is required that194

each subject’s name is consistent for each technique/modality.195

Furthermore, to maximize automation, different types of images can serve as input196

to the toolbox such as DICOM, NIfTI, Analyze and ECAT, thus not requiring the user to197

convert between the different formats prior to the processing pipeline.198

aMRI preprocessing Each subject’s anatomical image is first corrected for intensity199

non-uniformity using the Non-parametric Non-uniform intensity Normalization (N3)200

(Sled and Zijdenbos, 1998). Next, the volume is registered to the MNI305 atlas through201

an affine registration. Intensity normalization and skull stripping are then performed to202

improve further processing. Data is non-linearly registered to an average brain and the203

brain is parcellated into cortical and subcortical structures according to an atlas. The204

parcellated regions-of-interest (ROIs) are then mapped to the subject’s native space.205

Data finally follow a pipeline to derive the cortical thickness (CT), surface area (SA)206

and gray matter volume (GMV) measures for the subject cortical ROIs and also the207

volume of subcortical structures. All of the above processes were implemented using208

Freesurfer3. The generated measures are then loaded and converted to a MATLAB209

(.mat) file. Finally, anatomical connectivity matrices (a-CM) are computed from ratios210

of these measures between each pair of ROIs (CT, SA and GMV connectivity matrices).211

dMRI preprocessing If the raw diffusion images are in DICOM format then they are212

converted into a NIFTI 4D image, a gradient vector file (.bvec) and a b-value file (.bval)213

using the dcm2nii function available in the MRIcron package (Rorden et al., 2007).214

Otherwise, the 4D image, gradient vector and b-value files are searched in the directory215

for further analysis. The raw images are first corrected for motion and eddy currents216

using eddy correct (available in FSL). The diffusion tensor is reconstructed from the217

corrected images using dti recon (available in Diffusion Toolkit). Processing results218

include the main eigenvector maps, b0 and diffusion weighted images, the apparent219

3http://surfer.nmr.mgh.harvard.edu/
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diffusion coefficient (ADC), Mean Diffusivity (MD) and Fractional anisotropy (FA)220

maps. For fiber tracking purposes the dti tracking (Diffusion Toolkit) function was221

used with an interpolated streamline method of fixed step-length, and a deterministic222

tractography algorithm. The generated track file is first smoothed with the spline f ilter223

(Diffusion Toolkit) and then loaded into MATLAB.224

The b0 image generated from the dti recon is non-linearly registered to the aMRI225

and the aligned parcellated ROIs mapped back to the diffusion space. The loaded track226

file is used to calculate the number of fibers, mean fiber length and mean fiber orientation227

between pairs of ROIs, thus providing 3 different matrices. The matrix of the number of228

fibers is defined as the structural connectivity matrix (s-CM). Additionally, the MD and229

FA mean values for each region are calculated.230

fMRI preprocessing FMRI data processing is carried out using FEAT (FMRI Expert231

Analysis Tool) Version 6.00, part of FSL. The following pre-statistics processing is232

applied: motion correction using MCFLIRT (Jenkinson et al., 2002); slice-timing233

correction using Fourier-space time-series phase-shifting; non-brain removal using BET234

(Smith, 2002); spatial smoothing using a Gaussian kernel of FWHM 8 mm; intensity235

normalization of the entire 4D dataset by a single multiplicative factor; high pass236

temporal filtering (Gaussian-weighted least-squares straight line fitting, with sigma=237

50.0 s). The fMRI data is then non-linearly registered to the aMRI and the aligned238

parcellated ROIs mapped back to the fMRI space. For each ROI the functional time239

series is extracted to MATLAB for further analysis.240

Functional connectivity analysis involves determining the mean functional timeline241

series for each ROI. The Pearson correlation is then used to generate a correlation matrix242

between each pair of ROIs. The correlation matrix or functional connectivity matrix243

(f-CM) is corrected for significance, using a significance level of 5% and Bonferroni244

correction.245

Effective connectivity metrics are further evaluated for each pair of ROIs through246

the pairwise implementation of the time domain Granger Causality (Granger, 1969).247

From the estimated effective connectivity metrics for each pair of ROIs an effective248

connectivity matrix (e-CM) is calculated.249

PET preprocessing The original PET data is first converted from the original format250

to NIFTI 4D. The converted PET data is further corrected for motion using SPM and251

smoothed with a 8 mm Gaussian filter. The dynamic PET data is then summed into a252

NIFTI 3D image and non-linearly registered to the aMRI. The aligned parcellated ROIs253

are then mapped back to the PET space through the inverse transformation. For each254

ROI the dynamic PET series are extracted and its mean value per ROI is calculated. The255

Pearson correlation is then used to generate a correlation matrix between each pair of256

ROIs (PET connectivity matrix). Further, for the summed image, the mean standard257

uptake values (SUV) are calculated for each ROI.258

Group Connectivity and Graph Theory Analysis259

For each subject, a hybrid structural+functional connectivity matrix (sf-CM) is calculated260

resulting from the multiplication of s-CM and f-CM matrices (if raw data of both261

modalities are provided). Further, binary s-CM (number of fibers > 0), f-CM (p-values262

< 0.05, Bonferroni corrected), and e-CM (p-values < 0.05, Bonferroni corrected) are263
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generated.264

After computation of matrices and metrics has been performed for all subjects, mean265

connectivity (mean-CM) and robustness connectivity (robustness-CM) matrices are266

computed. The mean-CM result from averaging technique/modality or hybrid connec-267

tivity weighted matrices translating information regarding the strength of connections268

(number of fibers in dMRI, or correlation coefficient in fMRI). The robustness-CM269

results from the mean of the binary matrices, providing a measure of the robustness of270

each connection (e.g. a value of 0.1 in the robustness-CM states that only 10% of the271

subjects show connections between a certain ROI pair, while a value of 0.9 states that272

those connections are present in 90% of the subjects).273

Group s-CM, f-CM and sf-CM are further evaluated regarding general graph-theory274

metrics, namely mean network degree, mean clustering coefficient, characteristic path275

length and small-worldness calculated using the Brain Connectivity Toolbox (BCT4
276

(Rubinov and Sporns, 2010)). Additionally, normalized indexes based on these general277

metrics were calculated for an easier comparison between the different graphs. These278

normalized indexes were then calculated by the ratio of the metrics and their variant279

obtained from random graphs, which were generated by shuffling the data-driven graph280

while maintaining symmetry and mean degree.281

Individual ROI graph theory metrics, such as node degree and clustering coefficient,282

were also calculated using the BCT toolbox and saved for further analysis.283

Visualization and Statistical Analysis284

For an enhanced comprehension of the connectivity matrices and metrics three different285

types of visualisations were implemented, a matrix visualization (Figure 4), a 3D Graph286

view (Figure 5, 6, 7, 8), and a Connectogram view (Figure 9,10).287

Matrices are organized as follows: left/right subcortical regions and left/right cortical288

regions (from top to bottom rows and from left to right columns). Thus, the intra289

subcortical connections are represented in the uppermost left corner of the matrices.290

Also, the intra-hemispherical right cortical connections are represented in the lower-right291

corner and the intra-hemispherical left cortical connections in the remaining diagonal.292

Lower-left and upper-right regions represent subcortical vs cortical connections and293

inter-hemispherical cortical connections. In the matrix visualization any CM can be294

visualized using the jet color scheme (colder colours referring to lower values, and295

warmer colours to higher values).296

The connectogram may contain, but is not limited to, the following variables as297

rings: ROIs labels, SA, GMV, CT, aMRI node degree, aMRI cluster coefficient, MD,298

FA, dMRI node degree, dMRI cluster coefficient, fMRI node degree, fMRI cluster299

coefficient, PET SUVs. The different ROIs are connected through lines based in one of300

the processed connectivity matrices, and can be, but not limited to: a-CM, s-CM, f-CM,301

sf-CM, e-CM. Line colour mapping can be based in any directed matrix produced, or a302

negative/positive encoded matrix (Figure 9, 10). Further, the connectogram can be used303

to observe connected regions to a certain ROI, by moving the cursor over the selected304

ROI, which turns blue while connected ROIs turn green (see Annex I - Figure 11).305

The implemented 3D-Graph presents the same information as the connectogram but306

in a 3D view of the brain. Therefore, the different ROIs are connected through lines307

4https://sites.google.com/site/bctnet/
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based in any of the processed connectivity matrices. Line colour mapping is again based308

in any directed matrix produced, or a negative/positive encoded matrix. The information309

from rings presented in the connectogram is shown in the 3D-Graph as a text box when310

the selected node is highlighted. As well as the connectogram, the 3D graph view is311

interactive and can be used to access to where a specific ROI is connected.312

MIBCA also provides group comparison for all the above mentioned metrics and313

can display the significance of those tests both in a conectogram (Figure 10) or 3D graph.314

The automated group analysis is based in the mean and standard deviation of the different315

connectivity matrices, as well as in the summation of the binary connectivity matrices,316

obtained for the total subject database. MIBCA enables the selection of different groups317

according to the available data and allows regression of specific variables of interest,318

displaying in red significant increases and in blue decreases for the performed tests.319

Healthy Subject Data320

A group of 35 healthy subjects (16 males and 19 females) with an average age of 43±17321

years (range:19-73 years old) were selected from the ICBM database5(Mazziotta et al.,322

2001) containing T1-weighted MR images (aMRI), 3 DTI series and 3 resting state323

fMRI series. PET data was only available for 10 subjects (5 males and 5 females) with324

an average age of 26.6±5.7 years. In total 255 images per subject were automatically325

processed by the toolbox.326

T1-weighted, DTI and rs-fMRI data were acquired using a Siemens 1.5T scanner.327

T1-weighted images were acquired with a T R = 22ms and a T E = 9.2ms, yielding328

a matrix volume of 256× 256× 256 and a pixel spacing of 1× 1× 1mm3. The DTI329

images were acquired with a T R = 8000ms, T E = 94ms, b = 0,1000s/mm2 and 35330

non-collinear diffusion-sensitising gradients directions, yielding a matrix volume of331

96× 96× 2100 and a pixel spacing of 2.5× 2.5× 2.5mm3. The fMRI images were332

acquired at rest with a T R = 2000ms and a T E = 50ms, yielding a matrix volume of333

320×320×138 and a pixel spacing of 4×4×5.5mm3.334

PET images were acquired for each subject using a Siemens HR+ scanner and335

18F-Altanserin radiopharmaceutical for 30 minutes. The images were corrected for336

attenuation (measured), scatter (simulated 3D) and source decay, and reconstructed337

using the Fourier transform. The final image yielded a matrix volume of 128×128×63338

with 8 frames and a pixel spacing of 2.06×2.06×2.43mm3.339

5http://www.loni.usc.edu/ICBM/
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Figure 3. MIBCA processing pipeline diagram. Filled circles: Data generated and

used on this study; Non-filled circles: Data generated but not used on this study. Gray

circle: Database; Green circles: Pre-processing; Blue circles: Connectivity Matrix

estimation; Purple circles: Graph Theory analysis; Red circles: Group analysis.
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RESULTS340

Modality specific connectivity analysis341

In order to test the MIBCA toolbox we first investigated the connectivity similarities342

between s-CM (DTI based) and f-CM (rs-fMRI based) in different subjects using mean-343

CM (Figure 4 - Left) and robustness-CM (Figure 4 - Middle). Further, we combined344

these matrices, through the following expression: ∗ c = ∗ mean× (∗ robustness > 0.8)345

(∗ representing the type of connectivity matrix), to obtain a matrix that preserved the346

information from the mean matrix, while assuring that the results were different from347

zero in at least 80% of the subjects.348

Figure 4. Matrix visualization of Structural (Top) and Functional (Bottom) Brain

Connectivities. From left to right is presented the mean, robustness, and combined

connectivity matrices. A Jet color code was used for all matrices, leading to the

representation of lower values with colder colors and higher values with warmer colors.

In Figure 4 - Top Left it can be observed that, regarding structural connectivity, there349

is, an average higher number of intra-hemispherical connections than inter-hemispherical350

connections. Conversely, regarding functional connectivity both intra-hemispherical351

and inter-hemispherical connections are observed (Figure 4 - Bottom Left). It can also352

be seen a higher variability in functional connectivity than in structural connectivity353

(Figure 4 - Middle). In particular, structural connectivity displays some clusters of354

intra-hemispherical regions with highly conserved connections between subjects (hot355

colours). The combined mean × robustness matrices (Figure 4 - Right) show more356

clearly the structural and functional brain connectivity organization: a predominance357

of intra-hemispherical structural connections and the more distributed intra and inter-358

hemispherical functional connectivity. Both structural and functional connectivity359

though, seem to roughly show a left-right symmetry.360

This same information can be perceived from the 3D graph representations of the361

12/25

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.699v1 | CC-BY 4.0 Open Access | rec: 16 Dec 2014, publ: 16 Dec 2014

P
re
P
ri
n
ts



robustness s-CM and f-CM (Figure 5 - Top Left and Right images, respectively). These362

graph representations also illustrate the ROIs with higher degree (i.e. establish structural363

or functional connections with a higher number of regions), as they are represented as364

larger nodes. In particular, for the s-CM (Figure 5 - Bottom Left) the highest degree365

ROIs are the superiorfrontal and rostramiddlefrontal gyri, whilst for f-CM (Figure 5 -366

Bottom Right) these are the lingual gyri and insula.367

Figure 5. 3D Graph visualization of Structural (Left) and Functional (Right) Brain

Connectivities. Here considered the respective robustness matrices data (Top) and

highlighted highest degree brain regions (Bottom).

Hybrid strutural-functional connectivity analysis368

The structural and functional connectivity matrices were further combined to generate369

a direct sf-CM matrix and an indirect/mediated sf-CM, Figure 6. The direct sf-CM370

represents connections that are present in both s-CM and f-CM and therefore represent a371

direct structural (”axonal”) connection between two functionally related regions. The372

mediated sf-CM represents the connections of the f-CM that do not have a direct ”axonal”373

connection between them, yet they are functionally correlated. Here, in mediated sf-CM,374

connections between regions are presumably mediated by a third region or more regions.375

The sf-CM is therefore the sum of the direct and mediated sf-CMs.376

From Figure 6, it can be seen that the number of direct connections (Figure 6- Top-377

Left) is smaller than the mediated connections (Figure 6 - Top-Right). Furthermore,378
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Figure 6. 3D Graph visualization of Direct (Left) and Mediated (Right) hybrid

Structural-Functional Brain Connectivities. Top - Full display of the hybrid connectivity

matrices; Bottom - Example of a mediated connection: functional connectivity between

the rostral middle frontal gyri (Bottom Right) mediated by the structural connections

with the superior frontal gyri (Bottom Left).

most of the direct connections are observed to be intra-hemispherical and short-range379

(small distance between nodes/ROIs), whilst the mediated connections tend to be longer380

range, and both intra- and inter- hemispherical.381

To access which regions may mediate two functionally connected regions which are382

not connected directly, an algorithm that makes use of both source and target regions383

estimate the possible paths between them. As an example, in this work the functional384

connectivity of the rostral middle frontal gyri was evaluated. As it can be seen, although385

there is no direct connection between them (easily seen in Figure 6 - Top Left), there is386

a possible path consisting of 4 regions6 (Figure 6 - Bottom Left): right rostral middle387

frontal gyrus → right superior frontal → left superior frontal → left rostral middle388

frontal gyrus.389

To further understand if such path is viable the modularity of both structural and390

functional connectivity matrices were analysed, Figure 7. As shown, both the rostral391

middle frontal gyrus and the superior frontal gyrus belong to the same functional network392

(f-CM green module), yet they also belong to two similar structural intra-hemispherical393

6The path presented is the one with the fewest number of intermediate regions.
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modules (s-CM’s dark blue and light blue modules).394

Figure 7. 3D Graph visualization of modularity of structural connectivity (Left) and

functional connectivity (Right) matrices.

Figure 8. 3D Graph visualization of effective connectivity restricted to direct

connections. Black lines: bidirectional connections; Gradient lines: directional

connections from red to blue.
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Finally, the dynamics of this connection was analysed through Granger causality395

using an analysis of order 1. As can be seen in Figure 8 the connection between the396

rostral middle frontal gyri seems to be of an order > 1 consistant with the mediation397

from the superior frontal gyri. The connection between the rostral middle frontal gyri398

and the superior frontal gyri seems to be bidirectional. Also, interesting is that both399

rostral middle frontal regions presented an effective connection with the respective400

parstriangularis regions.401

Multimodal connectivity analysis402

The intra-inter hemispherical behaviour presented in the previous section can also be403

easily and comprehensively observed in Figure 9. Direct connections (red lines) connect404

mostly regions of the same hemisphere (between same shade of gray of the outer ring),405

while the mediated connections (blue lines) tend to be both intra and inter-hemispherical406

(between different shades of gray). Additionally, we can observe that contra-lateral407

regions tend to present similar metric values (i.e. similar mean diffusivity, fractional408

anisotropy, cortical volume, SUVs, fmri and dti node degree), supporting the idea of a409

symmetric brain. This is easily seen for the subcortical regions for all metrics.410

Connectivity analysis using statistical tests411

In this subsection is presented another potentiality of the MIBCA toolbox. In addition to412

the individual visualization of connectograms and 3D graphs for single and multimodal413

connectivity analysis, MIBCA also allows the user to perform statistical tests, while414

controlling for some variables of interest. In order to test this feature, subject data was415

divided into two age groups: 15 young adults (<40 years old) and 20 old adults (>40416

years old), respectively with mean age of 26±6 and 56±8 years old and age range of417

19-37 and 42-73 years old. A t-test was performed to evaluate significant differences418

between both groups. Figure 10 displays significant differences between both groups in419

several brain regions, both at the cortical and the subcortical level. The most notorious420

differences are regional decreased cortical thicknesses and grey matter volumes, as well421

as increases in mean diffusivity in the older subjects’ group in comparison with the422

younger subjects’ group.423
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Figure 9. Multimodal Connectogram. From the outer to the inner ring:

Regions-of-Interest (ROIs); Mean Diffusivity (MD); Fractional Anisotropy (FA); ROI

volume; 18F-Altanserin rSUV (cerebellum as the reference region); functional

connectivity degree (fMRI correlations); structural connectivity degree (diffusion tensor

imaging-based tractography). Blue fibers - Direct structural/functional connections; Red

fibers - Mediated functional connections.
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Figure 10. Statistical test between younger subjects’ group vs older subjects’ group.

From the outer to the inner rings: Regions-of-Interest (ROIs), mean diffusivity, ROI

volume, cortical thickness, fmri degree. The lines represent tract connections between

brain regions. Blue and red colors respectively represent increased and decreased

metrics’ mean values or number of tracts in older subjects group vs youger subjects

group.
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DISCUSSION424

In Figure 4 two different views of brain connectivity were proposed via the use of mean425

and robustness matrices, both of which are outputs of the developed toolbox. Such an426

approach allows researchers to study subjects’ similarity and variability for different427

pairwise relations. Thus, it is possible to study the pairwise connectivity mean and428

variance7, such as the distribution of the number of connecting fibers (obtained from429

s-CM). Additionally, both mean and robustness matrices can be combined to increase430

the confidence of the results.431

Figures 4, 5 and 9 showed that there is a predominance of intra-hemispherical432

connections in the s-CM, whilst this is not the case in f-CM. These results suggest433

that the brain is organized such as to have direct communication between the same434

hemisphere with few direct connections between hemispheres and, consequently, with a435

higher mediated inter-hemispherical communication (Park and Friston, 2013). Further436

analysis of the direct and mediated sf-CM (Figure 6) show that direct connections tend437

to be short, while mediated connections appear to be long. These results also suggest438

that long-range connections can be based in more than one combination of direct short439

connections.440

Additionally, from the obtained results a mismatch of high degree nodes is observed441

between the s-CM and f-CM 5. For the s-CM, the higher degree nodes are related to442

regions where several physical connections to different cortical regions exist. For the443

f-CM, the high degree nodes are related to a high number of connections in resting-state.444

Therefore, although the first system is approximately static, the second is dynamic and445

can change when presented with a perturbation, probably leading to the observation of446

new higher degree nodes.447

Moreover, in Figures 4, 5, 7, 8, it is shown a high regularity and hemispherical448

symmetry for the s-CM, and in Figure 9 a general symmetry for the different analysed449

metrics. For some systems in the human brain, such behaviour may be related to parallel450

computational processing in which two general processing units (the two hemispheres)451

process information simultaneously exchanging small packages of information between452

them, similarly to mechanisms present in visual processing (Baird et al., 2005; Doron453

and Gazzaniga, 2008). Additionally, the results suggest a certain degree of functional454

hemispherical assymmetry which may be related to the distributed behaviour of the455

brain, something that has been demonstrated in language pathways (Toga and Thompson,456

2003; Catani et al., 2007).457

Finally, an application of the MIBCA toolbox to the study of ageing in a multimodal458

approach was demonstrated (Figure 10). The fairly generalized decrease in cortical459

thickness and regional gray matter volume as well as the increased mean diffusivity460

observed in the older subjects group are consistent with neuronal loss commonly ob-461

served in healthy ageing (Salat et al., 2004; Minati et al., 2007; Walhovd et al., 2005).462

Here, the statistical connectogram related in the same schematic different metrics, such463

as mean diffusivity and number of fibers derived from DTI data, with regional volume464

and cortical thickness obtained from T1-w images, and fMRI node degree derived from465

rs-fMRI data. This approach can lead to better discrimination of groups, and provide an466

uniform view of different metrics.467

7The matrices connectivity variance was calculated but not shown in this work.
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LIMITATIONS AND FUTURE DEVELOPMENTS468

It is very important to understand that several of the methods described throughout469

this paper still require validation to a certain extent. For the particular case of dMRI,470

new methods are required to fully reflect the index of anisotropic diffusion in regions471

of complex white matter configurations like crossing fibers, which cannot be resolved472

with DTI. Efforts have been made to devise techniques that allow to further explore473

the structural basis of human neuroanatomy, and these advents might be useful to474

validate techniques such as tractography (Amunts et al., 2013; Chung et al., 2013). New475

techniques are also associated with advances in methodogical advances which may476

help us increase the resolution and speed of current techniques, maintaining or even477

increasing the obtained signal-to-noise ratio (Feinberg and Setsompop, 2013; Setsompop478

et al., 2012). These techniques are not exclusive for improving structural imaging but479

also for functional information (Feinberg et al., 2010). Effective connectivity algorithms480

still lack a gold standard onto which we can compare our results. It is worrying to481

think that in some cases causality is infered from data with a small temporal resolution482

when the actual neural stimulus is transmitted in the miliseconds time scale (Rodrigues483

and Andrade, 2014). To overcome this limitation it is also possible to explore other484

techniques such as EEG and magnetoencephalography, which provides a much better485

picture of the dynamic activations of the human brain (Dammers et al., 2007).486

CONCLUSION487

We have introduced a flexible and automatic multimodal approach for the analysis of488

brain connectivity that can integrate information from different imaging modalities489

(MRI and PET). While bridging the gap between the high numbers of packages and490

tools widely available for the neuroimaging community, including pre-processing, con-491

nectivity and graph theoretical analyses in one toolbox, MIBCA also offers different492

possibilities for combining, analysing and visualising data in novel ways enabling a493

better understanding of the human brain. This is also a request from the neuroimag-494

ing community where the number of multi-modal systems available worldwide (e.g.495

MR-PET) increased considerably in the last two years.496
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