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ABSTRACT

Protein chemical shifts are routinely used to augment molecular mechanics force fields in protein

structure simulations, with weights of the chemical shift restraints determined empirically. These weights,

however, might not be an optimal descriptor of a given protein structure and predictive model, and a

bias is introduced which might result in incorrect structures. In the inferential structure determination

framework, both the unknown structure and the disagreement between experimental and back-calculated

data are formulated as a joint probability distribution, thus utilizing the full information content of the

data. Here, we present the formulation of such a probability distribution where the error in chemical shift

prediction is described by either a Gaussian or Cauchy distribution. The methodology is demonstrated

and compared to a set of empirically weighted potentials through Markov chain Monte Carlo simulations

of three small proteins (ENHD, Protein G and the SMN Tudor Domain) using the PROFASI force field

and the chemical shift predictor CamShift. Using a clustering-criterion for identifying the best structure,

together with the addition of a solvent exposure scoring term, the simulations suggests that sampling

both the structure and the uncertainties in chemical shift prediction leads more accurate structures

compared to conventional methods using empirical determined weights. The Cauchy distribution, using

either sampled uncertainties or predetermined weights, did, however, result in overall better convergence

to the native fold, suggesting that both types of distribution might be useful in different aspects of the

protein structure prediction.
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INTRODUCTION1

Protein structures can today routinely be simulated by methods such as molecular dynamics or Monte2

Carlo simulations, using molecular mechanics force fields (Shaw et al., 2010; Karplus and McCammon,3

2002; Snow et al., 2002). However, this is not always a feasible method to determine a protein structure4

by itself. To elucidate the native protein structure efficiently, the force field energy can be augmented5

by restraints obtained from experiments. This immediately raises the question, how can this be done6

rigorously and efficiently? One pragmatic approach to this problem is to define a hybrid energy using a7

penalty function, which describes the agreement between experimental data and data calculated from a8

proposed protein structure, together with a physical energy (such as from a molecular mechanics force9

field) (Jack and Levitt, 1978). An optimal structure in this approach could then be determined for example10

by minimizing the hybrid energy function11

Ehybrid = wdata Edata +Ephysical. (1)

This approach, however, does not uniquely define neither the nature nor weight of Edata, and the resulting12

protein structure will depend on the choices of these.13

Chemical shifts have been combined with physical energies in a multitude of ways, e.g. using weighted14

RMSD values or various types of harmonic constraints. Vendruscolo and co-workers implemented a15

’square-well soft harmonic potential’, with corresponding gradients, and were able to run a chemical shifts16
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biased MD simulation where they successfully refined slightly denatured protein structures to a Cα -RMSD17

of down to 0.84 Å from the corresponding crystal structures (Robustelli et al., 2010). The groups of Bax18

and Baker added the chi-square agreement between SPARTA (Shen and Bax, 2007) predicted chemical19

shift values and experimental chemical shifts with an empirical weight of 0.25 to the ROSETTA all-atom20

energy (Shen et al., 2008; Rohl et al., 2004). The CHESHIRE approach (Cavalli et al., 2007) utilizes the21

experimental chemical shifts to predict secondary structure and backbone dihedral angles. These in turn22

are used to score molecular fragments from a database of known structures together with the chi-square23

agreement between the measured chemical shifts and the chemical shifts of the fragment in the database.24

A different approach was used by Meiler and Baker (Meiler and Baker, 2003), where the contribution of25

the experimental chemical shifts were set relative to 1 or 0 depending on whether or not the difference to26

the PROSHIFT prediction (Meiler, 2003) exceeded a maximum tolerance. The reasoning for not using27

a quadratic potential was that the experimental NMR data was automatically assigned and a quadratic28

potential is more sensitive to assignment errors. In all cases the parameters, shape and weights of Edata29

had to be carefully tweaked by hand, and it is obviously not clear how to choose optimal parameters.30

The inferential structure determination (ISD) principles introduced by Rieping, Habeck and Nilges31

(Rieping et al., 2005) defines a Bayesian formulation of Eqn. 1, which has previously been used to32

determine protein structures based on NOE (Habeck et al., 2006; Olsson et al., 2011) and RDC restraints33

(Habeck et al., 2008). In the following section the equations of an ISD approach for combining the34

knowledge of experimental chemical shifts with a physical energy are presented.35

THEORY36

In the ISD approach we seek the probability distribution of the structure X and a set of uncertainties θ ,37

correlating experimental and predicted chemical shifts, given a set of experimentally measured chemical38

shifts d, i.e. the probability p(X,θ | d). Using Bayes’ theorem, this probability can be factored out as39

p(X,θ | d) =
p(d | X,θ) p(X,θ)

p(d)
. (2)

p(d) merely serves as a normalization constant, which we need not evaluate.40

We’re making the basic assumption, that the deviation between predicted and experimental chemical41

shifts, given as42

∆δi = δX,i −δexp,i (3)

approximately follows some distribution with a variance uniquely defined by the type of nuclei (Cα ,43

Cβ etc.). The relevant equations for a Gaussian distribution and a Cauchy distribution (a Student’s44

t-distribution with one degree of freedom), respectively, are presented in the next sections.45

Gaussian distribution46

According to the principle of maximum entropy (Jaynes, 1957), the least biasing model for the error of47

the chemical shift prediction is a Gaussian distribution with standard deviations σ j (where j indicates48

the nuclei type). The standard deviations are effectively describing the weight of the experimental data.49

Assuming that each measured experimental chemical shift δexp,i is conditional independent given the50

structure, the likelihood p(d|X,θ) is obtained as the product of the individual probabilities of all measured51

chemical shifts. With i iterating over all n j measured chemical shifts of nuclei type j, this takes the form52
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−
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, (4)

where χ2
j = ∑

n j

i ∆δ 2
i j. The structure, X, and the uncertainties in the model, θ , are assumed independent54

and p(X,θ) can be expanded into55

p(X,θ) = p(X) p(θ) = p(X)∏
j

p(σ j) . (5)

The prior probability for the protein structure can be expressed by the Boltzmann distribution, that is:56

p(X) =
1

Z(T )
exp

(

−E(X)

kBT

)

, (6)

where the physical energy E(X) could for example be approximated using a molecular mechanics force57

field. Note that in this case, the partition function Z(T ) is a normalization constant and evaluation of58

this is not necessary. We have little prior knowledge about σ j other than that it is a scale parameter.59

An uninformative choice of prior distribution is the Jeffreys prior (Jeffreys, 1946), which in this case is60

simply:61

p(σ j) = σ−1
j . (7)

Combining these expressions, p(X,θ | d) is thus proportional to62

p(X,θ | d) ∝ p(d | X,θ) p(X) p(θ)

∝ ∏
j

[

σ
−n j−1

j exp

(

−
χ2

j

2σ2
j

)]

exp

(

−E(X)

kBT

)

. (8)

The resemblance to a hybrid energy such as in Eqn. 1 is obtained by (neglecting all constant terms):63

Ehybrid (X,θ) = −kBT ln(p(X,θ | d))

= kBT ∑
j

(

(n j +1) ln(σ j)+
χ2

j

2σ2
j

)

+E(X). (9)

This energy as a function of σ j is depicted in Fig. 1a.64

65

Conjugate prior. As discussed below, use of the Jeffrey’s prior and the Gaussian model with the empirical66

chemical shift predictor CamShift leads to numerical problems. The problems arises if χ2
j converges to67

zero, which leads to σ j → 0. This can be seen from the maximum a posteriori estimator (MAP) of σ2
j :68

σ2
j,MAP =

χ2
j

n j +1
. (10)

We found that these problems can be avoided by using a weakly informative prior. The conjugate69

prior for the variance of the Gaussian distribution (σ2
j ), when the mean is known, can be given by an70

Inverse-Gamma distribution:71

p
(

σ2
j | α,β

)

=
β α

Γ(α)

(

σ2
j

)−α−1
exp

(

− β

σ2
j

)

. (11)
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(b) Cauchy distribution

Figure 1. Sampling of σ and γ , using Jeffrey’s priors, for Cα -chemical shifts of Protein G. nCα = 54

and χ2
Cα

= 69.7 ppm2.

p(X,θ | d) is thus proportional to72

p(X,θ | d) ∝ p(d | X,θ) p(X) p(θ)

∝ ∏
j

[

σ
−n j−2α−2

j exp

(

−
2β +χ2

j

2σ2
j

)]

exp

(

−E(X)

kBT

)

. (12)

In contrast to Eqn 10, the maximum a posteriori estimator of σ2
j does not equal zero in the limit of χ2

j → 073

with a non-zero choice of β :74

σ2
j,MAP =

2β +χ2
j (X)

2α +2+N j

(13)

In all the simulations where σ j was sampled we use Eqn 12 and α = β = 0.001 (Gelman, 2006) unless75

stated otherwise.76

77

Marginal likelihood. Alternatively one can use the marginal likelihood where σ j is integrated out:78

p(d | X) = ∏
j

∫ ∞

0
p(d | X,σ j) p(σ j)dσ j

∝ ∏
j

(

χ2
j

)

−n j
2 (14)

This results in a hybrid energy of the form:79

Ehybrid (X) = −kBT ln(p(X | d))

= kBT ∑
j

(n j

2
ln
(

χ2
j

)

)

+E(X) (15)

Cauchy distribution80

The Cauchy and Gaussian distribution are both special cases of the Student’s t-distribution, with degrees of81

freedom ν = 1 and ν = ∞ respectively. Compared to the Gaussian distribution, the Cauchy distribution has82

much heavier tails meaning that it will be less penalizing of single predictions far from the experimental83

values.84
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p(d|X,θ) is again obtained as the product of the individual probabilities of all measured chemical85

shifts, with scale parameters γ j (equivalent to σ j of the Gaussian distribution):86

p(d | X,θ) = ∏
j

n j

∏
i=1

p
(

δexp,i j | δX,i j,γ j

)

= ∏
j







(πγ j)
−n j

n j

∏
i=1

[

1+

(

∆δi j

γ j

)2
]−1






(16)

Note that the Cauchy distribution does not reduce into an expression that depends on the χ2
j differences87

(in contrast to the Gaussian). The Jeffreys prior is the same as for the Gaussian distribution:88

p(γ j) = γ−1
j . (17)

p(X,θ | d) is thus proportional to89

p(X,θ | d) ∝ ∏
j







γ
−(n j+1)
j

n j

∏
i=1

[

1+

(

∆δi j

γ j

)2
]−1






exp

(

−E(X)

kBT

)

(18)

The resemblance to a hybrid energy such as in Eqn. 1 is obtained by (neglecting all constant terms):90

Ehybrid (X,θ) = −kBT ln(p(X,θ | d))

= kBT ∑
j

{(

(n j +1) ln(γ j)+
n j

∑
i=1

ln

[

1+

(

∆δi j

γ j

)2
])}

+E(X) (19)

METHODOLOGY91

Computational methodology92

Markov chain Monte Carlo simulations were carried out with PHAISTOS v1.0 (Boomsma et al., 2013) us-93

ing either the multicanonical generalized ensemble via MUNINN (Ferkinghoff-Borg, 2002) or Metropolis-94

Hastings (Metropolis et al., 1953). Chemical shift predictions were performed with an implementation95

of CamShift (Kohlhoff et al., 2009) and the physical energy was approximated using the computational96

efficient PROFASI force field (Irbäck and Mohanty, 2006). The conformational degrees of freedom97

explored in the simulations were restricted to the backbone and side-chain dihedral angles (φ ,ψ,χ) as98

well as the backbone bond angles. Backbone moves had torsion and bond angles biased by CS-Torus99

(Boomsma et al., 2014) and Engh-Huber statistics (Engh and Huber, 1991) respectively, which both100

introduces an implicit energy. Chemical shifts were only utilized by CS-Torus for biased sampling101

in reference simulations where no CamShift energy term was used. The simulations were performed102

on AMD Opteron 2.1 GHz CPU’s at ∼12M steps/day or on Intel Xeon 3.07 GHz CPU’s at ∼18M steps/day.103

104

Convergence simulations. The Protein G convergence simulations were initialized from the experi-105

mental structure (PDB-id: 2OED). The simulations were run for 10M MC steps at 300K using Metropolis-106

Hastings. The physical move set was comprised of 50% local, uniform single side chain moves, 25%107

CRISP local moves (Bottaro et al., 2012) and 25% semilocal biased Gaussian step (BGS) backbone moves108

(Favrin et al., 2001).109

110

Structure determination simulations. The structure determination simulations were each run on 32111

threads for 100M iterations. The temperature range explored with MUNINN were set to 273K - 500K. The112

physical move set was comprised of 50% local, uniform single side chain moves, 40% CRISP backbone113

moves and 10% backbone-DBN pivot moves (Boomsma et al., 2008). In the simulations where the114

uncertainties were dynamically adjusted, an extra 10M Monte Carlo steps were added which sampled a115

change in σ j or γ j as described below. Note that these moves are essentially computationally costless,116
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since neither chemical shifts or force field energy terms need be recomputed.117

118

Clustering of sampled structures. To make clustering feasible for the large amount of structures119

generated (320,000 structures for each combination of potential and protein), the sampled structures were120

converted to GIT vectors (Røgen and Fain, 2003) with PHAISTOS. The structures from each individual121

thread were subsequently divided into sets of 15 clusters with the Pleiades module (Harder et al., 2012)122

using K-means clustering (Lloyd, 1982). The choice of using 15 clusters is based on the suggestion123

of the Pleiades authors of creating 10 - 20 clusters. Since the clustering process is stochastic it was124

performed 10 times for each thread and the optimal clustering according to the sum of squared errors125

were used for further analysis. From each of these clusters, a subset consisting of the 100 structures126

closest to the cluster centroid were selected for energy and RMSD evaluation and the median energy127

structures were chosen as cluster representatives. The GIT vectors can be created as output observables128

directly from the simulations, but in this case they were created from the simulation trajectories using the129

pdb2git application in PHAISTOS with the program GNU Parallel (Tange, 2011) used to parallelize the130

jobs. Re-weighting from the generalized ensemble to approximate the canonical ensemble were done131

automatically with Pleiades using the weighted k-means option.132

Monte Carlo move in uncertainty parameter space133

The ξ -move which re-samples the value of the uncertainties (i.e. σ or γ) was constructed by multiplying134

the previous value of ξ by a sampled constant centered around 1. Detailed balance is maintained by135

proposing a small change, ξ → ξ ′, by:136

ξ ′ = ξ · exp
(

rnom
(

σµ

))

, (20)

where rnom(σµ) is a random number from a normal distribution with zero mean and standard deviation137

σµ . A value of σµ = 0.1 was found to yield a rapid and stable convergence for both the Gaussian and the138

Cauchy distribution.139

Issues with CamShift prediction140

It was observed that CamShift predictions of Cβ chemical shifts for Isoleucine were consistently off141

by 3 - 8 ppm. This was observed using both the CamShift implementation in PHAISTOS as well as142

with the standalone predictor. CamShift was trained on high quality X-ray structures where missing143

Hydrogens were added in accordance with the CHARMM22 topology file (Brooks et al., 2009). Letting144

the CamShift program optimize Hydrogen placement before prediction brought the accuracy of predicted145

Isoleucine Cβ chemical shifts in range with the prediction for the remaining amino-acids. For reference,146

the RMSD for Cβ chemical shift prediction of all amino-acids of a Chymotrypsin Inhibitor-II protein147

(CI2) structure were found to be 1.90 ppm including predictions for Isoleucine and 1.25 ppm if these148

predictions were excluded. As bond lengths and side-chain bond angles are not degrees of freedom in149

the simulations performed with PHAISTOS, the β -Hydrogen placements relative to the Cβ atoms are150

constant and prediction for Isoleucine Cβ chemical shifts was disabled.151

RESULTS AND DISCUSSION152

Problems with Gaussian weighting scheme when using a Jeffreys prior153

Attempts to use predicted chemical shifts from CamShift while sampling σ using a Gaussian model154

(Eqn. 9) initially proved unsuccessful. Using any structure (compact or unfolded) as starting point for the155

Monte Carlo simulation, it was often observed that the χ2 agreement between predicted and experimental156

chemical shifts would converge to zero after only a few million iterations. Naturally this leads to σ → 0,157

which in turn essentially freezes the structure in the simulation, since any MC move that causes the158

slightest increase in chi-square will result in an enormous change in energy. If several types of chemical159

shifts were included in the simulation (possible chemical shift types from CamShift are Hα , Cα , H, N, C160

and Cβ ) the χ2 for one (random) of the included types would quickly converge to zero. One suspected161

reason was that the prior distribution was not well described by the more coarse grained PROFASI force162
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field. CamShift calculations were therefore redone using the OPLS-AA/L force field (Kaminski and163

Friesner, 2001). This, however, led to identical results.164

On this basis we conclude that the problem is due to CamShift (and most likely other choices of165

predictors) being able to make relatively large changes in prediction, from a small perturbation in the166

structure. Combined with sampling of σ , this can drive the simulation into an energy minimum with167

essentially zero error in the chemical shift prediction, even though the structure may or may not be168

anything like the native structure. We found the Cauchy distribution to be less sensitive to divergence of169

the scale parameter and to perform better as an uninformative model in our case. As an alternative to the170

Jeffreys prior, a weakly informative conjugate prior for the Gaussian model did not show these sampling171

issues.172

Convergence of scale parameters173

The convergence of the scale parameters for the Gaussian and Cauchy distributions (σ and γ respectively),174

with chemical shifts predictions by CamShift (Kohlhoff et al., 2009), were explored by starting a simulation175

with PHAISTOS (Boomsma et al., 2013) from the native structure of Protein G (PDB: 2OED (Ulmer et al.,176

2003)). Experimental chemical shifts were obtained from Ref-DB (Zhang et al., 2003) (RefDB:2575177

(Orban et al., 1992)). For each model a 107 MC step simulation was performed keeping the structure fixed,178

only sampling uncertainties (frozen), and a simulation where the atomic coordinates (X) was sampled as179

well (free). Tables 1 and 2 shows the mean of the sampled parameters from the last 106 steps together180

with the maximum likelihood values obtained from the CamShift training set for reference.181

Table 1. Maximum likelihood estimates of σ (or root-mean-square deviation (RMSD)) obtained from

the CamShift training set, compared to means extracted from a 107 MC step simulation using the

Gaussian model (see text). Shown values are in units of ppm.

Cα Hα N H C Cβ

CamShift training set 1.22 0.26 2.78 0.56 1.12 1.19

Frozen simulationa 1.13 0.26 3.53 0.52 1.06 1.21

Free simulationa 1.03 0.20 2.92 0.46 1.16 1.23

a Estimated over the last 106 MC steps.

Table 2. Maximum likelihood estimates of γ obtained from the CamShift training set, compared to

means extracted from a 107 MC step simulation using the Cauchy model (see text). Shown values are in

units of ppm.

Cα Hα N H C Cβ

CamShift training set 0.70 0.19 1.87 0.31 0.74 0.77

Frozen simulationa 0.62 0.17 1.90 0.32 0.64 0.69

Free simulationa 0.43 0.05 1.57 0.25 0.67 0.55

a Estimated over the last 106 MC steps.

Using a Gaussian distribution, the parameters in the ’frozen’ simulation all converged within 0.1 ppm182

to the reported values from the CamShift training set, with the exception of the N nuclei which deviated183

by 0.75 ppm. The RMSDs presented in Table 1 for the CamShift training set were based on predictions184

on 7 proteins, and using a larger data set of 28 proteins, the average RMSD for the N nucleus increased185

from 2.78 ppm to 3.01 ppm (Kohlhoff et al., 2009). Thus the slightly higher mean for N seems reasonable.186

Allowing the structure and weight parameters to be sampled simultaneously in the ’free’ simulation187

overall lowered the RMSD of the prediction as expected, since the accepted structures in the Monte Carlo188

simulation will be biased by the correlation of predicted and experimental chemical shifts. However the189

RMSD increased moderately for the C nucleus and slightly for Cβ , indicating that the chemical shift190

prediction of C and Cβ are less sensitive to changes in local structure than the four other nuclei.191
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In the simulations using a Cauchy distribution, the ’frozen’ values were seen to be similar to the192

CamShift data set (within 0.1 ppm). When physical moves were introduced in the ’free’ simulation, the193

sampled parameters were again found to be lowered, but remained within 0.3 ppm. Surprisingly γ for194

Hα went from 0.17 ppm to 0.05 ppm with similar values found when repeating the simulation. The χ2
195

error in the prediction of Hα chemical shifts were similar to that obtained with the Gaussian potential,196

indicating that the error in prediction for Hα atoms had several outliers. Since the Cauchy distribution197

is less sensitive to outlier values, these will have a lesser effect on the sampled parameters than for the198

Gaussian.199

Comparison of weighting schemes in structure determination200

A series of simulations starting from an unfolded state were performed on ENHD (PDB: 1ENH (Clarke201

et al., 1994), BMRB:15536 (Religa, 2008)), Protein G and the SMN Tudor Domain (PDB: 1MHN202

(Sprangers et al., 2003), RefDB:4899 (Selenko et al., 2001)) to compare how different weighting schemes203

performed for structure determination. The probabilistic schemes used included three Gaussian models:204

One using the maximum likelihood estimates of σ from the CamShift training set (Gaussian / fixed). One205

where the values of σ were sampled (Gaussian / sampled) and one using the marginalized distribution206

(Gaussian / marginalized). Similarly two Cauchy models were tested: One using maximum likelihood207

values for γ from the CamShift training set (Cauchy / fixed), and one where the values for γ were sampled208

(Cauchy / sampled). As reference, the square well potential of Robustelli et. al., which was made209

specifically for refinement with the CamShift model, were included in the simulations with different210

weights (Square well / α = 1, Square well / α = 5) (Robustelli et al., 2010).211

In all simulations, the generative predictive model CS-Torus (Boomsma et al., 2014) was used to212

sample backbone dihedral angles from a distribution biased by the amino-acid sequence. Chemical shifts213

can provide local information to the CS-Torus model to further improve the biased sampling, but this was214

not utilized in any simulations using CamShift predictions. Although including chemical shifts in the215

sampling would most likely improve the simulation results, we chose to keep the CamShift energy terms216

as the only bias from the experimental chemical shifts. To display the effect of using a non-local chemical217

shift predictor like CamShift instead of relying on local information alone in the sampling, simulations218

using chemical shifts in the CS-Torus model, rather than with CamShift prediction, were run as well.219

Table 3. Different weighting schemes used in the protein folding simulations. In the columns to the left,

the number of threads, out of a total of 32, sampling structures below 2 and 4 Å Cα -RMSD respectively to

the reference structure is shown. The sampled structures from each thread were divided into clusters and

representative structures for each cluster were selected as the structure median in PROFASI+CamShift

energy, from the 100 structures closest to the cluster centroid. The Cα -RMSD in Å of the lowest-energy

cluster representative is shown below in the columns to the right.

Threads (out of 32) sampling

below 2Å (left) and 4Å (right)
Lowest-energy RMSD (Å)

ENHD Protein G SMN ENHD Protein G SMN

Gaussian / fixed 32 32 0 7 29 30 3.67 3.11 3.11

Gaussian / sampled 32 32 4 15 13 20 2.15 3.03 5.88

Gaussian / marginalized 32 32 1 16 7 14 4.24 2.72 6.06

Cauchy / fixed 32 32 9 25 15 21 1.94 1.15 2.58

Cauchy / sampled 32 32 13 24 11 16 1.87 2.82 5.51

Square well / α = 1a 19 22 2 12 14 18 2.29 3.14 3.71

Square well / α = 5a 32 32 0 1 1 5 3.82 5.83 1.91

CS-Torus b 4 27 8 25 0 0 19.2 3.01 8.33

a Weights, α , of 1 and 5 were used by Robustelli et. al.
b Lowest-energy cluster representatives for the CS-Torus simulations were selected from

PROFASI energy alone.
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Figure 2. Crystal structure (grey) and local energy-minimum conformation (red) of Protein G. Figure

made with PyMOL (Schrödinger, LLC, 2010)

32 folding simulations were run for each potential and protein for 100M MC steps using the PROFASI220

(Irbäck and Mohanty, 2006) force field and a CamShift energy term. For each set of simulations, the221

sampled structures from each thread were subsequently split into clusters as described in the Methodology222

section, and cluster representatives were selected as the structures median in energy, from the 100223

structures closest to the cluster centroid. Table 3 shows the number of threads sampling structures below224

2 and 4 Å Cα -RMSDs to the native structures as well as the RMSDs for the cluster representative with225

the lowest PROFASI+CamShift energy. The residue ranges used to calculate the RMSDs were 5-54 for226

ENHD, all residues for Protein G and 4-56 for the SMN Tudor Domain.227

Convergence of sampling228

The data in Table 3 shows that for certain potentials and proteins, several threads failed to sample near-229

native structures. For ENHD all potentials but the CS-Torus model and square well / α = 1 potential230

sampled structures below 2 Å Cα -RMSD for all threads. While more than 20 threads sampled structures231

below 4 Å for both the CS-Torus and square well model, only 4 threads sampled structures below 2 Å for232

CS-Torus. For Protein G no threads for the Gaussian / fixed and square well / α = 5 potentials sampled233

structures below 2 Å. The square well / α = 1, Gaussian / marginalized and Gaussian / sampled potentials234

only sampled these near-native states with a few threads, while the Cauchy potentials and the CS-Torus235

model showed the fewest sampling issues.236

Looking closer at the threads never sampling structures close to native for Protein G, it is found that237

the majority of these never progressed past a local energy-minimum with an alternative conformation238

where two β -strands have interchanged position (Fig. 2). Taking the median structure of the most dense239

cluster as representative for each thread, 27 of these shows this incorrect fold for the Gaussian / fixed240

potential and 26 for the square well / α = 1 potential. The Cauchy distributions shows the opposite trend241

with 25 correct folds for both potentials, while the structures from the Gaussian / sampled and Gaussian242

/ marginalized simulations had 14 and 11 correctly folded respectively. For all of these potentials, the243

densest clusters of each thread have either this misfold or the correct structure. While the square well /244

α = 5 potential seem to find completely incorrect structures, the CS-Torus simulations finds the correct245

overall fold in 20 threads. The remaining CS-Torus threads are partly unfolded and none of them have the246

9/13

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.692v1 | CC-BY 4.0 Open Access | rec: 12 Dec 2014, publ: 12 Dec 2014

P
re
P
ri
n
ts



misfolded structure found in the simulations with CamShift energy terms. Finally for the SMN Tudor247

Domain, the Gaussian / fixed model sampled structures below 2 Å for nearly all threads. The CS-Torus248

model and square well / α = 5 potential for 0 and 1 thread(s) respectively, while the remaining potentials249

sampled below 2 Å for around a third of the threads.250

Ideally the simulations with a given potential samples structures close to native consistently well for all251

proteins, which was not the case for the Gaussian / fixed model, square well / α = 5 potential, the CS-Torus252

reference model and to a lesser exten the Gaussian / sampled model. The two Cauchy potentials was253

most likely to sample low-RMSD structures across the three proteins. Due to limitations of the MUNINN254

implementation in PHAISTOS at the time the simulations were run, the multicanonical generalized255

ensembles from each thread can not be re-weighted to approximate a single canonical ensemble, and256

clustering of structures must be done on a per-thread basis. Since cluster densities can’t readily be257

compared across threads, the structure clusters are evaluated from the force field and CamShift energy.258

Lowest-energy clusters259

Table 3 shows for each potential and protein the Cα -RMSDs to native for the lowest-energy structures260

found by clustering. There is no clear consensus of which potentials results in the most accurate structures261

overall based on the RMSD values. Visually (Fig. S1-6) all but CS-Torus has the correct fold for ENHD,262

with the Gaussian / fixed, Gaussian / marginalized and square well / α = 5 structures being less compact263

than the crystal structure. For protein G only the square well / α = 5 potential shows a slight misfold,264

and the overall somewhat high RMSDs is again due to slightly less compact structures, as well as a small265

displacement of beta-sheet positions for all but the CS-Torus and Cauchy / fixed models. Although the266

misfold shown in Fig. 2 was prevalent in the simulations in many threads, none of the lowest-energy267

structures have these interchanged β -strand positions. For the SMN Tudor Domain the difference in268

RMSDs between the potentials is mainly due to the protein tails not being correctly placed in a compact269

structure.270

As mentioned above, the obtained structures from the lowest-energy clusters are in general less271

compact than the crystal structures. This is a result of additional compactness terms being excluded in272

the simulations such that the effect of using different potentials for modelling the discrepancy between273

observed and predicted chemical shifts might be more clear. In nearly all of the simulations higher energy274

clusters exists that have lower RMSDs to the native structure, suggesting that near-native structures are275

sampled, but the compactness of the protein isn’t properly described by the force field. Evaluating sampled276

structures with energy terms not included in the Monte Carlo simulations is problematic, since the energy277

can fluctuate greatly with small changes in local structure. However when entire clusters of structures are278

evaluated this becomes less of a problem, especially when coarse grained energy terms is used in addition279

to the energies obtained from the simulations. The half-sphere exposure mixture model (HSEMM),280

implemented in PHAISTOS for modelling solvent exposure, is a variation of the multibody multinomial281

model (MuMu) (Johansson and Hamelryck, 2013) with the environment of residue i described by four282

features: The secondary structure according to CS-Torus, the backbone hydrogen bond network and283

the half sphere exposure up and down measure (Hamelryck, 2005). For every cluster, the energy from284

HSEMM was calculated and added to the total energy of the structures, with the hydrogen bond network285

feature integrated out to enforce the coarse grained characteristics of the model.286

The results are summarized in Table 4 and show that the lowest-energy clusters re-scored with287

the solvent exposure term all have lower or similar RMSDs to the clusters evaluated with just the288

PROFASI+CamShift energies. Sampling of the uncertainty when using the Gaussian distribution results in289

the structures closest to native, with RMSDs below 1.5 Å for all three proteins. For the Cauchy distribution,290

sampling the uncertainties does not seem to be an improvement over using predetermined weights, but291

both approaches gives better structures overall than the remaining potentials. Furthermore it is clear that292

the non-local information provided by the CamShift model greatly improves structure sampling, as shown293

by the relatively poor performance of the simulations using only CS-Torus.294
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Table 4. Cα -RMSDs in Å of the lowest-energy cluster representative, when a solvent exposure energy

term (HSEMM) is added to re-score the structures.

Lowest-re-scored-energy RMSD

ENHD Protein G SMN

Gaussian / fixed 1.40 2.45 2.23

Gaussian / sampled 1.03 1.29 1.24

Gaussian / marginalized 1.11 1.00 3.81

Cauchy / fixed 1.40 1.16 1.55

Cauchy / sampled 1.86 0.86 2.50

Square well potential / α = 1a 1.15 1.37 3.05

Square well potential / α = 5a 0.96 4.35 1.91

CS-Torus b 3.88 1.57 9.18

a Weights, α , of 1 and 5 were used by Robustelli et. al.
b Lowest-energy cluster representatives for the CS-Torus simula-

tions were selected from PROFASI+HSEMM energy alone.

CONCLUSION295

We present a probabilistic method for biasing protein structure simulations with experimentally measured296

chemical shifts, based on the inferential structure determination formalism (ISD). (Rieping et al., 2005)297

In this formalism, the weighting of experimental data can be determined entirely by the data itself, the298

predictive model and the physical force field.299

Simulations were performed on three small proteins (ENHD, Protein G and SMN Tudor Domain)300

for a Gaussian and Cauchy-based probability distribution, using the chemical shift predictor CamShift301

(Kohlhoff et al., 2009). The ISD-determined uncertainties were found to correspond well to the empirically302

determined uncertainties in the CamShift predictions. Furthermore sampling the uncertainties as part of303

the protein structure determination simulations, lead to improved accuracy of the predicted structures304

when a Gaussian potential was used. Using a Cauchy potential with either sampled or fixed uncertainties305

did, however, show overall better convergence to the native fold, suggesting that the simulations are306

less likely to get stuck in local minima with these potentials. Additionally the importance of capturing307

non-local information from experimental chemical shifts have been shown by comparing the use of the308

CamShift predictor to the local-only CS-Torus model.309
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