
Two Perils of Binary Categorization: Why
the Study of Concepts Can’t Afford
True/False Testing
Greg Jensen1 and Drew Altschul2

1Department of Psychology, Columbia University, New York , NY, USA
2Department of Psychology, University of Edinburgh, Edinburgh, United Kingdom

Keywords: Concepts, Categorization, Machine Learning, Animal Cognition, Comparative Cognition

INTRODUCTION
Many claims about concept learning in animals rely on binary categorization tasks (Herrnstein et al.,
1976; Freedman et al., 2001; Marsh and MacDonald, 2008). When subjects exceed chance levels of
performance, they are alleged to have learned “the concept.” Critics are quick to point out that although
subjects have learned something, confounds may explain performance more simply (Katz et al., 2007;
Wright and Lickteig, 2010; Zentall et al., 2014). Despite a growing literature on both sides, supporters of
“concept learning in animals” seem no closer to persuading the skeptics, while skeptics are no closer to
persuading proponents. This rift hinges on disagreements over the strength of the evidence.

Results from dichotomous classification procedures are inescapably ambiguous: They represent the
weakest possible evidence for concepts in animals, for reasons unrelated to the validity of the theories they
are aim to test. One shortcoming of this approach is the tailor-made classifier, which may arise during
training. Effectively, “teaching to the test” undermines claims about animals’ general knowledge. Another
shortcoming is the lucky guess, which manifests during testing. A simplistic response during the testing
phase will yield many rewards due to guessing alone, making it difficult to asses the precise content of
learning. These shortcomings are independent, such that either or both might confound an experiment.

The Tailor-Made Classifier
The risk of animal subjects ‘outsmarting’ their minders has been with us since Clever Hans. Whatever the
aims of our experimental paradigms, the influence of extraneous information must be minimized so that
results reflect the intended empirical test.

Concept learning presents the scrupulous researcher with a challenge: How does one identify (much
less control for) the extraneous features of a stimulus? Our understanding of how the brain categorizes
stimuli remains limited (Freedman and Assad, 2011), but there is also no consensus about what constitutes
a feature. The list of stimulus attributes that might be used to categorize stimuli includes overall descriptive
statistics (“presence the color green”), low-level structural details (“T-shaped edge junctions”), patterning
(“the presence/absence of tiled features”), functional interpretation (“that looks like food”), ecological
indicators (“bright color = poison”), and any of the potential interactions between levels (cf. Spalding
and Ross, 2000; Marsh and MacDonald, 2008). As such, the content of learning is subject to multiple
interpretations.

A classifier is an algorithm (however simple or complex) that identifies a stimulus as belonging to
some discrete category. In general, classifiers must undergo training, becoming sensitive to category-
relevant features by trial and error. A classifier may also have innate knowledge (such an instinct to treat
some stimuli as threatening), and may be unable to detect or exploit certain features.

Herein lies the problem: The aim is to uncover general conceptual aptitudes, and if training only
requires that two categories be identified, then the classifier need only identify some difference that
distinguishes those two categories. The result is a tailor-made classifier: Tailored by the specifics of the
binary training paradigm, and optimized solely for that dichotomous discrimination. Just as a bespoke suit
is tailored upon request to fit a single person, a tailor-made classifier is only effective at the discrimination
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it was trained for. This is Clever Hans in a nutshell: A (cognitively) cheap trick that yields rewards but
provides little insight into a generalized form of knowledge.

When faced with this problem, researchers have frequently chosen to narrow the scope of the features
available. A set of images might have colors removed, luminances matched, occluders introduced, and
noise added (e.g. Basile and Hampton, 2013). Such studies are valuable because they help reveal which
features can used by the classifier. However, regularized stimuli cannot rule out the possibility of a
tailor-made classifier, because so many potential ‘features’ might provided the basis for the classification.
Furthermore, insofar as the resulting stimuli are ‘unnatural,’ they generalize poorly to how stimuli are
categorized in ecological contexts.

The Lucky Guess
Independent of the classifier (tailor-made or otherwise), the clarity of the evidence depends on how
learning is eventually tested. If subjects must make dichotomous choices (e.g. ‘face’ vs. ‘house,’ or
‘same’ vs. ‘different’), then a naive animal will be rewarded half the time. If the positions of the stimuli
are counterbalanced (and they usually are, to prevent bias), then this naive animal needn’t even randomize
its responses; uniformly and insensitively choosing ‘left’ yields a steady stream of rewards.

If a subject’s classifier functions even modestly, this rate of reward can be exceeded. However, it is
difficult to assess what proportion of correct responses are genuine classifications and what proportion are
merely lucky guesses. Accuracy of 70% on a binary test could mean that the subject is guessing at random
more than half the time (e.g. 40% correct classifications, 30% lucky guesses, 30% unlucky guesses). If
a 50% reward rate is deemed satisfactory to the subject, then responding quickly and mindlessly may
prove the most favorable strategy. High guessing rates undermine the researcher’s ability to make general
statements about stimulus properties, particularly given the difficulty in determining which characteristics
are used by the classifier.

Guessing is much less effective when tests requires more complex responses. If a subject must take a
set of n stimuli and assign each to one of n categories, the odds of guessing correctly drop as n increases.
This has two benefits. On the one hand, guesses are more likely to include at least one error. This improves
the signal-to-noise ratio in trying to evaluate the characteristics of a subject’s classifier, effectively making
every correct sequence of responses more informative. On the other hand, the reward gradient will be
better correlated with accuracy: Poor performance will yield far fewer rewards, providing an incentive to
attend to the task and to produce high-quality responses.

A DEMONSTRATION BY SIMULATION
These two confounding factors are relevant regardless of the complexity of the classifier. In education (as
in machine learning), teaching to the test yields poor general learning and T/F exams are poor measures
of the depth of learning. Rather than provide a rhetorical argument based on theory, we offer a concrete
simulation using the bag-of-features classifier (O’Hara and Draper, 2011) provided in the Computer
Vision System toolbox for Matlab v2014b (Mathworks, 2014). Despite relying strictly on low-level
features, this approach performs well with photographic stimuli. To represent a “cognitive limit,” we
limited all classifiers to no more than 100 clusters of features. The Caltech-101 image bank provided
9665 stimuli belonging to 102 categories (Fei-Fei et al., 2007). Half the images were used to train the
classifier, and the other half were set aside as a novel “validation set” for testing.

Training a Tailor-Made Classifier
The ten categories in the Caltech 101 with the most images were ordered by size. The classifier was
trained and subsequently validated using the first two of these categories, then the first three, and so
forth up to ten. Because the classifier was limited to 100 clusters, its criteria became more general as the
number of categories increased. The accuracy for each category, as well as the overall average, is plotted
in Figure 1 (left).

Some image categories continue to perform well as additional categories are added: Airplanes,
leopards, and ‘easy’ faces were categorized correctly over 85% of the time. However, other categories
did less well when the classifier was forced to generalize. In particular, performance for the category
of ‘background images’ steadily deteriorated, presumably due to the lack of consistent discrete features.
If this algorithm was being studied with only three categories, however, this deficiency would not be
apparent: Backgrounds were categorized correctly 90% of the time when competing with only two other
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Figure 1. Performance of the bag-of-features classifier using 100 feature clusters. (Left) Classification
accuracy given training on the ten largest categories in the Caltech 101 sample set. Colored lines show
accuracy for specific categories, while dashed black lines show overall accuracy for each level of training
complexity. (Right) Accuracy by a classifier trained on 102 categories during a test in which n stimuli
must be classified correctly for a trial to be ‘correct.’ Performance for the classifier’s ten best (black) and
worst (white) categories was gauged. Solid lines indicate cases in which classification was done perfectly,
while dashed lines indicate cases where correct responses required at least one guess.

possible choices. Although the bag-of-features algorithm cannot perform abstract generalizations, it
can apparently identify the abstract class of ‘backgrounds’ by process of elimination. It is only when
backgrounds compete with many other stimuli that the algorithm reveals its weakness.

Measuring the Benefits of Guessing
We retrained the classifier using all 102 image categories in parallel. The classifier was then tested using
the following procedure: Exactly one novel image was drawn from each of n categories. The classifier
had to match every image with its corresponding category. Performing entirely at random yields correct
responses with a frequency of 1

n! . Sometimes, classifiers judge multiple images as belonging to the same
category (e.g. identifying both an picture of a bonsai and a picture of a forest as ‘bonsai’ rather than
‘bonsai’ and ‘background’ respectively). In these cases, our algorithm randomly assigned one of the
images to the identified category, and then deduced that the remaining images must belong to whichever
categories remained unaccounted for.

Figure 1 (right) shows performance when the classifier’s ten highest-performing categories (black)
and ten lowest-performing categories (white) were tested in this way. Solid lines show the trials in which
every stimulus was correctly identified without guessing, while dashed lines show those trials that were
correct given at least one guess. Although there is a clear distinction between high and low performance,
there is always a benefit for guessing. In the two-item test, a poor classifier guessed its way to 72%
accuracy, a level that would be considered ‘high’ in many published studies. In three- and four-category
tests, almost every correct trial for the poor classifiers involved at least some guessing.

There is a temptation to view every ‘correct response’ as a case in which performance was indicative
of mastery, but even a poor classifier that yields only vague hunches provides enough information for
performance to exceed chance quite considerably. This ‘slightly-informed guessing’ is responsible for
many correct responses made by a poor classifier. The best defense against guessing is to increase the
complexity of the test, which makes each trial much more informative.

RECOMMENDATIONS
Our simulation demonstrates perils of narrow category training and of simplistic tests. When a subject
(or an algorithm) is trained on only a handful of categories, learning is likely to overspecialize, failing
to capture the classifier’s general aptitudes. Similarly, when even a highly general classifier is tested on
only a few categories at a time, correct trials frequently result from informed guessing rather than from
robust representation of all extent categories. We demonstrate these problems separately, but the two can
easily act in concert. When a study displays both confounds, it is nearly impossible to judge whether
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performance arises from any abstract understanding of the stimuli.
The best defense against the possibility of a tailor-made classifier is to increase the number of

categories that are trained in parallel. While various clever tricks may permit pictures of faces to be
distinguished from pictures of houses, such trickery is more difficult given three categories, still more
difficult given four, and so on.

Many studies that trained more than two categories (e.g. Herrnstein et al., 1976; Sigala, 2009; Vonk,
2013) nevertheless tested only one or two stimuli at a time. Others have required that subjects match a
stimulus to one of four categories (Bhatt et al., 1988; Lazareva et al., 2004). Although an improvement,
such match-to-sample procedures reward random responses on 1

n trials, and informed guessing remains
an effective approach for a poor classifier.

Contrary to the recommendations of Katz et al. (2007), we recommend that test conditions require
subjects to identify more than one stimulus category during each trial. Unfortunately, few validated
methods provide an appropriate level of response complexity. One candidate is the simultaneous chain
(Terrace, 2005), which has been used to test serial and numerical cognition. Another candidate is the
ALVIN procedure (Washburn and Gulledge, 1995), albeit adapted to make use of novel categorical stimuli.
Recovering from the weaknesses of prior concept studies will require that researchers raise the bar, and
give their animal subjects the opportunity to succeed (or fail) on their own cognitive merits.
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