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DCEMRI.jl: A fast, validated, open source toolkit for dynamic

contrast enhanced MRI analysis

David S Smith, Xia Li, Lori Arlinghaus, Thomas E Yankeelov, E Brian Welch

We present a fast, validated, open-source toolkit for processing dynamic contrast

enhanced magnetic resonance imaging (DCE-MRI) data. We validate it against the

Quantitative Imaging Biomarkers Alliance (QIBA) Standard and Extended Tofts-Kety

phantoms and find near perfect recovery in the absence of noise, with an estimated 10-

20x speedup in run time compared to existing tools. To explain the observed trends in the

fitting errors, we present an argument about the conditioning of the Jacobian in the limit of

small and large parameter values. We also demonstrate its use on an in vivo data set to

measure performance on a realistic application. For a 192 x 192 breast image, we

achieved run times of < 1 s. Finally, we analyze run times scaling with problem size and

find that the run time per voxel scales as O(N1.9), where N is the number of time points in

the tissue concentration curve. DCEMRI.jl was much faster than any other analysis

package tested and produced comparable accuracy, even in the presence of noise.
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ABSTRACT11

We present a fast, validated, open-source toolkit for processing dynamic contrast enhanced magnetic

resonance imaging (DCE-MRI) data. We validate it against the Quantitative Imaging Biomarkers Alliance

(QIBA) Standard and Extended Tofts-Kety phantoms and find near perfect recovery in the absence of

noise, with an estimated 10–20× speedup in run time compared to existing tools. To explain the observed

trends in the fitting errors, we present an argument about the conditioning of the Jacobian in the limit

of small and large parameter values. We also demonstrate its use on an in vivo data set to measure

performance on a realistic application. For a 192× 192 breast image, we achieved run times of < 1 s.

Finally, we analyze run times scaling with problem size and find that the run time per voxel scales as

O(N1.9), where N is the number of time points in the tissue concentration curve. DCEMRI.jl was much

faster than any other analysis package tested and produced comparable accuracy, even in the presence

of noise.

12
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INTRODUCTION14

Dynamic contrast enhanced MRI15

Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) involves the continuous acquisition16

of heavily T1-weighted MR images while a paramagnetic contrast agent (CA) is injected. The CA17

increases the contrast between different tissues by changing their inherent relaxation rates. By collecting18

serial images, each image voxel yields an intensity time course that can be used to estimate physiological19

parameters, such as the volume transfer constant Ktrans, extravascular extracellular volume fraction ve, and20

the plasma volume fraction vp (Choyke et al., 2003; Yankeelov and Gore, 2009). Due to this, DCE-MRI21

has successfully been applied to assess vascular characteristics in both pre-clinical (Zwick et al., 2009;22

Jensen et al., 2010) and clinical settings (Lockhart et al., 2010; Mannelli et al., 2010))23

The MR scanner typically handles the reconstruction of the acquired raw MR data into images, while24

the second step of DCE-MRI analysis is left to the end user, at least in research settings. This second step25

includes determining a subset of voxels to process, fitting a nonlinear signal model to the time curve of26

each of those voxels, postprocessing the fitted model parameters, and summarizing the results.27

Existing Analysis Software28

Several DCE-MRI analysis packages have been released to the community. DCE@urLAB1 from Ortuño29

et al. (2013) has been validated against reference phantoms and includes many pefusion models, but it30

requires IDL, a commercial software package. It can be run for free with the IDL Virtual Machine, which31

1http://www2.die.upm.es/im/archives/DCEurLAB/
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requires registration and approval from the vendor. And in the end the full IDL development environment32

must be installed, even though its functionality is crippled without a paid license. Second, DCE@urLAB33

was built around a graphical user interface (GUI) that did not provide batch processing. It also did not run34

on Mac OS X or Linux. Finally, the stated run times (Ortuño et al., 2013) were slower than we expected,35

given the computational complexity of nonlinear least squares fitting, suggesting some inefficiency due to36

the software complexity (∼20,000 lines of IDL code) or GUI overhead.37

Zöllner et al. (2013) built an OsiriX plug-in called UMMPerfusion.2 This is a validated, open-source38

software package for DCE-MRI analysis, but it works only within the OsiriX image viewer, a Mac OS X39

only program and which only a 32-bit, basic version was available for free. This package also did not40

provide a headless batch processing tool, and the reported run times were also slower than expected, even41

though it supported parallel processing.42

The DCE Tool3 is another GUI solution for DCE modeling. It requires both a Windows only software43

package called ClearCanvas (available for free) and the MATLAB4 run time environment (a commercial44

product) in order to run. This solution was quite complex, comprising over 1.2 million lines of C and C#45

code.46

The most useful existing tool for our needs was dcemriS45 (Schmid et al., 2009a,b, 2006), an47

R package. R is a popular statistical analysis language, but it is not as common in MRI research.48

Nevertheless, the package contained many advanced models, was fast in our benchmarks, and included49

parallel processing, but it still took tens of seconds to process a typical breast DCE-MRI data set and to50

the best of our knowledge has not been validated.51

Why Julia?52

We desired a fast, free, simple, easily extendable code that required a minimal installation, would work53

on Windows, Mac OS X, and Linux, and would be familiar to MATLAB users. Based on these criteria,54

we chose Julia as the implementation language. Julia (Bezanson et al., 2012, 2014) is a new, high-level55

language designed for technical computing and that approaches the performance of C and Fortran.6 It56

contains extensive libraries for linear algebra and signal processing and provides distributed parallel57

execution. It also easily interoperates with existing scientific languages, such as C, Fortran, and Python,58

making it an excellent glue language for scientific computing. Interested readers can get a flavor of Julia’s59

simultaneous efficiency and simplicity with the example in Listing 1.60

In short, Julia feels like MATLAB, which is simple and familiar to many investigators, but runs faster61

and is completely free. In particular for DCE-MRI, Julia’s simple and flexible parallel computing model62

allows excellent parallelization of the nonlinear least squares fitting problem.63

Goals64

We developed DCEMRI.jl with five features in mind: open source, free, fast, flexible, and simple. Open65

source enables auditing, bug finding, and community improvement. Free software reduces the barrier to66

use and adoption. A faster package saves investigator time and is more clinically practical. Flexibility67

anticipates new uses and heterogeneous adoption. And simple code design reduces bugs through easier68

auditing and yields greater didactic value. Here we present the results of the effort to produce such a69

package.70

MATERIALS AND METHODS71

Units72

All input variables are assumed to be in SI units, except flip angles which should be given in degrees. All73

output is in SI units except for Ktrans which is scaled to units of min−1 to maintain convention within the74

DCE-MRI community.75

2http://ikrsrv1.medma.uni-heidelberg.de/redmine/projects/ummperfusion
3http://thedcetool.com/
4Mathworks, Natick, MA
5http://dcemri.sourceforge.net/
6http://julialang.org/benchmarks/
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julia> f(x,y) = x + y

f (generic function with 1 method)

julia> f(2,3)

5

julia> code_native(f, (Float64, Float64))

.section __TEXT,__text,regular,pure_instructions

push RBP

mov RBP, RSP

vaddsd XMM0, XMM0, XMM1

pop RBP

ret

Listing 1—The function f (x,y) is compiled upon first execution using

Julia’s just-in-time (JIT) compiler, making subsequent function calls much

faster. The generated CPU instructions can be viewed directly with the

code_native function, which takes two arguments: a function name

and an n-tuple of argument types. Here we examine the native CPU code

produced if f were called on two 64-bit floating point variables. The native

code contains only one math instruction (vaddsd), surrounded by the code

required to preserve and restore the stack for a function call. (By convention

the first two floating point arguments are passed into the function in the XMM0

and XMM1 registers, and the result is placed in XMM0.) All other overhead

has been stripped away automatically without an explicit compilation. The

development and testing cycle is accelerated by this elimination of a separate

code compilation step, and the generated code executes as quickly as compiled

C or Fortran would.

Reproducible Research76

DCEMRI.jl is maintained under version control in a Github7 archive. The exact version of the code77

used to produce the results here may be obtained by “pinning” module at version 0.1.0 using the command78

Pkg.pin("DCEMRI", v"0.1.0") in the Julia shell. This will effectively reverse any code changes79

committed to the repository after the publication of this paper. The command Pkg.free("DCEMRI")80

will “unpin” and get the latest updates again.81

Input Parameters82

For simplicity and maximum compatibility, DCEMRI.jl reads and writes input as Matlab MAT v5 files.83

This allows users to call DCEMRI.jl from any language that can read and write MAT files. This list84

includes MATLAB, Octave, Python, and R. The input MAT file must include a vector (t) of imaging time85

points, the arterial input function (Cp), the DCE data (DCEdata), and either a map of the pre-contrast R186

relaxation rate R1(x,0) and associated signal S(x,0) (R10, S0) or a series of T1-weighted multiflip data87

(T1data) and associated flip angles (T1flip). All other parameters are optional and will be supplied88

with defaults if not provided. The defaults may be overridden by supplying additional parameters in the89

MAT file, command-line arguments, or function parameters.90

T1 mapping91

DCEMRI.jl can accept as input an R1 longitudinal relaxation rate map (R1 ≡ 1/T1) or multiple flip

angle (multiflip) T1-weighted dynamic data. If the multiflip data is supplied, the code will fit R1 and signal

density maps using the signal equation for a spoiled gradient echo sequence:

S(x, t) = S(x,0)sinθ
1− exp[−R1(x, t)TR]

1− cosθ exp[−R1(x, t)TR]
, (1)

7http://github.com/davidssmith/DCEMRI.jl
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where S(x, t) is the signal as a function of space x and time t, θ is the flip angle, and TR is the repetition92

time. Here we have ignored R∗
2 decay because we are assuming that the echo time TE is much shorter than93

1/R∗
2.94

If an R1 fit is required, only voxels with a mean signal intensity of at least 10% of the maximum95

intensity are fit, to avoid fitting voxels that are dominated by noise. This cutoff was chosen empirically96

and can be customized to the signal distribution in a given data set. Voxels selected for fitting are then97

split evenly across CPU cores for Levenberg-Marquardt fitting to the signal equation. The results for98

each voxel subset are returned to the parent process, where full maps of R1(x,0) and S(x,0) are formed.99

The fact that fitting of individual voxels is independent of neighboring voxels is crucial to allowing this100

problem to be efficiently parallelized. All models implemented so far in DCEMRI.jl take voxels to be101

independent of their neighbors.102

DCE fitting103

To fit a model to the supplied DCE data, the raw MR signal is converted first to an effective R1(x, t)
relaxation rate by inverting the signal equation (Eq. 1):

R1(x, t) =−
1

TR

log

{

1− s(x, t)+ s(x, t)exp[−R1(x,0)TR]− exp[−R1(x,0)TR]cosθ

1− s(x, t)cosθ + s(x, t)exp[−R1(x,0)TR]cosθ − exp[−R1(x,0)TR]cosθ

}

, (2)

where s(x, t) = S(x, t)/S(x,0) is the signal normalized at time t = 0, θ is the flip angle (assumed constant),104

and TR is the repetition time. Note that we have eliminated all terms involving sinθ . Since the error in105

sinθ is larger than the error in cosθ when θ is close to zero, eliminating sinθ reduces sensitivity to inho-106

mogeneities in the volume excitation (also known as B1 transmit radio frequency field inhomogeneities).107

If a B1 field map is available, it can be used to generate an R1 map separately that can be used as an input108

to DCEMRI.jl. Currently DCEMRI.jl does not support R1 mapping with spatially varying flip angles,109

although nothing precludes adding that functionality in the future.110

In the next stage of the processing, the effective relaxation rate R1(x, t) is converted to the concentration

in tissue Ct of the contrast agent using

Ct(x, t) =
R1(x, t)−R1(x,0)

r1
,

where r1 is the relaxivity of the contrast agent. For our in vivo experiment, Gd-DTPA was used, for which111

we take the relaxivity to be 4.5 s−1 mM−1 at 3.0 T because that was the relaxivity used in the validation112

data, and this same value has been found in in vivo studies Sasaki et al. (2005). This value can also be113

specified by the user.114

Next a mask of voxels to process is required to avoid wasting time on fitting noise. If one is supplied115

in the input MAT file as the variable mask, it will override the automatic mask. Otherwise, the automatic116

mask is generated from a variation of the signal enhancement ratio (SER, Hylton et al., 2012), defined117

here as the mean signal in each voxel in the last three dynamics divided by the mean of the signal in the118

voxel in the first three dynamics. (Note that this requires the acquisition of three pre-contrast time points.)119

By default any voxels with an SER above 2.0 will be included in the processing mask. This cutoff can be120

changed by the user.121

Tissue Models122

Three main tissues models are included by default: the Standard and Extended Tofts-Kety models

(Yankeelov and Gore, 2009) and a plasma-only model (no exchange limit). Other models can be added

easily by the user. The Extended Tofts-Kety model is a two-compartment model that assumes that the

blood vessel supplies the CA to the tissue at a slow and fixed transport rate Ktrans. The volume of the

extracellular, extravascular tissue space is labeled ve, and the volume fraction of the blood vessels is vp.

Under this model, the tissue concentration can be written as

Ct(x, t) = Ktrans(x)
∫ t

0
Cp(t)exp

[

kep(x)(s− t)
]

ds+ vp(x)Cp(t), (3)

where the efflux rate constant

kep(x)≡
Ktrans(x)

ve(x)
. (4)
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Fitting the derived tissue concentration curves Ct to this model involves finding the Ktrans,ve, and vp that123

best reproduce the observed Ct given an AIF Cp(t). In the Standard Tofts-Kety model, vp is assumed to124

be zero, and in the plasma-only model Ktrans is assumed to be zero. Formulating the integral using kep125

instead of the ratio Ktrans/ve produces better fits. To get ve, Ktrans can be divided by kep, taking care to126

handle cases where kep = 0.127

The models to use are specified with a bitmask supplied in either the input MAT file or as a command128

line argument, and multiple models can be fit to the same voxel. The code will then choose the best129

fitting model based on the reduced χ2. For each model selected, numerical integration is performed130

using a trapezoidal rule, and the nonlinear least squares fitting is performed in parallel for each voxel131

independently using the Levenberg-Marquardt method. All fitting code is written in pure Julia—no132

external libraries are called.133

Postprocessing134

Parameters were clamped in voxels that where the fit produced unphysical values. The volume fractions135

ve and vp were clamped to the [0,1] interval, while Ktrans was clamped to the [0,5] interval. The original136

fit residuals were retained for filtering as well. If a fit residual is large, one can safely assume that either137

the signal in the voxel was too low to provide an accurate fit or the model assumptions were violated138

at that location. In either case, poorly fitted voxels should be omitted in an imaging analysis. The user139

should select the correct, data-dependent cutoff residual, so DCEMRI.jl does not automatically filter by140

residual.141

Finally, all results are saved to an output MAT v5 file. The name of this file can be customized through142

a command line argument or the variable outfile in the input MAT file.143

QIBA Phantom Data144

The Quantitative Imaging Biomarkers Alliance8 has provided virtual DCE phantoms in the DICOM format145

for validating DCE-MRI analysis codes. Several phantoms are available for benchmarking both DCE146

model fitting and T1 mapping, with a range of noise and timing errors added. Here we chose the noise-free147

Standard and Extended Tofts phantoms (versions 6 and 4, respectively). The Standard Tofts phantom148

contains 10× 10 squares of all combinations of six values of Ktrans ∈ {0.01,0.02,0.05,0.1,0.2,0.35}149

min−1 and five values of ve ∈ {0.01,0.05,0.1,0.2,0.5}, for 30 regions total. The phantom contains 1361150

time points for each voxel. The Extended Tofts-Kety phantom (version 4) contains 10×10 patches of all151

combinations of the parameters Ktrans ∈ {0.0,0.01,0.02,0.05,0.1,0.2} min−1, ve ∈ {0.1,0.2,0.5}, and152

vp ∈ {0.001,0.005,0.01,0.02,0.05,0.1}, for 108 regions total. This phantom contains 661 time points153

for each voxel. Figure 1 shows an example dynamic from the version 6 QIBA phantom along with its154

associated AIF.155

In the noisy cases, we followed Ortuño et al. (2013) and added complex Gaussian noise with standard156

deviation σ = 0.2 relative to the pre-contrast baseline to the images. We then went a step further and157

took the magnitude of the resulting data, transforming the noise distribution into the more realistic Rician158

distribution. The difference between a Gaussian and a Rician distribution is minimal for voxels with159

signal-to-noise ratios & 10. No noise was added to the AIF for simplicity and to allow faithful comparisons160

between this work and Ortuño et al. (2013).161

We extracted just one voxel from each region in the noise-free cases to reduce the computation time,162

since all voxels were identical in each region. We retained all 100 voxels in each region for the noisy163

cases, however, in order to sample the effects of the added noise.164

In Vivo Data Collection165

In vivo breast data were acquired using a Philips9 Achieva 3.0 Tesla MR scanner. For the T1-weighted166

data, a 3D gradient echo multiple flip angle approach was used with TR = 7.9 ms, TE = 1.3 ms, and flip167

angles of 2–20 deg in 2 deg increments. Flip angles were uniformly spaced instead of optimized because168

of the broad range of tissue properties found in tumors. The acquisition matrix was 192×192×20 (full169

breast) over a sagittally oriented field-of-view of 22 cm × 22 cm × 10 cm. Scan time was just under 3170

min. The DCE sequence used identical parameters but with a single flip angle of 20 deg. Each 20-slice set171

was collected in 16.5 s at 25 time points for approximately 7 min of scanning. A catheter placed within an172

8https://www.rsna.org/QIBA.aspx
9Philips Healthcare, Best, Netherlands
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Figure 1. Example dynamic of the noise-free v6 QIBA phantom (left). The phantom contains a numeric

label of its order in the time series in the upper left, the tissues regions in the middle, and a vessel strip at

the bottom, from which the AIF may be extracted. The AIF extract from this phantom is shown at right.

antecubital vein delivered 0.1 mmol kg−1 of the contrast agent Magnevist at 2 mL s−1 (followed by a173

saline flush) via a power injector after the acquisition of three baseline dynamic scans for the DCE study.174

A population AIF was used Li et al. (2011).175

Modes of Operation176

Three modes of operation are provided for DCEMRI.jl. First, it can be called as a command line tool177

using the provided script dcefit. This mode is appropriate for batch processing, or as part of shell178

scripts or larger analysis programs written in languages other than Julia.179

The second model of operation is through the supplied MATLAB interface. Results can be saved as a180

MAT file, and then passed to the MATLAB function dcefit.m. Saving a MAT file is not as fast as direct181

parameter passing, but the data sizes in DCE MRI are typicall small enough relative to the computational182

complexity of the problem that saving and reading from disk is fast compared to the total processing time.183

Finally, the preferred interface is as a direct Julia module. The DCEMRI.jl package is built as184

a proper Julia module. It can be loaded with the command using DCEMRI, and then inside a Julia185

program the provided functions can be called directly. In fact, the dcefit command-line interface186

does exactly this, with some intermediate command-line argument parsing. Loading the module in an187

interactive Julia session will exploit the precompilation to make subsequent executions faster. For example,188

in our testing, the invivo demo required 47 s to run (including environment loading and writing plot files)189

for the first run in an interactive session, but a second complete run finished in 8.5 s. This is extremely190

advantageous for iterative development and batch processing, when the analysis might need to be run191

many times.192

RESULTS AND DISCUSSION193

Validation: QIBA Phantom Data194

The first validation set was performed on the QIBA version 6 Standard Tofts-Kety phantom.10 We installed195

DCEMRI.jl on a 2.4 GHz Intel Xeon E5-2665 workstation running Ubuntu 14.04.1 LTS (GNU/Linux196

3.8.0-30-generic) using Julia version 0.3.1 (commit c03f413). Eight CPU workers were used. For the197

noise-free case with 30 voxels × 1321 time points, fitting progressed at 5.2 voxels s−1, requiring 5.8 s198

total; for the noisy data with 3000 voxels, the fitting rate was 5.7 voxels s−1 and required 525 s total.199

10https://dblab.duhs.duke.edu/modules/QIBAcontent/index.php?id=1

6/15

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.670v1 | CC-BY 4.0 Open Access | rec: 6 Dec 2014, publ: 6 Dec 2014

P
re
P
ri
n
ts



In the noise-free case, the recovered parameters matched the true values to within an RMS error200

of 0.419% for Ktrans and 0.126% for ve. The maximum error in the fitted parameters was 2.17% for201

Ktrans and 0.570% for ve. The concordance correlation coefficients (CCCs) were > 0.999 for Ktrans and202

ve. The fits with the largest error relative to the true value occurred in the regions with the lowest ve and203

the highest Ktrans.204

In the noisy case, using σ = 0.2, the recovered parameters agreed with the true parameters to within205

an RMS error of 21.5% for Ktrans and 16.1% for ve. The CCCs were 0.866 for Ktrans and 0.871 for ve. In206

contrast to the noise-free case, the lowest Ktrans and ve values had the largest relative error. The resulting207

parameter maps and associated errors are shown in Figs. 2 and 3.208
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Figure 2. Fitting Standard Tofts-Kety model parameters to the QIBA v6 noise-free phantom. The RMS

error was 0.419% for Ktrans and 0.126% for ve. CCCs were > 0.999 for both parameters.

The second validation set was performed on the QIBA version 4 Extended Tofts-Kety phantom. For209

this example, we removed the regions with Ktrans = 0 min−1 from the phantom, since no transfer from210

the blood to the tissue violates the two-compartment model assumptions and precludes any estimation of211

ve. The same software and hardware setup was used as in Validation 1. Again eight CPU workers were212

used. For the noise-free case with 90 regions and 661 time points, fitting progressed at 20.8 voxels s−1,213

requiring 4.3 s total; for the noisy data with 9000 voxels, the fitting rate was 19.7 voxels s−1 and required214

456 s total.215

In the noise-free case, the recovered parameters matched the known truths to within an RMS error of216

6.97% for Ktrans , 18.0% for ve, and 23.8% for vp. The CCCs for both parameters were > 0.999 for Ktrans,217
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Figure 3. Fitting Standard Tofts-Kety parameters to the QIBA v6 phantom with σ = 0.2 noise added.

The RMS error was 21.5% for Ktransand 16.1% for ve; CCCs were 0.866, and 0.871, respectively.

0.890 for ve, and > 0.999 for vp. The fits with the largest error relative to the true values occurred in the218

regions with the lowest Ktransand, to a lesser extent, lowest vp.219

In the noisy case, using σ = 0.2, the recovered parameters agreed with the true parameters to within220

an RMS error of 11.3% for Ktrans, 18.2% for ve, and 12.7% for vp. The CCCs were 0.974 for Ktrans, 0.703221

for ve, and 0.972 for vp. Against the fits with the largest relative error occurred in regions of interest with222

the lowest Ktrans and vp. The resulting parameter maps and associated errors are shown in Figs. 4 and 5.223

Several factors likely contribute to the accuracy of retrieving perfusion parameters from the QIBA

phantom data. Most importantly, the Jacobian of the Tofts-Kety model includes terms of the form

∂Ct(t)

∂Ktrans
=

∫ t

0
Cp(s)exp

[

Ktrans

ve
(s− t)

][

1+
(Ktrans)2

ve
(s− t)

]

ds, (5)

∂Ct(t)

∂ve
=−

(Ktrans)2

(ve)2

∫ t

0
Cp(s)exp

[

Ktrans

ve
(s− t)

]

(s− t) ds, (6)

and

∂Ct(t)

∂vp
=Cp(t). (7)
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With such strong dependences on Ktransand ve, the Ktrans and ve columns of the Jacobian may become224

ill-conditioned when Ktrans or ve take on extreme values, leading to a loss of numerical precision. For225

example, in the Standard Tofts-Kety model, the difference in dependence of the terms on ve can cause226

ill-conditioning when ve is close to zero, regardless of Ktrans, since both columns depend on Ktrans in227

similar ways.228

This hypothesis is strengthened by observing that the largest error in Figs. 2 and 3 are when ve = 0.01229

and is roughly independent of Ktrans. We also note that for the model assumptions to be valid ve must be230

non-zero. Thus the error increases as the parameters get closer to violating the model assumptions.231

For the Extended Tofts-Kety model, the situation changes because the Jacobian has a different term,232

vp, that is independent of Ktrans and ve. Because of this, Ktrans alone can now cause ill-conditioning. Figs.233

4 and 5 are consistent with these limits. The largest error occurs for Ktrans = 0.01 min−1 and ve = 0.5.234

The error in the fits can also be said to be largest when kep is small. This suggests that the numerical235

precision of the fits should be much lower in regions of low transfer and high extravascular, extracellular236

volume, such as the central, necrotic regions of some tumors.237

Quantitatively, the two validation data sets recovered the parameters extremely accurately when238

Ktrans ≥ 0.05 min−1. Because of this we recommend caution when including voxels where Ktrans < 0.05239

in analyses.240

As an aside, a very slight underestimation Ktrans and ve is apparent in the pinkish tint of the error241

maps of Fig. 2, and a slight overestimation can be seen in the greenish tint of the error maps in Fig.242

4. Neither of these effects is large when compared to the other fitting issues, however. We have no243

explanation for this, but note it here as a point of curiosity.244

Application: In Vivo Breast DCE-MRI245

The third validation was not a test of accuracy of parameter recovery, but rather a proof of concept for246

in vivo applications. In vivo data is more hetereogeneous and subject to measurement error and voxel247

averaging, so not all measured voxels may follow the Standard or Extended Tofts-Kety model.248

The same hardware and software setup was used as in Validations 1 and 2. A standard Tofts-Kety249

model was used because of its robustness to noise and for simplicity of exposition here. DCEMRI.jl250

selected 18,327 voxels as containing significant signal and created R1 and S0 maps in 2.9 s, for a processing251

rate of 6365 voxels s−1. Of the 18,327 voxels selected for R1 fitting, 6774 were computed to have a signal252

enhancement ratio of 2.0 or more and were selected for DCE model fitting. Fitting required 0.9 s, for a253

rate of 7815 voxels s−1. The resulting maps are shown in Figure 6.254

The general features of the computed maps for the in vivo are consistent with expected results. The255

R1 relaxation rate is lower in the tumor than in the fatty tissue and is similar to that in the fibroglandular256

tissue. The CA concentration is generally highest in the tumor and in vascular-like structures. The signal257

enhancement ratio is highest in the tumor, apart from some garbage results posterior of the chess wall due258

to breathing and cardiac motion. Finally, the derived values of Ktrans, ve, and vp through the tumor are259

consistent with typical tumor values and spatially consistent with neighboring voxels.260

Run Time261

We have collected the run times and number of time points of each of the two cases for each of the262

two validations along with the same for the in vivo example in Fig. 7. We wanted to determine the263

scaling of run time of DCEMRI.jl with problem size so that better comparisons with other packages264

can be made. We hypothesized that the run time would be dominated by the matrix operations in the265

Levenberg-Marquardt routine. Under this hypothesis, we assumed that a polynomial scaling of the266

run time might occur. Since matrix multiplication can scale as poorly as O(N3), we tested low-order267

polynomials in N and logN, but we found poor fits when a zero intercept was required. A power-law268

fit was found to fit better than polynomials, and we found that the best fit power law for the run time in269

seconds per voxel was trun(N) = 2.2×10−7N1.9, where N in the number of time points per voxel.270

Comparison to Other Packages271

DCE@urLAB by Ortuño et al. (2013) found comparable errors in fitting to this work. While they didn’t272

state quantitative error measurements, their Figs. 7 and 9 were similar in character to Figs. 2–5 here.273

They also stated run times of 20 sec to fit 1024 voxels and 40 dynamic frames and 5 minutes to fit for274

16,384 voxels and 40 dynamic frames, or roughly 19 ms per pixel. According to our run time analysis,275

DCEMRI.jl using four CPU cores would require only 0.80 ms per pixel which is 24× faster.276
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Also, DCE@urLAB contains around 20,000 lines of code, while DCEMRI.jl contains only around277

1000 lines of code, and 500 of those are devoted to phantom validation and plotting. DCE@urLAB does278

contain more models, however, so adding additional models to DCEMRI.jl will require more code, but279

only on the order of tens of lines, not thousands.280

dcemriS4 has not published validation results, so we cannot compare its accuracy to DCEMRI.jl,281

but in our own testing, we found that dcemriS4 required roughly 10 s on average to fit the Extended282

Tofts-Kety model to the tissue curves derived from the breast data set, while DCEMRI.jl required 0.9 s.283

This suggests that DCEMRI.jl may be ∼ 10× faster than dcemriS4.284

CONCLUSIONS285

We have demonstrated an open source, free, and highly portable solution to DCE-MRI analysis that286

achieves similar accuracy of derived parameters, eschews needless complexity, and is 10–20× faster287

than comparable solutions. Many improvements are possible for DCEMRI.jl. First, more models can288

be added as long as they can be validated. Many of the existing packages include more than just the289

Tofts-Kety models, and DCEMRI.jl is written such that the model to be fit is completely independent290

of the fitting code itself. Thus adding new models is trivial. Second, upcoming improvements to the291

Julia language will bring even more speed. The planned feature of module load caching should speed up292

loading modules in Julia, which is currently one of the slowest parts of DCEMRI.jl. A major overhaul293

of plotting in Julia is also in progress which should improve the speed and quality of plotting. Finally,294

improvements in the low-level code translation to better optimize vector arithmetic on modern CPUs are295

in the works. As these changes are implemented, users can stay up to date simply by updating to the latest296

Julia stable release and then running Pkg.update() in the Julia environment. This command will pull297

the latest commits from the DCEMRI.jl git archive and patch the local copy of the module.298
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Figure 4. Fitting Extended Tofts-Kety model parameters to the noise-free QIBA v4 phantom. The RMS

error was 6.97% for Ktrans, 18.0% for ve, and 23.8% for vp; CCCs were > 0.999, 0.890, and > 0.999,

respectively.
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Figure 5. Fitting Extended Tofts-Kety parameters to the QIBA v4 phantom with σ = 0.2 noise added.

The RMS error was 11.3% for Ktrans, 18.2% for ve, and 12.7% for vp; CCCs were 0.974, 0.703, and

0.972, respectively.
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Figure 6. The computed R1 relaxation rate, signal enhancement ratio SER, maximum CA tissue

concentration Ct, the Standard Tofts-Kety parameters Ktrans and ve, and the fit residual. Only voxels with

SER > 2.0 were fit. Of the 36,864 voxels in the image, only 7815 were selected for parameter fitting.
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Figure 7. Time required to fit a single voxel as a function of the number of time points in the Ct curve.
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