A peer-reviewed version of this preprint was published in PeerJ on 17 March 2015.

View the peer-reviewed version (peerj.com/articles/844), which is the preferred citable publication unless you specifically need to cite this preprint.

https://doi.org/10.7717/peerj.844
Ecological correlates to cranial morphology in Leporids (Mammalia, Lagomorpha)

Brian P Kraatz, Nicholas Bumacod, Emma Sherratt, Mathew J Wedel

The mammalian order Lagomorpha has been the subject of many morphometric studies aimed at understanding the relationship between form and function as it relates to locomotion, primarily in postcranial morphology. The leporid cranial skeleton, however, may also reveal information about their ecology, particularly locomotion and vision. Here we investigate the relationship between cranial shape and the degree of facial tilt with locomotion (cursoriality, saltation, and burrowing) within crown leporids. Our results suggest that facial tilt is more pronounced in cursors and saltators compared to generalists. However cranial shape does not differ significantly among these locomotor groups, nor does it differ significantly between species that burrow and those that do not.
ECOLOGICAL CORRELATES TO CRANIAL MORPHOLOGY IN LEPORIDS
(MAMMALIA, LAGOMORPHA)

Brian P. Kraatz¹, Nicholas Bumacod², Emma Sherratt³, Mathew J. Wedel¹,⁴,

¹College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA USA 91766
²College of Dental Medicine, Western University of Health Sciences, Pomona, CA USA 91766
³Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
⁴College of Podiatric Medicine, Western University of Health Sciences, Pomona, CA USA 91766

SHORT TITLE: Cranial morphology in leporids

KET WORDS: Cranial morphology, Leporidae, locomotion

Corresponding author: Brian P. Kraatz
College of Osteopathic Medicine of the Pacific
Western University of Health Sciences
309 East 2nd Street
Pomona, CA 91711
Email: bkraatz@westernu.edu
Phone: (909) 706-3835
ABSTRACT

The mammalian order Lagomorpha has been the subject of many morphometric studies aimed at understanding the relationship between form and function as it relates to locomotion, primarily in postcranial morphology. The leporid cranial skeleton, however, may also reveal information about their ecology, particularly locomotion and vision. Here we investigate the relationship between cranial shape and the degree of facial tilt with locomotion (cursoriality, saltation, and burrowing) within crown leporids. Our results suggest that facial tilt is more pronounced in cursors and saltators compared to generalists. However cranial shape does not differ significantly among these locomotor groups, nor does it differ significantly between species that burrow and those that do not.
INTRODUCTION

The relationship between form and function as it relates to locomotion has been well studied in a wide range of vertebrate groups. The mammalian order Lagomorpha has been the subject of many morphometric studies aimed at understanding this relationship in postcranial morphology (e.g., Reese et al., 2013; Fostowicz-Frelík, 2007; Seckel and Janis, 2008, Young et al., 2014). The impetus of these studies is largely to understand the high-speed form of cursoriality observed in some leporids (rabbits and hares). Leporids are peerless cursors for their size; some hares have been shown to achieve speeds greater than 70km/h (Garland, 1983).

Indeed, the leporid postcranial skeleton exhibits many derived features that are strongly associated with saltation and cursoriality, including limb element elongation.

The cranial skeleton is more often overlooked in studies of form and locomotion, though there are biologically relevant associations between skull form and locomotory behavior, such as the role of the skull in active headfirst burrowing (e.g., Gans 1974; Barros et al. 2011; Sherratt et al. 2014; Hopkins and Davis, 2009; and see Wake 1993 for a review). In leporids, it has been suggested that morphological transformations of the skull may also be related to their ecology, particularly locomotion and vision (DuBrul, 1950; Bramble, 1989). The leporid skull is highly transformed, exhibiting a combination of features that clearly distinguish it from a more typical mammalian skull. A striking, yet often overlooked, characteristic is the broad dorsal arching of the cranium, which is achieved via expansion and folding of the supraoccipital, and a distinct flexure near the basisphenoid/presphenoid suture (Fig 1). A prominent ridge on the dorsal portion of the posterior cranial roof, which is superficially similar to an occipital crest, is actually a distinct flexure within the supraoccipital bone. Based on the position of the rabbit skull in resting position (De Beer, 1947: fig. 9; Vidal et al. 1986: fig. 4B), this flexure results in significant tilting of the facial region ventrally relative to the basicranium, which we here refer to as Facial Tilt.
DuBrul (1950) discusses this feature in detail within hares, and points out that the facial tilt of leporids is likely related to their unique mode of locomotion. DuBrul (1950) also discussed the similarities in leporid skull transformations to those of our own lineage; in our hominin relatives, increased basicranial flexion was associated with the onset of bipedal locomotion.

The goal of this study is to investigate the relationship between cranial shape and locomotion (cursoriality, saltation, and burrowing) within crown leporids. Our study is driven by hypotheses previously stated (DuBrul, 1950; Bramble, 1989) but never quantitatively tested. We use a large morphometric dataset spanning 17 extant taxa (table 1) to evaluate hypotheses about the relationship between skull shape and facial tilt with locomotory ecology (details below).

STUDY SYSTEM AND HYPOTHESES

The mammalian order Lagomorpha is today composed of two families, Leporidae (rabbits and hares) and Ochotonidae (pikas). Ochotonids are represented by one living genus, *Ochotona*, which includes two North American and 28 Eurasian species (Alves and Hackländer, 2008). Leporids include 11 living genera with 62 species overall. The majority of species are found within two genera (Alves and Hackländer, 2008); *Lepus* (hares, 32 species) and *Sylvilagus* (a portion of rabbits, 17 species). Of the remaining nine genera, seven are monotypic, while two genera, *Nesolagus* and *Pronolagus*, only include two and four species, respectively. Overall, sixteen leporids species are currently considered endangered or critically endangered by the IUCN (Alves and Hackländer, 2008), and conservation issues are compounded by the lack of natural history data for many of these species.

Despite the perception that leporids are biologically conserved, the crown group exhibits a surprising level of ecological and morphological diversity. Leporids are found on every continent except Antarctica, from the high arctic to dry, hot deserts. Some leporids are nocturnal, some are social, and some live in dense cover as opposed to the open plains often associated with these...
animals. In terms of size, our study includes the smallest leporid, *Brachylagus* (mean skull length ~ 50mm) to one of the largest, *Lepus timidus* (mean skull length ~ 90mm). Genera such as *Pentalagus* and *Caprolagus* have heavy, robust skulls, compared to the typically gracile skulls of most taxa. These cranial differences manifest themselves morphometrically via a wide range of snout lengths and marked differences in skull robustness and form. While leaping abilities are common among most leporid lineages, they are also known to be facultatively semiaquatic, scansorial, fossorial, or exhibit a more generalized, non-hopping form of locomotion (Chapman and Flux, 2008). We distinguish here between the saltatory locomotion (i.e., hopping) most typical among leporids (table 1), and its cursorial form observed in some hare lineages (Gambaryan and Hardin, 1974; Bramble, 1989). Generalists are recognized as those who don’t exhibit clear hopping, but rather move in a more scampering habit.

Hypothesis 1 — Facial Tilt

A high degree of facial tilting (e.g., ventral flexion of the facial region) should a) be positively correlated with more active (e.g., saltatorial or cursorial) locomotor styles, and b) show no correlation with burrowing habit.

Variation in the degree of facial tilt among leporids has strong effects on orbital orientation (fig. 1). There is substantial literature discussing the relationship between orbit orientation and ecomorphology, and Cartmill (1970) established the terms 'orbital convergence' and 'frontation' to understand these relationships. Within primates, various groups exhibit a high degree of both orbital convergence and orbital frontation. Orbital convergence is strongly associated with increased binocular visual field overlap (i.e., binocular vision; Heesy, 2004), and orbital frontation is strongly positively correlated with basicranial flexion (Ross, 1993). As DuBrul (1950) pointed out, facial tilt transformations among leporids are nearly identical to basicranial...
flexion observed within anthropoids; increased facial tilt and basicranial flexion both result in
increased orbital frontation (see figure 1 for changes in frontation related to increased FT).
Several workers have shown that increased frontation is positively correlated with arboreal taxa
(Cartmill, 1970; Heesy, 2008); increased frontation changes the visual field to allow for better
visualization of substrate. Given these relationships, and the fact that leporids show relatively low
degrees of convergence but high degree of frontation, we expect that facial tilt (as a proxy for
frontation) should be strongly correlated to locomotor styles that would require enhanced
substrate perception (saltatorial and cursorial), but we do not expect that facial tilt will be related
to burrowing habit.

Hypothesis 2 — Skull shape

We expect that there will be significant skull shape differences among a) locomotor styles, and b)
burrowing habits.

We have no a priori expectations about how overall skull shape might change with locomotor
mode or burrowing habit. Instead we will investigate the more fundamental question of whether
skull shape is related to locomotion and burrowing habit at all. Our interest in this question is
therefore more a form of exploratory data analysis than a test of a specific hypothesis.

MATERIALS AND METHODS

We collected morphometric data (Appendix 1) from 140 leporid skulls spanning 16 taxa
(Table 1) housed in the departments of Mammalogy at the American Museum of Natural History
and the Los Angeles County Museum of Natural History. Care was made to use only adult
specimens, characterized by fully fused occipital sutures (Hoffmeister and Zimmerman, 1967).
Ten linear measurements (Table 2, Figure 2) were recorded per specimen using digital calipers by
three authors (BPK, MW, and NB), and a repeatability study (not shown) was performed to ensure there was no intercollector bias introduced. We also measured the first molar (M1) length and width, then calculated the M1 area to use as a proxy to body size, which been shown to be highly correlated with body mass in rabbits (Calzada et al. 2003).

Facial tilt was measured by photographing each skull in lateral view using a Nikon D80 digital camera. The skulls were placed in a sandbox to ensure that the sagittal plane was orthogonal to the focal direction. Facial tilt angle was acquired from the digital photos within Adobe Photoshop © (Fig. 1), measured as the angular difference between the ‘occipital plane’ and a line parallel to the cranial diastema. Variations among individuals for the cranial variables were explored using principal components analysis. To do this we took the natural log of body size (M1A) and the ten linear measurements, and using the covariance matrix of these variables performed a PCA, within the statistical software R v3.1.1 (R Development Core Team 2014).

Phylogenetically informed analyses

To examine facial tilt angle and cranial shape in a phylogenetic context, we used the phylogenetic relationships among species of Leporidae recently published by Matthee et al (2004). The original tree was constructed using seven genes (five nuclear and 2 mt) for 25 ingroup taxa. We pruned the tree to include only the 16 taxa studied here, and retained the information on branch lengths, which are scaled using a molecular clock (details of which are in Matthee et al 2004).

Morphometric data and facial tilt angle were compared to several key ecological indicators, including locomotor type and burrowing habit (Table 1). Ecological data were obtained from Chapman and Flux (1990). We divided leporids into three locomotor categories: generalized or 'scramble' locomotors, which tend to be the slowest-moving, saltatory or hopping locomotors, and fast-moving taxa that practice cursorial (leaping and bounding) locomotion,
which is essentially a specialized form of saltation. Regarding burrowing habits, some leporids
dig their own burrows (e.g., *Oryctolagus* and *Romerolagus*), whereas others simply occupy
preexisting burrows excavated by other animals. For the purposes of this study, we refer to
leporids as burrowers if they occupy burrows consistently, regardless of whether they dig the
burrows.

To test whether or not the degree of facial tilt differs among the three locomotor
categories, we performed a one-way Analysis of Variance (ANOVA) under a Brownian motion
model of evolution. This was done using species means of the FT angle and a distance-based
phylogenetic generalized least squares analysis (D-PGLS; Adams 2014). A distance-based
approach provides numerically identical estimates of evolutionary patterns to those obtained from
standard implementations of PGLS on univariate datasets, and was used here for consistency with
analyses below on the cranial variables. The statistical significance of each term in the D-PGLS
was assessed using 1000 permutations whereby the species means are shuffled among the tips of
the phylogeny. We performed a second ANOVA as above to test whether facial tilt differs
between taxa that utilize burrows (“burrowing”) and those that do not (“non-burrowing”). Box
and whisker plots were used to visualize the individual variation in facial tilt angle among
groups. Both ANOVAs were done using procD.pglsl in the geomorph package (Adams et al.
2014) in the statistical software R v3.1.1 (R Development Core Team 2014).

To test whether or not cranial shape, as represented by ten morphometric variables, differs
among the three locomotor types, we performed a multivariate analysis of covariance
(MANCOVA) in an evolutionary context under a Brownian motion model of evolution. This was
done using species means of the natural log of the ten variables and D-PGLS, which performs
better than a regular PGLS when the number of variables begins to approach the number of
species (Adams 2014). The MANCOVA model used body size as a covariate. We used the area of
the first upper molar as a proxy for body size, which is commonly used among mammals (see
Alroy, 1998), but has also been shown to be useful within leporids (Calzada, et al., 2013). The statistical significance of each term in the D-PGLS was assessed using 1000 permutations of the species means. Similarly, we tested whether or not cranial shape differs between burrowing and non-burrowing taxa using a MANCOVA as described above. These analyses were done in procD.pgl in the geomorph package (Adams et al. 2014) in the statistical software R v3.1.1 (R Development Core Team 2014).

RESULTS

Facial Tilt

Facial tilt (FT) summarizes the broad dorsal arching of the skull roof that is prominent among living leporids (Fig. 1). Overall, there is a nearly 30° range of variation in this trait among specimens of all species in this sample (Appendix 1). We found a significant difference among locomotor types for facial tilt angle (F_7.02, P = 0.016; Fig. 3a). The mean FT angle for generalized locomotors (mean, \(\mu = 44.0 \), standard deviation, \(\sigma = 5.48 \)) is substantially higher than that of cursorial (\(\mu = 36.3, \sigma = 5.46 \)) and saltatorial taxa (\(\mu = 37.2, \sigma = 5.91 \)) (Fig. 3a). This indicates that taxa that are either saltatorial or cursorial tend to have facial regions that are more ventrally deflected. By contrast, we found no significant difference in FT angle between burrowing and non-burrowing taxa (F_0.0037, P = 0.973; Fig. 3b).

Cranial shape analyses

Principal components analysis shows that PC1 accounts for 75.6% of cranial shape differences, PC2 accounts for 10.3%, and PC3 accounts for 4.1%. (Table 3; Fig. 4). Body size has a significant effect on cranial shape, as described by the ten linear variables (F = 11.43, P = 0.001 in the model with locomotor mode, and F = 11.76, P = 0.002). However, there is no significant
effect of locomotor habit on cranial shape (F = 1.603, P = 0.28), nor was there significant interaction between body size and locomotor habit (F = 0.896, P = 0.570). Likewise, there is no significant effect on cranial shape by burrowing behavior (F = 2.416, P = 0.263), nor a significant interaction of body size and burrowing behavior (F = 1.005, P = 0.452). These results indicate that the variation in cranial shape observed among modern species is partly due to evolutionary allometry, but not to the ecological diversification of leporids into different locomotor modes or burrowing behavior.

DISCUSSION

Given a clear correlation between the degree of facial tilt (FT) and locomotor style, understanding the anatomical basis of facial tilt is important to discerning its function. Generalized locomotors exhibit less facial tilt, an anatomical condition that could properly be thought to be primitive for the mammalian skull, and given their fossil record, lagomorphs as well (Dice, 1933; Asher et al., 2005). However, the extent of dorsal arching of the skull roof and associated facial tilt seen within extant saltatorial and cursorial leporids is exceptional among mammalian skulls. Our own species is one of the few others that exhibit such a dramatic transformation between the basicranial and facial regions of the skull. Facial tilt within leporids is allowed via the expansion of the supraoccipital bone on the dorsal skull. Along the ventral skull, there is a pronounced flexure near the basisphenoid/presphenoid juncture. The ‘crest’ in the occipital region, which looks like an occipital crest in lateral view, is actually the external occipital protuberance (EOP) of the supraoccipital bone. The complex architecture of the supraoccipital in leporids is the most marked change related to the dorsal arching the skull roof. Lateral to the EOP are to large fossa that extend to the parietal/occipital suture that allow for
attachment of the *spleuvis capitus* mm., which are involved in head extension and lateral rotation.

The fossae can be clearly identified via the prominent superior nuchal line that extends rostrally from the EOP. The *longissimus capitus* m. inserts with the *spleuvis capitus* m. in the lateral, mastoid area, of the occipital region. A final long extensor muscle, the *semispinalus capitus* m., attaches to the lateral portions of the EOP. Together, these three long erectors serve to extend, stabilize, and laterally rotate the head. Deep to these long erectors are an occipital group of muscles that attach to the first two cervical vertebrae and occipital bones to serve as fine motor control of the head. Upon comparison of leporid skulls, it is apparent that those with significant facial tilt are expanding the rostral portions of the supraoccipital bone relative to the caudal portion. This serves to increase the attachment area for the long extensor muscles, allowing for improved extension and lateral rotation of the head. Most importantly, it is clear that the transformations of facial tilt observed with in leporids are driven by a highly dynamic musculature and osteological system. As outlined above, increasing facial tilt would have the consequence of increasing frontation, and in turn, increasing the visual field to allow for better visualization of substrate. Our results indicate that more active leporids (cursorial and saltatorial species) exhibit greater facial tilt and that this may be driven by a need to better substrate visualization, although we have not tested that explicitly.

Differences in facial tilt are important to discuss in terms of the allometric scaling of cranial shape found within remaining linear morphometric dataset. Given that size is a major predictor of cranial shape within our ten linear variables and that locomotor style has little relationship to cranial shape, it is striking that facial tilt *does* distinguish generalist locomotors clearly from more active taxa. This suggests that FT represents a meaningful biological metric among leporids, but may also summarize a specific aspect of cranial shape not recognized within
our linear variables. While our linear measurements failed to discern differences among locomotor groups, this may be function of the limited ability of these variables to capture important shape differences among crania within leporids due to the highly transformed nature of their skulls (e.g. pronounced dorsal arching). Nonetheless, our linear variables do discriminate taxonomic groups (Fig. 4a) based on both size (PC1) and our first shape component (PC2); which has been shown in other cranial morphometric studies (see, for example, Palacios et al., 2008 and Pintur et al. 2014).

Our study demonstrates that the dorsal arching found within leporid skulls (summarized hear as facial tilt) has a strong relationship with how these animals moved. Facial tilt summarized a complex transformation of nearly all aspects of the leporid skull, including basicranial rearrangement of the occipital bones and facial changes in the diastema region. Our linear variables, while distinguishing taxonomic groups, do not capture shapes changes as they relate to locomotion; which is likely do to the simplified, two dimensional nature of these metrics. Based on the changes in orbit orientation that are associated with increased facial tilt, it is likely that skull transformations in crown leporids are driven by a need for increased visual perception of substrate.

AUTHOR CONTRIBUTIONS

Conceived and designed the experiments: BPK, MJW. Performed the experiments: BPK, NB, ES. Analyzed the data: BPK, NB, ES. Contributed reagents/materials/analysis tools: BPK, NB, MJW. Wrote the paper: BPK, NB, MJW, ES.
ACKNOWLEDGEMENTS

We are grateful to Neil Duncan and Eileen Westwig of the American Museum of Natural History and Jim Dines of the Natural History Museum of Los Angeles County for access to specimens in their care. We thank Kevin Middleton for helpful discussions, and Margaret Metz for assistance with R. This project was initiated under a fellowship from the AMNH awarded to BPK. NB completed work on this project while enrolled in Western University of Health Sciences’ MSMS program, and received a summer fellowship from the Graduate School at that university to continue that work. Travel to the AMNH by MJW was made possibly by funds from the Department of Anatomy, Western University of Health Sciences.
APPENDIX 1 All measurements

FIGURE 1 — Facial tilt in leporids. The crania of *Caprolagus hispidus* (AMNH 54852, above) and *Pronolagus crassicaudatus* (AMNH 89033, below) are shown in left lateral view. Facial tilt (FT) is defined herein as the angle between the upper diastema and the occipital plane, where increased values indicated a skull orientation closer the horizontal plane.

FIGURE 2 — A representative leporid skull showing measurements used in this analysis. The cranium of *Bunolagus monticularis* (AMNH 146662) is shown in right lateral (top), dorsal (lower left), and ventral (lower right) views. Abbreviations follow Table 1. Three measurements included in the analysis are not shown here: lower diastema length (DILL; measured similar to DILU), M1 area (M1A; M1 length x M1 width), and facial tilt (FT; illustrated in fig. 2).

FIGURE 3 — Box and whisker plot summarizing facial tilt angle for all specimens, showing how the angle differs between locomotor types (a) and burrowing behavior (b).

FIGURE 4 — Principal components analysis of 11 linear measurements describing cranial shape for all specimens. a) Colored symbols by species. b) colored by LOC.

LITERATURE CITED

FIGURE 1

Facial tilt in leporids. The crania of *Caprolagus hispidus* (AMNH 54852, above) and *Pronolagus crassicaudatus* (AMNH 89033, below) are shown in left lateral view. Facial tilt (FT) is defined herein as the angle between the upper diastema and the occipital plane, where increased values indicated a skull orientation closer the horizontal plane.
FIGURE 2

A representative leporid skull showing measurements used in this analysis. The cranium of *Bunolagus monticularis* (AMNH 146662) is shown in right lateral (top), dorsal (lower left), and ventral (lower right) views. Abbreviations follow Table 1. Three measurements included in the analysis are not shown here: lower diastema length (DILL; measured similar to DILU), M1 area (M1A; M1 length x M1 width), and facial tilt (FT; illustrated in fig. 2).
FIGURE 3

Box and whisker plot summarizing facial tilt angle for all specimens, showing how the angle differs between locomotor types (a) and burrowing behavior (b).
FIGURE 4

Principal components analysis of 11 linear measurements describing cranial shape for all specimens. a) Colored symbols by species. b) colored by LOC.
Table 1

Table 1

Leporid species included in this study
<table>
<thead>
<tr>
<th>Species</th>
<th>Locomotion Type</th>
<th>Burrowing</th>
<th>Geographic Range</th>
<th>Abbreviation</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Romerolagus</td>
<td>Saltatorial</td>
<td>Yes</td>
<td>Cental Mexico</td>
<td>Ro</td>
<td>7</td>
</tr>
<tr>
<td>Bunolagus</td>
<td>Saltatorial</td>
<td>Yes</td>
<td>South Africa</td>
<td>Bu</td>
<td>2</td>
</tr>
<tr>
<td>Caprolagus</td>
<td>Generalized</td>
<td>Yes</td>
<td>Himalayas</td>
<td>Ca</td>
<td>2</td>
</tr>
<tr>
<td>Brachylagus</td>
<td>Generalized</td>
<td>Yes</td>
<td>NW United States</td>
<td>Br</td>
<td>10</td>
</tr>
<tr>
<td>Sylvilagus floridanus</td>
<td>Saltatorial</td>
<td>No</td>
<td>Americas</td>
<td>Sfl</td>
<td>10</td>
</tr>
<tr>
<td>Sylvilagus palustris</td>
<td>Generalized</td>
<td>No</td>
<td>SE United States</td>
<td>Spal</td>
<td>10</td>
</tr>
<tr>
<td>Sylvilagus audobonii</td>
<td>Saltatorial</td>
<td>Yes</td>
<td>Americas</td>
<td>Sau</td>
<td>10</td>
</tr>
<tr>
<td>Poelagus marjorita</td>
<td>Saltatorial</td>
<td>No</td>
<td>NE Africa</td>
<td>Po</td>
<td>10</td>
</tr>
<tr>
<td>Pronolagus crossicaudatus</td>
<td>Saltatorial</td>
<td>No</td>
<td>South Africa</td>
<td>Pc</td>
<td>10</td>
</tr>
<tr>
<td>Oryctolagus cuniculus</td>
<td>Saltatorial</td>
<td>Yes</td>
<td>Global</td>
<td>Oc</td>
<td>10</td>
</tr>
<tr>
<td>Nesolagus timminsi</td>
<td>Saltatorial</td>
<td>Yes</td>
<td>Vietnam/Laos</td>
<td>Nt</td>
<td>2</td>
</tr>
<tr>
<td>Lepus americanus</td>
<td>Saltatorial</td>
<td>No</td>
<td>North America</td>
<td>Lam</td>
<td>10</td>
</tr>
<tr>
<td>Lepus timidus</td>
<td>Saltatorial</td>
<td>Yes</td>
<td>Old World, Palearctic</td>
<td>Lti</td>
<td>10</td>
</tr>
<tr>
<td>Lepus capensis</td>
<td>Cursorial</td>
<td>Yes</td>
<td>Africa, Arabia, Europe, Asia</td>
<td>Lcap</td>
<td>10</td>
</tr>
<tr>
<td>Lepus californicus</td>
<td>Cursorial</td>
<td>No</td>
<td>SW North America</td>
<td>Lcal</td>
<td>12</td>
</tr>
<tr>
<td>Lepus saxatilis</td>
<td>Cursorial</td>
<td>No</td>
<td>South Africa; Namibia</td>
<td>Lsax</td>
<td>9</td>
</tr>
</tbody>
</table>

Table 1. Leporid species included in this study
Table 2

Variables used in this study and description; see figures 1 and 2 for illustrations of the measurement conventions.
Table 2. Variables used in this study and description; see figures 1 and 2 for illustrations of the measurement conventions.

<table>
<thead>
<tr>
<th>Abbr.</th>
<th>Variable</th>
<th>Measurement Convention</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLD</td>
<td>bulla diameter</td>
<td>maximum diameter (in any direction) of right bulla</td>
</tr>
<tr>
<td>BOL</td>
<td>basiocippal length</td>
<td>maximum midsagittal length from anterior basiocippal to foramen magnum</td>
</tr>
<tr>
<td>DIL</td>
<td>diastema length</td>
<td>maximum distance between right I2 and M1</td>
</tr>
<tr>
<td>IOW</td>
<td>interorbital width</td>
<td>minimum transverse width between dorsal rims of orbits</td>
</tr>
<tr>
<td>M1A</td>
<td>M1 area (size proxy)</td>
<td>area of right M1, approximated as length x width</td>
</tr>
<tr>
<td>NL</td>
<td>nasal length</td>
<td>maximum parasagittal length of nasal bones (i.e., orthogonal antero-posterior but not along midline)</td>
</tr>
<tr>
<td>NW</td>
<td>nasal width</td>
<td>maximum transverse width across posterior nasal bones</td>
</tr>
<tr>
<td>PAL</td>
<td>parietal length</td>
<td>maximum midsagittal length of parietal bones</td>
</tr>
<tr>
<td>SCF</td>
<td>splenius capitis fossa</td>
<td>maximum parasagittal length from anterior margin of M. splenius capitis insertion fossa to opisthocranion</td>
</tr>
<tr>
<td>SLD</td>
<td>skull length dorsal</td>
<td>maximum midsagittal length from anterior nasal bones to opisthocranion (just dorsal to incisors) to opisthocranion</td>
</tr>
<tr>
<td>SW</td>
<td>skull width</td>
<td>maximum transverse width across zygomatic processes</td>
</tr>
</tbody>
</table>
Table 3 (on next page)

Table 3

PCA loadings
Table 3. PCA loadings

<table>
<thead>
<tr>
<th></th>
<th>PC1</th>
<th>PC2</th>
<th>PC3</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLD</td>
<td>-0.04539695</td>
<td>-0.910565077</td>
<td>-0.16457026</td>
</tr>
<tr>
<td>BOL</td>
<td>0.31643982</td>
<td>-0.163364441</td>
<td>-0.32589829</td>
</tr>
<tr>
<td>DILU</td>
<td>0.3289936</td>
<td>0.053918587</td>
<td>0.25801961</td>
</tr>
<tr>
<td>DSLL</td>
<td>0.26485601</td>
<td>-0.348738236</td>
<td>0.641238</td>
</tr>
<tr>
<td>IOW</td>
<td>0.30539101</td>
<td>0.005297391</td>
<td>-0.44448898</td>
</tr>
<tr>
<td>M1A (Body size)</td>
<td>0.31974629</td>
<td>0.084227328</td>
<td>-0.19956786</td>
</tr>
<tr>
<td>NL</td>
<td>0.31995934</td>
<td>0.082793999</td>
<td>0.26130228</td>
</tr>
<tr>
<td>NW</td>
<td>0.32710183</td>
<td>0.052330681</td>
<td>0.09654871</td>
</tr>
<tr>
<td>PAL</td>
<td>0.29599664</td>
<td>0.011295643</td>
<td>-0.26889153</td>
</tr>
<tr>
<td>SLD</td>
<td>0.34095647</td>
<td>0.048591476</td>
<td>0.03475742</td>
</tr>
<tr>
<td>SW</td>
<td>0.33269084</td>
<td>-0.021292115</td>
<td>-0.02091868</td>
</tr>
</tbody>
</table>