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Abstract

Repositories, such as the BioModels Database and the Physiome Model Repository support the reuse of
models and ensure transparency about results in publications linked to those models. With thousands of
models available, a framework to track the differences between models and their versions is essential to
compare and combine models. Difference detection allows users to study the history of models but also
helps in the detection of errors and inconsistencies. However, current repositories lack suitable methods to
track a model’s development over time. Consequently, researchers have problems to grasp the differences
between models and their versions.

Focusing on SBML and CellML, we developed an algorithm to accurately detect and describe differences
between versions of a model with respect to (i) the models’ encoding, (ii) the structure of biological
networks, and (iii) mathematical expressions. Our method is implemented in a comprehensive and open
library called BiVeS. Our work facilitates the reuse and extension of existing models. It also supports
collaborative modelling. Finally, it contributes to better reproducibility of modelling results and to the
challenge of model provenance.

Our algorithm is the first tailor-made detector of differences between versions of computational models
in standard formats.

1 Introduction

Modelling and simulation is a standard approach to investigate complex biological processes. A steadily
increasing number of computational models are available from open repositories such as the BioModels
Database [1] or the Physiome Model Repository (PMR2, [2]). These repositories provide the infrastructures
necessary to collect and maintain model code and associated meta data. The distribution of models
through these repositories accelerates collaborative research and encourages model reuse. The reuse of
models improves the modelling workflow by reducing errors and saving time. Tracking the evolution of a
model, providing information about changes in the model and its encoding, plays an important role in
supporting the user [3]. The need of model version control has been emphasised repeatedly on several
occasions [1, 3–5].

An example that demonstrates the need for tracking the evolution of models is the cell cycle. In
1993, Novak and Tyson published the first cell cycle model describing the M-phase control in Xenopus
oocyte extracts and intact embryos [6]. The model representing these findings was first published in the
BioModels Database in 2007 (release number 8) with the identifier BIOMD00000001071. Along with
20 official releases of the database, the model has undergone numerous changes. Figure 1 shows the
differences linked to one reaction of the model: The formation of Cdc2-cyclin dimers from Cyclin subunits
and free Cdc2 monomers (Step 3 [6, Figure 1]). Changes between 2007 and 2013 only reflect regular
updates of the internal encoding of the model in the BioModels Database. These modifications do not

1http://www.ebi.ac.uk/biomodels-main/BIOMD0000000107
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Figure 1. Sketch of a model’s temporal evolution. Changes in a single reaction of Novak and
Tyson’s model with ID 107 in BioModels Database. The figure shows the differences between versions
from June 2007 (release number 8), June 2013 (release number 25), and August 2014 (latest available
version). The branch represents our own improvements from November 2013, which shall be merged with
the BioModels Database version in the future. The green boxes visualise the differences between related
versions.

relate to the biological meaning of the reaction. Along with these changes, numerous authors have build
similar models or refined and extended the existing one. In this work, we focus on the detection and
characterisation of such changes in models.

The relation between versions of a model from different releases can be considered the model’s history
(Figure 1). In the simplest case, the history follows a single line along the time axis. In practise, however,
models are curated, refined and corrected. Open model repositories have their own well-defined pipelines
for these kinds of modifications [7] which regularly lead to new versions of a model. After publication,
models may be combined into larger networks, e. g. [8–10]. Also during model development, several
alternatives are tested, leading to different paths in the history of a model. These so-called branches
complexify the study of a model’s history, especially when branches with different modifications shall be
merged back into single model versions at a later time. For this reason, difference detection plays a key
role in model version control. Under the term of model provenance, these issues are discussed in term of
the seven W-questions: Who, What, Where, Why, When, Which, With (How)? [11–14].

In this paper we present a novel method for difference detection in models of biological systems. Our
method for difference detection is implemented in a software library called BiVeS. It can immediately be
used with existing model repositories and management systems. In addition, we showcase the capabilities
of BiVeS in our web based tool for version control of SBML and CellML models, referred to as BudHat.
BiVeS and BudHat demonstrate successful provenance of models for biological systems. Together, our work
in model version control contributes to successful provenance of model-driven research in computational
biology.
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2 Methods

Our algorithm for difference detection takes two versions of a model and calculates the difference between
them. We restrict ourselves to models encoded in XML representation formats. Our algorithm grounds on
the XyDiff algorithm which focuses on efficiency in terms of speed and memory [15]. It distinguishes three
major steps: (2.1) Pre-processing the XML documents, (2.2) Mapping the hierarchical structures, and
(2.3) Post-processing the resulting mapping. Based on the identified mapping, the algorithm computes
a delta (2.4). This delta can be converted into both machine readable (2.5) and human readable (2.6)
formats. Each of these steps is described in the following sections.

2.1 Pre-processing of models encoded in XML

First the XML documents, which encode two versions of a model, are translated into an internal tree
structure. For every node n in the tree a hash sum nσ and a weight nω are calculated. With length(n)
denoting the length of the text stored in n, the weight nω is determined by:

nω =


1 + log(length(n)) if n is text node,

1 if n is leave,

1 +
∑

c ∈ children(n)

cω otherwise.

The weight of a node is thus always greater than the weight of its children. As such the weight represents
the size of the corresponding subtree. The hash sum of a node n represents the signature of the subtree
rooted at n. In the current version of our implementation we determine the hash nσ of a node n by the
SHA-2 sum of the concatenation of the node’s tag name, its attributes and the hash sum of all its children.
While nσ unambiguously defines the subtree rooted in n, nσ does not need to be unique among all nodes
in the tree. Thus, if nσ = mσ then the subtrees in n and m are identically equal. We will use these
signatures to speed up the mapping of two hierarchical structures, as will be described in the next section.

2.2 Mapping model entities

To compare two tree structures T1 and T2 we use XyDiff’s BULD algorithm, in which matchings are
propagated bottom-up and only lazily down. It finds matchings between common large subtrees of the
two documents and propagates these matchings [15]. Following the BULD algorithm, we distinguish the
following four phases during the mapping stage.

Mapping by ID: First, if available, id attributes are being mapped, i. e., nodes in both documents
sharing the same value of an id attribute are mapped onto each other. If many nodes are labelled with
an id attribute, then a large number of mappings are already computed at this stage, and the following
mapping procedure, which is computational harder, simplifies dramatically.

Bottom-Up propagation: Second, the initial mapping is propagated upwards into the trees.
Therefore, the connections of a node’s children are evaluated in a depth-first traversal of T2. If a node n in
T2 is connected to a node m in T1 then a mapping of parent(n) to parent(m) is suggested. The confidence
of this suggestion equals nω and is therefore proportional to the size of n’s subtree. If, in contrast, n is not
connected, we examine the candidates which were previously suggested by the connections of n’s children.
Candidates which have a different tag name than n and candidates which already have a connection
are neglected. Among the remaining candidates the algorithm chooses the one that received the best
suggestions and connects it to n.

Top-Down propagation: Third, the algorithm makes use of the initially computed signatures and
maps nodes of T2 on nodes of T1 which share the same hash value. A priority queue Φ is maintained to
sort the nodes of T2 based on their weights. Initially, Φ only consists of the root node of T2. Unless Φ is
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empty, the algorithm repeatedly removes node n ∈ Φ ⊂ T2 with the biggest weight, which represents the
biggest subtree in the queue, and collects a set of mapping candidates M ⊂ T1 with ∀m ∈M : mσ = nσ.
If M is empty all children of n are added to Φ and the loop continues with the next biggest subtree.
Otherwise, the algorithm tries to find a node m ∈M for which there already exists a mapping between
ancestors(m) and ancestors(n). As proposed by [15] the number of levels to chase the ancestry of both
nodes depends on the ratio of nω to root(T2)ω. Thus, for large subtrees we are willing to climb many
levels in the tree to find a mapping of ancestors, but we might just examine firsthand parents in order to
map leave nodes. If we are able to find such an m ∈M all nodes of the subtrees in m and n are mapped
onto each other, just as the ancestors up to the discovered mapping.

Optimisation: Fourth, the algorithm improves the quality of the mapping by examining the network
structure of T1 and T2 in a top-down approach. For every mapping n ∈ T2 on m ∈ T1 it compares
unmatched children of n and m in order to find missed mappings. A distance matrix M i×j is created
with Mi,j being the ratio of the number of differing attributes to the total number of attributes between
the i-th child of n and the j-th child of m, or 0 if both nodes do not have any attributes. We assign ∞ to
elements Mi,j if the corresponding nodes already have a mapping, or if they do not share the same tag
name. The algorithm evaluates the matrix greedily and adds new mappings up to a maximum distance of
0.9. Thus, nodes which have nothing in common will not be connected.

2.3 Post-processing of mappings

Whenever we have further knowledge of the data that is encoded in both trees we use it to revise the
mapping. We therefore implemented further rules to exploit additional biological knowledge in order to
capture the domain characteristics of the data being processed. Evaluating additional knowledge is a
major factor why our algorithm outperforms standard XML diff algorithms.

Roughly speaking, we prohibit some network operations in the hierarchical tree of document nodes.
In SBML encoded models for example, listOf-nodes are not allowed to change their parents. That
means, if a listOfModifiers of T1 is mapped onto a listOfModifiers of T2 but their parents are not
linked previously during the mapping procedure we drop this mapping. It is the same for nodes with a
tag name of speciesReference, modifierSpeciesReference, trigger, eventAssignment, delay and
priority. If the parents in the corresponding tree are not connected, which means their network in the
XML documents differs, we remove the mapping from the set of operations. Unfortunately, these rules of
course expand the set of operations in the delta later on, but we are willing to trade some minimality to
increase the significance of produced deltas.

2.4 Computing the delta

A delta is a set of operations on entities (nodes or attributes, respectively) necessary to transform one
document into another. We distinguish the following four types of operations which apply on entities of
the corresponding XML tree:

insert if an entity is present in T2 but absent in T1

delete if an entity is present in T1 but absent in T2

move if a node is present in both documents, but either (1) the parents in the corresponding trees are
not connected or (2) the parents are connected, but the sequence of their siblings has changed

update if the value of an attributes, a text node’s content, or the tag name of a node was modified

While the set of move operations may only contain document nodes, the set of updates in general only
consists of operations on attribute values. There is a single exception: The root nodes of both documents
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are always mapped onto each other. Therefore we must include an operation which updates the tag name
of nodes. However, we only support this operation for root nodes, though. Thus, internal document nodes
will never occur in the set of updates and we will neglect this special case in the following.

After the mapping we distinguish two types of nodes: Mapped nodes and unmapped nodes. Unmapped
nodes n ∈ T1 ∪ T2 are nodes for which the algorithm could not find a matching node in the opposite tree.
These nodes and their attributes correspond to either inserts or deletes, depending on their origin (T2 or
T1, respectively). In contrast, mapped nodes are nodes for which the algorithm did find a matching node
in the opposite tree. If the parents of such a mapping of n ∈ T2 onto m ∈ T1 are not connected, or if the
sequence among their siblings has changed, then these nodes are included in the set of moves. Moreover,
for each attribute a ∈ attributes(n) ∪ attributes(m):

• if a /∈ attributes(m) then a is included into the set of deletes

• if a /∈ attributes(n) then a is included into the set of inserts

• if value(m, a) 6= value(n, a) the attribute is included into the set of updates

All other cases (nodes are mapped and occur at the same position in both trees; attribute values of mapped
nodes are equal) do not call for an operation to transform T1 into T2 and are therefore not included in the
delta.

2.5 Translating into machine readable XML

The resulting delta is then encoded in an XML document consisting of the four sections deletes, inserts,
moves and updates. These sections contain three types of nodes:

• nodes with a tag name node, which describe operations on nodes

• nodes with a tag name attribute, which describe operations on attribute values

• nodes with a tag name text, which describe operations on text nodes

All these nodes have to carry an unique id attribute and, if available, must contain identifiers oldPath and
newPath to unambiguously point to the corresponding nodes in T1 and T2, respectively. These identifiers
are XPath2 expressions, a language defined by the World Wide Web Consortium (W3C), to identify nodes
in an XML document. Even if the delta is meant to be evaluated by machines, during the creation of
those identifiers we make sure that they are as human readable as possible. In addition, node nodes may
also contain the attributes:

• oldParent and newParent (XPath expressions) identifying the parents of the corresponding nodes

• oldChildNo and newChildNo (Integers) defining the position among their siblings, in order to encode
moves

• oldTag and newTag (Strings) specifying the tag name of the corresponding nodes

Furthermore, attribute nodes may have three additional attributes:

• name defining the name of the corresponding attribute

• oldValue and newValue specifying the value of that attribute in T1 and T2, respectively

The generated delta is complete and, thus, it is invertible. That means, it contains all information
necessary to transform T1 into T2, but it can also be used to obtain T1 given T2. An example is shown in
Figure 3c.

2http://www.w3.org/TR/xpath/
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2.6 Translating into human readable formats

To support the readability we currently export two different formats: (1) A text-based report; and (2) a
graphical representation. The text-based report is a list of differences between the corresponding files. It
contains all modified entities relevant for the biological model, such as parameters, species and reactions,
and it contains the specific changes. The report can be generated in HTML, ReStructuredText, or
Markdown. Markdown and ReStructuredText are easy-to-read plain-text markup languages, specifically
designed to ensure a straightforward conversion to other markup languages, such as (X)HTML, doc(x),
ODF, or LATEX.

Moreover, standard formats usually allow for inclusion of information about the reaction network
encoded in the computational model. If the models in question contain such information, we will first
extract the reaction network of T1 and translate it into an internal graph representation. Second, we
obtain the reaction network of T2 and put it as an overlay on top of the network of T1, according to the
previously computed mapping of the corresponding entities in T1 and T2. Subsequently, the graph is
evaluated: We check whether nodes and edges originate from one or both documents and analyse what
has changed in the corresponding tree nodes. To export this graph we developed translators that convert
the internal graph representation to exchangeable graph formats, such as GraphML3 or Dot4. These
graphs can then be used in end-user applications, as described in the Results section.

3 Results

Model provenance and model version control are an important contribution to the reproducibility of
model-driven results in biology. With a steadily increasing number of models generated in biology, there
exists also an increasing number of models describing the same biological systems. Furthermore, existing
models are continuously updated, generating new versions of a model. This generates a need for tools
that can detect difference in models and support model version control.

We developed BiVeS, which incorporates a novel method that detects and highlights differences
between two arbitrary versions of a model encoded either in the Systems Biology Markup Language
(SBML, [16]) or in CellML [17]. Both formats are standard model representation formats used to exchange
computational models describing biological systems. They are supported by a great number of software
tools for modelling, analysing, visualising and simulating biological systems. There are in general three
major processes which generate new versions: During the design phase of models, later on during curation
in open model repositories, but also with updates of the SBML and CellML specification, or when errors
are detected. Consequently, different versions of a model exist next to each other, as shown in Table 1.

BioModels Database CellML repository
#Models 489 2702
#Versions 4927 4481

Table 1. Number of models and versions in BioModels Database and CellML Model Repository.

BiVeS generates a mapping between model entities. Our approach first maps the entities in the
entities in the two model files, and then identifies the changes that occurred. Figure 2 exemplifies the
method, showing two versions of a toy model, whereby the reaction C + D � E (left) is updated to
D +H � E (right). First, the model files are transformed into internal tree representations and prepared

3http://graphml.graphdrawing.org/
4http://www.graphviz.org/content/dot-language
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Figure 2. Schematic of the mapping
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for the subsequent mapping procedure (row one, pre-processing). The weights ω of nodes in the tree are
computed according to the size of the corresponding subtrees. For example, the subtree rooted in B is
larger than the subtree rooted in F and, thus, B’s weight is greater than F’s (namely ω = 4 and ω = 2,
respectively). The mapping procedure starts in row two of Figure 2 with a mapping by id. Since the
id attribute plays a key role and many elements do carry id attributes, the algorithm typically finds a
large number of mappings at this early stage. In our example, only the identifiers of the G-nodes are
identical (id=‘‘reaction1’’) and thus only a single connection is found. The mapping by id phase is
followed by a bottom-up propagation (row three), which makes use of the parent-child relation of nodes in
the trees: For nodes that are mapped already, there is a good chance that their parents also stem from
each other. In the example, the mapping of the G-nodes is propagated towards the roots of the trees and
the A-F-G-paths in both model versions are mapped. Afterwards, the algorithm tries to map subtrees
with an equal signature (row four, top-down propagation). The signatures σ, which are computed in the
pre-processing step, uniquely identify the subtrees. Here only the signatures of the D-nodes are equal
(σ = x), which is why D is the only candidate for a mapping. Since the D-nodes originate from each other,
as well as the A-nodes do, a mapping of the B-nodes is added. Following the propagation phases, the
algorithm tries to connect unmapped children of mapped nodes (row five, optimisation). In our example,
only the B-nodes have unmapped children: Nodes C and E in version 1 and nodes E and H in version 2
do not yet have partners. To find a mapping of these children, a 2× 2 distance matrix is created. The
elements in this matrix represent differences between the attributes of the corresponding nodes. The
E-nodes only differ in the value of the concentration attribute. Changing the value of one single attribute
in a species is a minor update and, thus, the nodes’ distance is very small. In contrast, the nodes C, E,
and H do not have anything in common. Consequently, the E-nodes will be mapped while C and H remain
unmapped. Finally, the resulting mapping is analysed (row six, evaluation). For example, the algorithm
detects that C was deleted, D was inserted and E was modified in version 2. The difference graph, as
obtained when interpreting the results of the evaluation step, is shown on the bottom of Figure 2.

BiVeS brings difference detection to your favourite software tool. The above described algo-
rithm for difference detection is implemented in a software library, BiVeS. It generates a list of differences
between two model versions and exports it in several output formats, which include computer-digestible
XML code or a graphical representation of differences. So far, BiVeS supports models encoded in CellML
and SBML. The restriction on standard representation formats allows us to implement specific and
powerful solutions.

One type of output are XML encoded, machine readable deltas, which describe the difference between
two versions of a model (see Section 2.4). A remarkable feature of these deltas is their completeness. They
can be inverted and composed [18]. That means, given one model version and the delta, the opposite
version can be retrieved [4]. Another major feature of BiVeS is its capability of translating the delta into
human readable formats. BiVeS summarises the model-related changes in a text-based report. This type
of output is ideally suited to be integrated in other tools. Specifically, the report is either encoded in
MarkDown, ReStructuredText or HTML. MarkDown and ReStructuredText are themselves already easy
to read and can be converted to common markup languages. The report in HTML format is generated
for convenience, e. g., to instantly display the changes on a web page. Figure 3b shows a sample report.
Another notable feature of BiVeS is the encoding of differences between two versions of a model in standard
graph representations enabling a subsequent visualisation. While BiVeS is itself not able to produce
rendered graphical output, it exports different graphical notations, including GraphML5, Dot6, or JSON7.
Armed with this, it is effortlessly possible to produce visualisations, as implemented in our demonstrator
BudHat.

5graphml.graphdrawing.org
6graphviz.org
7json.org
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BudHat showcases how BiVeS improves the understanding of a model’s changes. Our web-
based interface BudHat8 demonstrates the described capabilities of BiVeS. BudHat contains a rudimentary
user management and stores models in a database back-end. It calls BiVeS for the comparison two
versions of a computational model and displays the obtained results in the web browser. The different
visualisations that are possible in BudHat are shown in Figure 3. All figures show the difference between
versions 2007-06-05 and 2013-11-03 of model BIOMD0000000107 in BioModels Database.

More specifically, BudHat provides access to:

• the reaction network highlighting the changes, as shown in the upper part of Figure 3

• the HTML report of the changes, as shown on the left-hand side of Figure 3

• the delta encoded in XML, as shown on the right-hand side of Figure 3

Delta and report are directly passed to the web interface. But as stated above, BiVeS exports the graph
representing the reaction network in an exchangeable format (in this case it is GraphML or JSON).
Therefore, BudHat uses either CytoscapeWeb [19] or CytoscapeJS9 to display the highlighted reaction
network. From Figure 3a it is easy to see that the role of cdc2 in reaction cyclin-cdc2 dimer formation

has changed. In the former version cdc2 modified this reaction, but this modification was deleted (deletion
is highlighted by the red edge). Instead, in the updated version cdc2 is one of the reactants for this
reaction (insertion is indicated by the blue edge). Since this modification changed the reaction, the node
representing the reaction is coloured in yellow. This approach makes it much easier to understand the
differences, compared to a pure textual diff. Already for this small example, it would be much more effort
to see and understand what happened to a model from the sources, or from the 1559 lines of output
reported by Unix’ diff.

Exemplifying difference detection for SBML models. We exemplify the advantages of our method
using a reaction extracted from two different releases of model BIOMD0000000107 in BioModels Database.
Figure 4 shows the SBML code of versions V1 (June 2007, release 8) and V2 (November 2013, release
26). BiVeS can now be used to compare these versions. Before starting the mapping procedure, it takes
both model files and pre-processes them (see Section 2.1). For every node a signature and a weight are
calculated. The signature uniquely identifies the subtree rooted in this node. A node’s weight corresponds
to the size of its subtree. The internal representations of the models can then be mapped (see Section 2.2).
The algorithm first connects all nodes having an equal value of the id attribute (mapping by id). In this
example, only the reaction nodes in both model versions carry an identical id attribute. Consequently, this
step adds one mapping. Mapped nodes then trigger a mapping of the parent nodes (bottom-up propagation).
In this case, the mapping of the reaction nodes entails a mapping of the listOfReactions nodes in both
documents. Subsequently, BiVeS evaluates the previously calculated signatures and maps equal subtrees.
Since nothing has changed in the subtrees rooted in the kineticLaw nodes, they are mapped onto each
other. BiVeS then searches for mapped nodes which have children without a mapping (optimisation). Here,
the node reaction is mapped, but its children are not, which triggers the creation of a distance matrix.
Since the annotation nodes in both trees are equal the corresponding matrix element is 0. Same applies
to the listOfReactants and listOfProducts nodes. All other elements in this matrix are ∞. Therefore,
BiVeS adds three additional mappings. The optimisation phase recursively applies this procedure to all
the children. First, it continues with a recursive mapping of the nodes in the annotation subtree. It stops
at the rdf:li nodes, because these nodes have nothing in common but their tag names. The algorithm
will not connect them. Second, BiVeS finds three unmapped children below the listOfReactants nodes
(the speciesReference nodes representing Cyclin in V1 and Cyclin/Cdc2 in V2). While the computed
distance between Cyclin nodes is 1

3 (the value of one attribute differs), the distance between the Cyclin and

8budhat.sems.uni-rostock.de
9cytoscape.github.io/cytoscape.js
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(a) Highlighted Reaction Network

(b) Report

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<bives type="fullDiff">

[..]
<move>

<node id="8" newChildNo="4" oldChildNo="5"
newParent="../listOfReactions[1]/reaction[1]"
newPath="../kineticLaw[1]"
oldParent="../listOfReactions[1]/reaction[1]"
oldPath="../kineticLaw[1]"/>

</move>
</bives>

1

2

3

4

5

6

7

8

9

10

11

(c) XML encoded delta

Figure 3. Outputs as generated by BiVeS
and available from BudHat. All three figures
show the differences between versions June 2007
and November 2013 (cf. Figure 1). The reaction
network (a) and the report (b) present the
differences in a human readable format. The
XML encoded delta (c) allows for further
processing by computers. The modifications
described in Figure 4 are highlighted in orange.
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Version V1: June 2007
<listOfReactions>

<reaction id="R3" metaid="metaid_0000063">
<annotation>

<rdf:RDF>
<rdf:Description rdf:about="#metaid_0000063">

<bqbiol:isVersionOf>
<rdf:Bag>

<rdf:li rdf:resource="http://
www.geneontology.org/#GO:0030332"/>

<listOfReactants>
<speciesReference species="cyclin"/>

<listOfProducts>
<speciesReference species="dimer"/>

<listOfModifiers>
<modifierSpeciesReference species="cdc2"/>

<kineticLaw>
<math>

<apply>
<times/>
<ci> k3 </ci>
<ci> cyclin </ci>
<ci> cdc2 </ci>

Mapping by ID Full Botom-Up Top-Down Optimization

Version V2: November 2013
<listOfReactions>

<reaction id="R3" metaid="metaid_0000063">
<annotation>

<rdf:RDF>
<rdf:Description rdf:about="#metaid_0000063">

<bqbiol:isVersionOf>
<rdf:Bag>

<rdf:li rdf:resource="http://
identifiers.org/obo.go/GO:0030332"/>

<listOfReactants>
<speciesReference species="cyclin" metaid="_818313"/>
<speciesReference species="cdc2" metaid="_818337"/>

<listOfProducts>
<speciesReference species="dimer" metaid="_818325"/>

<kineticLaw metaid="_818349">
<math>

<apply>
<times/>
<ci> k3 </ci>
<ci> cyclin </ci>
<ci> cdc2 </ci>

Figure 4. Example of a computed mapping. The figure shows the two versions V1 and V2 of the
highlighted reaction from Figure 3. The differently coloured lines visualise the mapping of entities
obtained when applying the four steps as described in Figure 2. Gaps between at rows on the left indicate
inserted items, gaps on the right denote deleted items.

Cdc2 nodes is 1 (no matching attributes). Therefore, a mapping between the speciesReference nodes of
the Cyclins is introduced. Third, a mapping between the speciesReference nodes (distance: 1

3 ) below
the listOfProducts nodes is detected. Eventually, the algorithm was able to find a mapping for most of
the nodes. The unmapped nodes rdf:li and speciesReference (for species Cdc2) in V2 correspond to
inserts, and the unmapped node rdf:li as well as the subtree listOfModifiers correspond to deletes.
An extract of the delta produced from the sample versions in Figure 4 is given in Figure 3c (XML is
attached as S1 and S2). The shown delta describes the move of the subtree rooted at the fifth node below
the first reaction (first node with a tag name of kineticLaw). This subtree was moved and became the
fourth child of the same reaction node in version two (ll. 5).

The presented example is fairly small and straightforward. Yet it demonstrates how BiVeS easily
outperforms Unix’ diff. While BiVeS detects five deletes, eight inserts and one move, Unix’ diff needs 19
deletes and 16 inserts. Apparently, Unix’ diff is unable to meaningfully explain the modifications. The
full example and the output of both tools can be found in the supplementary material.

4 Discussion

Reproducibility of model-based scientific results has gained increasing attention [20–27]. Indeed, the
ability to reproduce results is a basic requirement for the advance of science [28]. However, the reuse of
models requires the accessibility and comparability of models and their versions. Model provenance and
version control enable the widespread use and application of models, saving time and costs during their
development [3]. Model repositories have been working towards this goal for the past decade and provide
access to computational models described in scientific publications. Support for version control, however,
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Novak
1993 12 updates 20 moves 80 inserts 20 deletes

Figure 5. Nature of changes in the CellML Model Repository. Each bar corresponds to a
version update. The y-axis shows the size of the delta on a logarithmic scale. The colours of each bar
show the composition of the deltas: Deletes in red; inserts in green; moves in blue; and updates in yellow.
The number of operations of each bar is plotted on a linear scale (as demonstrated for one update of the
Novak 1993 model, from 5. July 2010). The prominent blue band represents the large number of move
operations identified by BiVeS. All data is taken from CellML Model Repository, all releases till April
2014. The plot includes all transitions between versions with at least 10 operations.

is still limited. Existing implementations rely on standard version control systems and do not consider the
specific requirements of modelling in the domain of computational biology.

BiVeS improves difference detection for your model versions. Standard formats describing
computational models in biology are based on XML. Changes in versions of these models are typically
computed with Unix’ diff, which performs badly on XML documents because it uses a line based
algorithm [29]. However, Unix’ diff uses a line based algorithm [29] and therefore performs badly on XML
documents. BiVeS, on the other hand, is designed to respect the characteristics of XML documents and
to produce meaningful deltas. For example, it recognises the models’ hierarchical structures (Figure 4).
Furthermore, it ignores white spaces, such as indentation, which generally do not affect the model’s
behaviour. Finally, it ignores the specific order of attributes in an entity. Figure 6 compares the deltas as
obtained by Unix’ diff and BiVeS. To generate the data, we compared all versions of publicly available
models from BioModels Database (top row) and the CellML Model Repository (bottom row), cf. Table 1.
The boxplots on the left hand side of Figure 6 show that BiVeS needs fewer operations than Unix’ diff to
transfer one version of a model into another (avg. number of operations needed by BiVeS —Unix’ diff:
CellML Model Repository 349.5282—480.249; BioModels Database 434.825—1977.210). The scatter plots
on the right hand side of Figure 6 confirm this trend.

One explanation, why BiVeS needs less operations than Unix’ diff, is that BiVeS recognises moving
entities. For example, if the sequence of reactions changes, Unix’ diff merely detects insert and delete
operations. Lets assume the reaction from Figure 4 gets moved to a different location in the document.
Unix’ diff would report up to 21 inserts and 21 deletes. In contrast, BiVeS recognises this modification as
a single move operation. Indeed, move operations occur often, as shown in Figure 5. As the prominent
blue band indicates, most version updates (72%) in the CellML Model Repository include at least one
move operation. Moreover, 64% of these updates contain more than 5 moves.

In addition, we studied the ratio of direct and implicated operations. Deleting an entity, for instance,
is a direct operation. The subsequent deletion of its attributes is triggered and, thus, an implicated
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Figure 6. Comparison of operations needed by Unix’ diff and BiVeS. The top row displays
results obtained from models of the CellML Model Repository (12936 publicly available model
transitions) and the bottom row displays results obtained from models of BioModels Database (9148
publicly available model transitions). On the left hand side bloxplots show the frequency of number of
operations needed by Unix’ diff and BiVeS. In addition, the operations as reported by BiVeS are divided
into direct and implicated operations. On the right hand side, a scatterplot visualises the number of
operations needed by Unix’ diff and BiVeS for particular files.
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operation. In both datasets, the number of direct operations is higher than the number of operations
they implicate (Figure 6, bottom boxplots). This suggests that only a few modifications entail implicated
operations.

BiVeS helps you grasping the changes. BiVeS filters identified differences and drops all but
biologically and mathematically relevant changes. It thereby reduces the number of displayed changes to
the ones that are helpful in deciding between two versions of a model. Furthermore, BiVeS produces reports
and graphical representations of changes using open formats such as GraphML, HTML or Markdown, and
thereby helps to communicate changes. BudHat was developed to demonstrate this. Figure 3a shows that
the graphical representation supports the users in exploring the changes affecting the biological network.
Additionally, a comprehensive list of changes is compiled into a human readable report, as shown in
Figure 3b. Reports are particularly suitable for people interested in the details of mathematical changes.
BiVeS’ outputs can of course be used by other tools for further processing of results.

You can easily integrate BiVeS with your tools. BiVeS can be used in three different ways:
First, the BiVeS Java library provides a smart API for comparison of model versions. The differences
can then be obtained in various formats, as described earlier. This API is, for instance, used by BudHat,
providing plenty of example code. Second, BiVeS is available as a web service to facilitate the integration
with non-Java applications. The corresponding package can be installed on Java based web servers, such
as Apache Tomcat10. The Functional Curation11 project of Chaste [30], for example, uses the BiVeS web
service to track the evolution of models uploaded to their system. Third, the library is shipped with a main
class and, therefore, it can be executed on a command line. The data management platform SEEK [31],
for example, implemented support for model version control calling BiVeS on a separate command line.
The web site at sems.uni-rostock.de/bives offers further information about the three implementations,
including examples, how-tos, the source code, and binaries of our tools. Researchers who do not work with
one of the above data management tools may explore BiVeS’ capabilities in our demonstrator BudHat.
BiVeS currently supports SBML and CellML, but it could also be extended towards other XML-based
exchange formats such as NeuroML [32] or PharmML [33]. Moreover, BiVeS could improve version control
of simulation descriptions (e. g., differences between two simulation setups encoded in the Simulation
Experiment Description Markup Language [25]) and associated results (e. g., encoded in the Numerical
Markup Language12).

BiVeS improves the detection of differences between versions of models in SBML or CellML format.
Returning to the seven W-questions from the introduction, BiVeS contributes to the What and How as
defined in [12]. The What refers to content related events, such as modifications of parameter values in
the model, and non-content related events, such as the upgrade to a new SBML version. In addition,
BiVeS tells you How the What has changed. There is scope for further extensions to provide hypotheses
for the Why.

5 Supporting Information

• File S1. Model Version V1 from Figure 4. Extracted reaction R3 from BIOMD0000000107,
release number 8 (June 2007) of BioModels Database.

• File S2. Model Version V2 from Figure 4. Extracted reaction R3 from BIOMD0000000107,
release number 25 (June 2013) of BioModels Database.

• File S3. Unix’ diff on S1 and S2. Differences between S1 and S2 obtained by executing Unix’
diff with diff S1.xml S2.xml > S3.xml.

10tomcat.apache.org
11chaste.cs.ox.ac.uk/FunctionalCuration
12http://code.google.com/p/numl/
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• File S4. BiVeS on S1 and S2. Differences between S1 and S2 obtained by executing BiVeS with
java -jar BiVeS-fat.jar S1.xml S2.xml > S4.xml.
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