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Several nutrient-signaling pathways that extend life span have been described in model
organisms. Thus, parallel and redundant signaling pathways that are similar across species
might be subject to experimental manipulation. Here, we develop a PCR-based technique
for testing the hypothesis that mitotic accumulation of extra-chromosomal ribosomal DNA
circles might also determine life span in human cells. Using resveratrol, a phytochemical
that counters age-related signs, we find treatment-dependent subcellular accumulations of
extra-chromosomal 5S ribosomal DNA in human cell lines. These data suggest an
association between DNA circles and intrinsic aging and demonstrate the utility of a PCR-
based technique for studying the accumulation of dysfunctional molecules that promote
senescence.
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1. Introduction

Aging appears to be plastic and can be manipulated by genetic and nutritional
intervention.  For  example,  activation  of  the  silent  information  regulator  T1  (SIRT1)
pathway increases the life span of model organisms such as yeast and mice. SIRT1 is a
NAD+-dependent deacetylase that directly links transcriptional regulation to intracellular
metabolism  (Howitz  et  al.,  2003).  Among  the  signaling  cues  that  activate  SIRT1
pathways  is  the  polyphenol  molecule,  resveratrol.  SIRT1  activation  by  resveratrol
triggers  a  broad  range  of  transcription  factors  and  co-regulators  that  mediate  key
mechanisms in the cell cycle, cell growth and apoptotic and autophagic programs of cell
death  (Baur,  2010;  Torres  et  al.,  2008;  Torres  et  al.,  2011).  Other  intracellular
mechanisms activated by SIRT1-dependent pathways are those related to DNA stability
and DNA replication. For example, using the budding yeast (Saccharomyces cerevisiae)
as  a  model  for  elucidating  signaling  pathways  that  control  life  span,  Sinclair  and
Guarente  (1997)  showed  that  increased  activity  of  SIR2  (the  yeast  ortholog  of
mammalian SIRT1) suppresses the gradual accumulation of extra-chromosomal circular
DNA (eccDNA). As its name implies, eccDNA are circular molecules propagated extra-
chromosomally from repetitive and non-repetitive genomic regions of various species
including, humans (Cohen and Segal,  2009;  Cohen et  al,  2010;  Flores et  al.,  1988;
Meyerink et al. 1979). 

As in yeast, human ribosomal DNA (rDNA) is also organized in tandem rDNA
repeats with five 43 kb rDNA (rna45s5) clusters encoding a large 45S rRNA precursor
that is post-transcriptionally processed into 28S, 18S and 5.8S rRNAs (Henderson et al.,
1972; Gonzalez and Sylvester, 1995).  5S rRNA is encoded by a separate 5S rDNA
(rn5s1) cluster with 100-150 copies of a 2.2kb rDNA tandem repeat (Little and Braaten,
1989; Sorensen and Frederiksen, 1991). Investigations into the genomic architecture of
human  rDNA  clusters  reveal  significant  meiotic  re-arrangement  of  about  11%  per
generation per gene cluster (Strults et al., 2008), with 5SrDNA molecules undergoing
significant replicative steps (Cohen et al., 2010). In humans, SIRT1 expression is also
associated  with  rDNA  re-arrangements  suggesting  a  conserved  composition  and
function of anti-aging pathways. However, there is little experimental evidence for these
association pathways, in particular whether activation of SIRT1 or reduction of eccrDNA
could be considered for  the prevention of  specific  diseases.  In  addition,  there is  no
sensitive  platform  for  functional  screening  of  human  eccrDNA which  allows  for  the
precise  and  accurate  analysis  underlying  the  formation  of  eccrDNA molecules.   To
address this technical limitation, we developed and validated a PCR-based protocol in
combination with  a nuclear  transport  assay for  the quantitative analysis  of  eccrDNA
molecules. To further support its practical use, we tested whether this technique could
identify the occurrence of additional eccDNA species in human cell lines.  

 

2. Materials & Methods
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2.1 Cell Culture, Drug Treatment and Collection of Human Cells
The following adherent human epithelial  cell  lines were grown under standard

culture conditions at 37oC with 5% CO2: HEK-293 (embryonic kidney, CRL-1673); SH-
SY5Y (neuroblastoma, CRL-2266) and; MCF7 (mammary adenocarcinoma, HTB-22),
(ATCC, VA, USA). HEK-293 and MCF7 cells were grown in Dulbecco’s Modified Eagle
Medium (DMEM) and SH-SY5Y in a 1:1 mixture of Eagle's Minimum Essential Medium
(EMEM), and F12 Medium. Additionally, all  media were supplemented with 10% fetal
bovine serum, 1% penicillin/streptomycin,  1% glutamine (Glutamax),  1% anti-mycotic
(Fungizone)  and  1%  non-essential  amino  acids.  Cells  were  propagated  1:10  using
0.25% (w/v) Trypsin/0.53 mM EDTA upon reaching a cellular density of approximately
70% - 80% (tissue culture reagents and supplements: Invitrogen, Carlsbad, CA, USA).
Experiments were conducted with cells on standard 6-well multi-well plates. Resveratrol
was dissolved in DMSO at a concentration of 100 mM, aliquotted and stored in light-
proof  containers at  -  20 °C. Resveratrol  treatment (50 µM, final  concentration),  was
initiated at a cellular confluence level of about 70% for 6h or 48h. For nuclear transport
studies, the lectin wheat germ agglutinin (WGA) was used to block nuclear transport (0.1
mg/ml,  final  concentration;  12h)  and  the  lectin  concavalin  A (ConA)  as  control  (0.1
mg/ml,  final  concentration;  12h).  At  the  end of  a  given treatment  period,  cells  were
washed with 1X PBS, scraped off their dishes and collected by centrifugation for further
analysis or stored at -80 °C. 

2.2 Resveratrol-dependent Changes in Gene Expression using Quantitative PCR
(QPCR)

Following  48h  of  resveratrol-treatment  of  human  cells  (HEK-293,  MCF7,  SH-
SY5Y) on multi-well dishes, cells were collected and total RNA was prepared using the
RNeasy  RNA-isolation  system/Qia  shredder  according  to  the  manufacturer’s
specifications (Qiagen, Valencia, CA, USA) and as previously described by our group
(Torres et al.,  2008). RNA concentrations and integrity were determined  via standard
spectrophotometry and agarose gel-electrophoresis. Reverse transcription of RNA into
complementary cDNA was carried out  with the Superscript  III  First  Strand Synthesis
System  for  RT PCR  (Invitrogen,  Carlsbad,  CA,  USA).  QPCR  was  conducted  on  a
Mastercycler ep gradient S (Eppendorf  AG, Hamburg, Germany)  using Power SYBR
Green PCR Master Mix (Applied Biosystems, Foster City, CA, USA) with a total volume
for each sample of 20 µl. Gene-specific DNA primers were either used as previously
reported (Murayama et al., 2008) or designed using the integrated DNA Technologies
Primer Quest tool (IDT, Coralville, IA, USA). Expression was accessed for  sirt1,  rn5s1
(5SrRNA) and  rna45s5 (45S pre-ribosomal RNA) using the following primers:  β-actin
forward: 5’-CAG CCA TGT ACG TTG CTA TCC AGG-3’;  β-actin reverse: 5’-AGG TCC
AGA CGC AGG ATG GCA TG-3’; rn5s1 forward: 5’-GAT CTC GTC TGA TCT CGG AAG
CTA AG-3’; rn5s1 reverse: 5’-AAA GCC TAC AGC ACC CGG TAT T-3’; rna45s5 forward:
5’-GAA CGG TGG TGT GTC GTT C-3’ rna45s5 reverse: 5’-GCG TCT CGT CTC GTC
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TCA CT-3’; sirt1 forward: 5’-CTG TAG ACT TCC CAG ATC TTC CAG-3’; sirt1 reverse:
5’-GTG ACA GAG AGA TGG CTG GAA TTG-3’.

2.3  Extraction  of  total  eccDNA and  Relative  Quantification  of  eccDNA Circles
using QPCR

Resveratrol-treated  HEK-293,  MCF7  and  SH-SY5Ycells  and  DMSO  (solvent)
controls were separated into their nuclear and cytoplasmic fractions according to the
manufacturer’s  instructions  (CelLytic  Nuclear  Extraction  Kit,  Sigma,  St.  Louis,  MO,
USA).  Both fractions were exposed to  standard Na-acetate/ethanol  precipitation and
carefully re-suspended in 100 µl TE buffer. To eliminate DNA chromosomes and linear
fragments,  individual  samples  were  purified  with  the  MinElute  Reaction  Cleanup Kit
(Qiagen,  Valencia,  CA,  USA).  Then,  samples  were  sequentially  treated  with
exonuclease III (20U/µl, 1h, 37oC), RNase A (50 µg/ml, 30 min, 37oC) and proteinase K
(100µg/ml, 1h, 37oC) followed by another MinElute Reaction Cleanup purification and a
final elution in 20 µl of a 10 mMTris buffer, pH 8.5. QPCR was carried out as described
above with the same DNA primer pairs for rn5s1 and rna45s5 only this time measured
against  sstI satellite and  alu repeats (Cohen et al., 2010):  sstI forward: 5’-GTG GTG
GTG CAT GGC CCC C-3’; sstI reverse: 5’-GAG CTC CAG GAT CAC CAC AGC-3’; alu
forward: 5’-GGC GGG CGG ATC ACG AGG TCA G-3’; alu reverse: 5’-CCC GGG TTC
ATG CCA TTC TCC TG-3’. 

2.4 Isolation and PCR-amplification of Nuclear and Cytoplasmic eccDNA
For the isolation of eccDNA, HEK-293 cells were grown to confluence on 6-well

multi-well  plates  and then separated into  nuclear  and cytoplasmic fractions with  the
CelLytic  Nuclear  Extraction  Kit  (Sigma,  St.  Louis,  MO,  USA)  followed  by  Na-
acetate/ethanol precipitation as described above. All samples were sequentially purified
and enzymatically treated with exonuclease III, RNase A and proteinase K as previously
described. To linearize 5SrDNA circles (there is a single BamHI restriction site) one half
of each sample (10 µl) was treated with BamHI for 4h, 37oC while the other half was
sonicated 3 times with  10s pulses on wet  ice (30% maximum power, 2mm tip;  Cell
Disruptor, Heat-Systems Ultrasonics, Plainview, NY, USA). Samples were then purified
using the MinElute Reaction Cleanup Kit (see above) and eluted in a final volume of 10
µl. To generate blunt ends, samples were treated with T4-DNA polymerase and dNTPs
(Roche Applied Science, Indianapolis,  IN, USA) for 20 min at 16oC and immediately
purified with the MinElute Reaction Cleanup Kit. EcoRI adaptor oligonucleotides were
ligated  to  the  linearized  and  blunt-ended  DNA pieces  for  18h  at  16oC and  excess
adaptors subsequently removed by gel filtration using Sephacryl  S-400 spin columns
according to the manufacturer’s instructions (both: Universal Riboclone cDNA Synthesis
System, Promega, Madison, WI, USA). Derivatives of eccDNA were then amplified using
a high fidelity PCR system (Expand 20 kb plus PCR System, Roche Applied Science,
Mannheim, Germany) and DNA primer matching the EcoRI adaptor sequence (forward
and  reverse  primer:  AAT TCC  GTT  GCT  GTC  G;  Promega,  Madison,  WI,  USA).
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Reactions destined for DNA cloning and sequencing were exclusively recruited from the
sonicated samples and subject to PCR elongation reactions at 4 min. Reactions used for
Southernblot  analysis  were  recruited  from  sonicated  as  well  as  BamHI  restricted
samples and subject to 15 min PCR elongation reactions. 

2.5 Southern blot Analysis of eccDNA
Linearized  and  amplified  eccDNA  samples  were  slowly  spread  on  ethidium

bromide-stained 0.8% agarose gels (20-30mA). Then, gels were bathed in 0.25M HCl
for 15min followed by transfer solution (0.5 M NaOH, 1.5 M NaCl) for 30 min before
being  assembled  for  alkaline  upward  DNA  transfer  onto  a  BrightStar-Plus  nylon
membrane (Ambion/Life Technologies, Carlsbad, CA, USA) with transfer solution for 12-
18h. After a 5 min-bath in neutralizing solution (0.5 M Tris•CL, pH8.0), the membranes
were dried and baked at 80  oC between blotting paper for 3h. Then, blots were pre-
hybridized with  UltraHyb  solution  (Ambion/Life  Technologies,  Carlsbad,  CA,  USA)  at
42oC for 30min and then hybridized for 12-16h with a PCR-generated and gel-extracted
DNA probe specific for rDNA (Strults et al., 2008) labeled using the BrightStar Psolaren-
Biotin System (Ambion/Life Technologies, Carlsbad, CA, USA). For signal evaluation,
autoradiographs  were  scanned  and  images  imported  into  Adobe  Photoshop  CS5.1
(Adobe Systems Incorporated, Mountain View, CA).

2.6 Identification and Screening of eccDNA in HEK-293 Cells
Linearized and amplified eccDNA samples were briefly separated on ethidium

bromide-stained  1.5%  agarose  gels  from  which  a  fragment  cluster  ranging  from
approximately  100  bp  –  4kb  was  removed  using  the  QIAquick  Gel  Extraction  Kit
(Qiagen,Valencia,  CA, USA). Purified DNA was ligated into the pGEM-T Easy vector
system (Promega, Madison, WI, USA) and transformed into chemically competent  E.
coli DH5α  (Invitrogen/Life  Technologies,  Carlsbad,  CA,  USA).  Plasmid  DNA  from
ampicillin-resistant  and  beta-galactosidase  negative  trans-formants  (blue-white
screening) was treated with EcoRI restriction endonuclease for 1h at 37oC and analyzed
via standard agarose gel electrophoresis (1.5%) to confirm presence of an insert. Only
confirmed clones were  selected for  DNA sequencing using  standard  T7 sequencing
primer (T7 RNA polymerase promoter). DNA sequences were screened for identity and
genomic  origin  with  the  “Basic  Local  Alignment  Search  Tool”  (BLAST;
http://www.ncbi.nlm.nih.gov/blast/).  To determine  a  potential  driving-force  for  eccDNA
mobilization,  all  confirmed  sequences  were  analyzed  with  the  repetitive  sequence
screening tool CENSOR (Kohany et al. 2006; http://www.girinst.org/censor/index.php).

3. Results and Discussion

While yeast SIR2 has a stabilizing effect on the organism’s rDNA locus, the exact
role  of  SIRT1  on  human  eccrDNA dynamics  is  unknown.  In  line  with  our  previous
findings demonstrating a close association of SIRT1 with specific human DNA targets
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(Torres et al., 2008; Torres et al., 2011), SIRT1 has been linked to the transcriptional
regulation of rna45s5 by the energy-sensing eNoSC protein complex (Murayama et al.,
2008; Song et al., 2013). In order to understand the epigenetic regulation of rn5s1, we
determined the transcriptional activity of rn5s1 and rna45s5, as well as sirt1, in HEK-293
cells following resveratrol treatment for 48h (Fig. 1A). Consistent with our previous work,
we found that the transcriptional activity of sirt1 increased by 1.9-fold (P = 5x10 -6), while
expression of rn5s1 increased by 3.5 fold (P = 0.02) and rna45s5 by 1.8 fold (P = 0.03).
Parallel experiments in MCF7 and SH-SY5Y cells showed similar outcome trends, but
failed to reach statistical significance at the P < 0.05 level (data not shown). Whereas
expression of rn5s1 has not been studied in this context, the expressional increase at
rna45s5 loci is not consistent with findings related to the eNoSC protein complex, which
is associated with heterochromatin formation and transcriptional repression (Murayama
et  al.,  2008).  This  discrepancy  may  be  related  to  the  fact  that  Murayama’s  group
manipulated the nucleomethylin component of the eNoSC protein complex, whereas we
manipulated SIRT1 through resveratrol treatment. It should be noted, however, that it is
not clear what the cellular dynamics are between SIRT1 and rna45s5 or rn5s1 in human
cells. In gain-of-function mouse models of disease, over-expression of SIRT1 increases
homologous recombination of  the entire rodent genome (Palacios et al.,  2010).  This
suggests  that  DNA  stability/mobility  depends,  in  part,  on  the  activation  of  SIRT1-
dependent  protein  complexes  and  signaling  pathways,  particularly  in  those  cells
involved in nutrient metabolism and cellular growth. 

Due  to  the  low  abundance  of  human  eccrDNAs,  we  sought  to  develop  a
quantitative PCR-based approach for maximizing eccrDNA content. Investigations into
appropriate internal standards for linearized eccDNA molecules revealed human SstI
satellite repeats as well as Alu repeats as potential candidates. The SstI family consists
of 2.5 kb repeating units with approximately 400 copies within genomic clusters (Epstein
et  al.,  1987).  Alu  repeats  are  approximately 280bp long and are the most  common
repetitive  element  with  about  1  million  copies  per  haploid  genome.  Their  average
genomic  separation  of  only  about  3  kb  increases  their  potential  for  genomic  re-
arrangement  and  eccDNA formation  in  mammalian  cells.  Such  non-tandem repeats
have previously been detected in eccDNA pools of human cells (Jones & Potter 1985;
Riabowol et  al.,  1985).  As noted earlier, however, comprehensive characterization of
eccDNAs has been severely hampered due to their relatively low abundance in human
cells and tissues (Cohen et al., 2010), and the lack of convenient and high-throughput
readout. When comparing Alu-eccDNA or SstI-eccDNA to β-actin expression in HEK-293
cells using our novel eccDNA isolation/cloning strategy in conjunction with quantitative
PCR  (QPCR),  we  reliably  detected  robust  levels  of  Alu-eccDNA  across  cellular
compartments, whereas nuclear SstI-eccDNA was detectable in most cases but rarely in
the cytoplasm (data not shown). To ensure that the internal standard was unaffected by
our  independent  variable,  resveratrol-treated  cells  (50  µM  in  culture  medium)  and
controls were separated into their cytoplasmic and nuclear fractions and processed to
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isolate eccDNA and cDNA (via reverse transcription of RNA). Comparing Alu-eccDNA
concentration against β-actin expression of the same cells resulted in a relative Alu-
eccDNA index which was independently derived for resveratrol-treated and -untreated
cells. We found that resveratrol treatment did not significantly affect the concentration of
Alu-eccDNA in either the nuclear or cytoplasmic compartment (Fig. 1B). We therefore
continued using Alu-eccDNA as an internal standard in subsequent experiments.

Next,  we  tested  if  resveratrol-dependent  SIRT1 activation,  which  had  caused
significant  transcriptional  increases  at  both  types  of  rDNA  loci,  could  also  trigger
concomitant changes in the concentration of cellular eccrDNA from the aforementioned
loci (Fig. 2A-C). For this experiment, we used either total nuclear or cytoplasmic eccDNA
for QPCR with primers specific for rn5s1, rna45s5, and the Alu consensus sequence. In
HEK-293,  MCF7  and  SH-SY5Y  cells,  the  abundance  of  rn5s1-eccrDNA  in  the
cytoplasmic fraction consistently increased by 2.2-fold (P = 0.01), 3.4-fold (P = 0.002)
and 1.5-fold (P = 0.048), respectively. At the same time, we found that rn5s1-eccDNA in
the nuclear fraction of HEK-293 cells was significantly decreased by about 60% (P =
0.01), but unaffected in the nuclear compartment of MCF7 and SH-SY5Y cells. Changes
in rna45s5-eccrDNA were not statistically significant under any experimental condition
(data not shown). 

To independently confirm the presence of rn5s1-eccrDNA in HEK-293 cells, we
analyzed subcellular eccDNA extracts amplified with long-range PCR through Southern-
blot analysis (Fig. 2D) using a previously published and labeled rn5s1-eccrDNA probe
for  detection  (Strults  et  al.,  2008;  Cohen  et  al.,  2010).  Initially  in  this  process,  the
eccDNA  samples  had  either  been  sonicated  or  treated  with  BamHI  restriction
endonuclease (rn5s1-eccrDNA has a unique BamHI restriction site) to open up circular
DNA. All samples showed a hybridization signal in the 2.2 kb range which is consistent
with  the  published  length  of  one  rn5s1-eccrDNA monomer  (Little  & Braaten,  1989).
Cytoplasmic but not nuclear samples displayed an additional signal in the higher DNA
fragment size range at approximately 12 kb. Due to an initial filtration step, such large
DNA piece  could  have  been  only  extracted  if  they  were  supercoiled  or  otherwise
condensed.  However,  the  specificity  of  the  signal  indicates  multicopy rn5s1eccDNA
which  could  result  from  recombination-dependent  concatemeric  rn5s1eccrDNA
replication  as  previously  described  in  Drosophila  (Cohen  et  al.,  2005).  Both,  the
resistance  to  full  BamHI  restriction  and  cytoplasm-specific  location  of  higher-order
rn5s1-eccrDNA need to be addressed in future studies.

To  further  investigate  the  observed  resveratrol-induced  cytoplasmic  rn5s1-
eccrDNA increase in HEK-293 cells, we sought to distinguish between nuclear import
and cytoplasmic replication. We thus implemented a 12h treatment regimen involving
combinations of resveratrol (50 µM) and WGA (0.1mg/ml) to block nuclear transport, and
control lectin ConA (0.1mg/ml) (Fig. 3 A, B). In cytoplasmic fractions, we confirmed an
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average increase of 180% for   rn5s1-eccDNA (P = 0.01) and 100% (P = 0.01) above
control levels with resveratrol alone and in combination with ConA, respectively. WGA
alone  significantly  reduced  cytoplasmic  rn5s1-eccrDNA to  about  50% (P  =  0.03)  of
control  levels,  whereas WGA in  combination with  resveratrol  restored levels  to  80%
baseline.  Resveratrol  treatment  without  ConA  depleted  nuclear  rn5s1-eccrDNA
significantly to about 30% (P = 0.01) of the control baseline. Treatment with WGA or
WGA in combination with resveratrol resulted in rescue frequencies of between 70%-
80% which were, however, not statistically significant. These results indicate transport of
rn5s1-eccrDNA across the nuclear envelope but do not rule out compound tributaries,
such as cytoplasmic rn5s1-eccDNA amplification which needs yet to be investigated.

While  testing  our  novel  isolation  protocol  in  combination  with  standard
recombinant  DNA  technology,  we  were  able  to  capture  and  analyze  48  eccDNA
molecules ranging from 420 bp to 870 bp (average: 636 bp). We traced eccDNAs to
chromosomes 1, 2, 4, 5, 6, 8, 9, 11, 12, 13, 14, 17, 20, X (HEK-293 cells are female)
without showing any particular prevalence and only 1 duplication. Sequence analysis
revealed that  the majority of  eccDNA came from unique, non-repetitive genomic loci
(Fig.  4).  Three of  the  identified  sequences originated from tandemly arranged gene
clusters: 5S rDNA (rn5S1) with an average copy number of 98 repeats (Stults et al.,
2007) and, once again, adding validity to our QPCR findings; protocadherin-α (pcdhα1)
with  15  repeats  (Wu and  Maniatis,  1999)  and  sperm protein  4  associated  with  the
nucleus on the X chromosome (spanx4) with 5 repeats (Kouprina et al., 2004). A total of
3 sequences were mitochondrial. The majority of the 45 non-mitochondrial sequences
(30) were intergenic, 12 mapped to intron/regulatory region boundaries and 3 to coding
exon/intron boundaries. The identity and characteristics of all 16 eccDNAs mapping to
specific  genes,  including  rn5s1  (~300  bp  upstream of  transcriptional  start  site),  are
summarized (Tab. 1). Through further analysis with the repetitive DNA sequence mining
tool  CENSOR (Kohany et  al.,  2006),  we found that  the  majority of  the 33 genomic
sequences (31 unique; 2 tandem repeats) included 1-4 short repetitive DNA elements
(1.7  on  average)  of  which  91%  are  defined  as  transposable  elements  and  9%
interspersed DNA repeats (aluS, aluJ). Of the transposable elements, 94% were class-I
retrotransposons,  including  long  interspersed  nuclear  elements  (LINEs;  includes  l1),
short interspersed nuclear elements (SINEs; most abundant class in mammals; includes
aluJb, aluJo, aluSc) and endogenous retroviruses (erv1, erv2). Only 6% were class-II
non-autonomous DNA transposons (hAT superfamily). We believe that the abundance of
these elements  in  the genome could contribute  to  the formation and mobilization of
eccDNA  via  homologous  recombination  (Smit,  1999).  The  3  eccDNA  clones  that
overlapped with actual coding exons did not include any such repetitive DNA elements
and therefore belong to  the recently discovered class of microDNAs (Shibata et  al.,
2012). There is a possibility, that the identified eccDNAs are byproducts of discontinuous
lagging  strand  synthesis  during  replication.  Shibata  and  colleagues  (Shibata  et  al.,
2012), however, were able to link the formation of certain microDNAs with corresponding
micro-deletions making a case for excision from the genome. The finding of rn5S1 and
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other  tandemly  arranged  genes  in  our  eccDNA isolates  is  in  line  with  our  newly-
developed  QPCR-based  approach  and  in  line  with  our  Southern  blot  findings.  The
abundance of interspersed repeats and transposons is suggestive of an involvement in
the mobilization of eccDNAs. This and their potential involvement in genetic mosaics
and partial aneuploidy need to be investigated in subsequent studies. The confirmation
of  microDNAs  in  human  eccDNA  pools  opens  the  possibilities  of  studying  these
molecules using our experimental protocols.  

4. Conclusions

There are several competing hypotheses about human aging, the inevitability of
death and underlying cellular and molecular mechanisms. Here, we are introducing a
novel  PCR-based  approach  with  cultured  human  cells  and  reveal  the  subcellular
dynamics of rn5s1-eccrDNA in response to resveratrol with important analogies to an
aging paradigm involving eccDNA accumulation in yeast. These findings point to rn5s1-
eccrDNA as a potential candidate in the search for a stimulus factor that regulates age-
related  maintenance  of  telomeres  and  other  genomic  mechanisms  responsible  for
organismic  senescence and death  and also  points  to  the possibility  of  using rn5s1-
eccrDNA  as  therapeutic  target  for  the  treatment  of  age-related  pathologies.  The
unexpected finding of other eccDNA molecules, such as the recently discovered class of
microDNAs, emphasizes the dynamics of the human genome which may bring benefits
to some DNA loci but detrimental damage others.
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1
Figure 1

Figure 1 Resveratrol treatment induces the expression of sirt1 and rDNA genes and does not

alter Alu-eccDNA in HEK-293 cells. A) QPCR-analysis reveals increases in relative gene

expression for sirt1 (1.9-fold), rna45s5 (1.8-fold) and rn5s1 (3.5-fold) with resveratrol (R)

treatment (50 µM in DMSO, 48h) compared to control (C) conditions (DMSO). B) The same

treatment has no significant effect on Alu-eccDNA in either nuclear or cytoplasmic

compartments of HEK-293 cells. The relative Alu-eccDNA index compares Alu-eccDNA with β-

actin expression of the same treatment group via QPCR. Values are means ± SEM. *

indicates statistical significance of annotated P; n = 20 for all groups.
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2
Figure 2

Figure 2 Resveratrol treatment significantly increases cytoplasmic rn5s1-eccDNA in human

cells. QPCR analysis (relative to Alu-eccDNA) comparing resveratrol (R) treatment (50 µM in

DMSO, 48h) with control (C) conditions (DMSO) reveals significantly increased rn5s1-eccDNA

in the cytoplasm of A. HEK-293 cells (2.2-fold), B. MCF7 cells (3.4-fold) and C. SH-SY5Y cells

(1.5-fold). Concomitantly, rn5s1-eccDNA decreases significantly (-60%) in HEK-293 cells

nuclei but not in other cells. D. Southern-blot using a gene-specific, labeled DNA probe

confirms rn5s1eccDNA in HEK-293 cells (à). Cytoplasmic and nuclear eccDNA extracts are

linearized (sonication or BamHI), electrophoresed and blotted. Lower bands are consistent

with 2.2kb rn5s1eccDNA monomers. Only cytoplasmic samples display an additional signal

around 12kb consistent with rn5s1eccDNA multimers. QPCR-values are means ± SEM. *

indicates statistical significance of annotated P; n = 20 per group (A-C).
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3
Figure 3

Figure 3 Increases in cytoplasmic rn5s1-eccDNA in HEK-293 cells involve nuclear transport.

QPCR analysis (relative to Alu-eccDNA) of rn5s1-eccDNA under various conditions relative to

untreated controls (baseline). Chemical reagents used: Resveratrol (R); concavalin A (ConA;

control lectin); wheat germ agglutinin (WGA; nuclear transport inhibitor). A. Nuclear extracts

show a significant resveratrol-dependent rn5s1-eccDNA reduction (-70%; R) which is WGA-

sensitive (-20%; R&WGA). B. With resveratrol, cytoplasmic rn5s1-eccDNA surges (+180% R;

+100% R&ConA) and returns to baseline with WGA (R&WGA). WGA by itself reduces baseline

levels of rn5s1-eccDNA significantly (-50%). Values are means ± SEM. * indicates statistical

significance of annotated P; n = 12 per group.
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4
Figure 4

Figure 4. HEK-293 cells display genome-wide formation of eccDNA. This flowchart identifies

the different types of eccDNA found in HEK-293 cells and classifies short repetitive DNA

elements included. Our novel isolation and cloning strategy identified 48 eccDNA clones of

which 13 map to coding genes (see Table 1). The majority of the non-mitochondrial clones

(31 with tandem repeats and 3 with unique sequences) contain 1-4 short repetitive DNA

elements (with an average of 1.7) possibly responsible for their mobilization. The majority

(91%) encode transposable elements with class-I retrotransposons (94%; LINE, SINE, ERV and

Alu elements) being dominant over class-II DNA transposons (6%; hAT). The minority (9%)

includes interspersed repeats such as aluS and aluJ.
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Table 1(on next page)

Table 1

Table 1 Identification and characterization of eccDNA linked to specific genes. Overlapping

exons (ex) and introns (int) are sequentially numbered and the upstream (5’) position of the

untranslated region (utr) in rn5S1 is indicated. Genes and repetitive elements are

abbreviated according to standard convention. Other abbreviations: SINE: short interspersed

nuclear elements; hAT: a class-II DNA transposon superfamily; LINE: long interspersed

nuclear elements; ERV: endogenous retrovirus; IR: Interspersed repeat.
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 Gene Chromosome Contains Process Involvement Size [bp] Repetitive Element 

 acp6 1 int2 mitochondrial lipid biosynthesis 598 aluSc (SINE); mer5A1 (hAT) 
 cdh9 5 int5 promotes cell-to-cell adhesion 650 l1hS (LINE); lipmA2 (LINE) 
 snx24 5 int3 vesicular membrane transport 761 hervl (ERV) 

aldh3a2 17 ex3-int3 fatty alcohol oxidation 481 - 
bicD1 12 int2 cytoskeleton-based RNA sorting 781 aluS (IR); l1me1 (LINE) 
cpE 4 int1 neurotransmitter & peptide hormone production  700 l1mb8 (LINE) 

lacc1 13 int2  leprocy & Crohn's disease 560 aluJb (SINE) 
nfyb 12 int6 transcription factor (repressor) 460 aluJo (SINE) 

parva 11 int1 kidney development; F-actin binding 672 - 
pcdhα1 5 int3 neuronal cell-cell interaction 870 - 
plekhm3 2 int1 intracellular signal transduction 437 aluJo (SINE) 

rn5S1  1 5'utr ribosomal & mitochondrial function 661 hervip10fh (ERV) 
sash1 6 int19-ex20  tumor suppression 629 - 
specc1 17 int3 structural function 737 lipA8 (LINE) 
spy1 7 int3 cell-cycle regulation 708 aluJ(IR); aluJo (SINE) 
tdrd7 9 ex20-ex21 lens development 633 - 
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