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Proven examples of self-envenomation by venomous snakes, and especially instances of
death as a result of these events, are extremely rare, if not non-existent. Here we use
Region of Interest X-ray microtomography to investigate a putative case of fatal in-ovo
self-envenomation in the Egyptian saw-scaled viper, Echis pyramidum. Our analyses have
provided unprecedented insight into the skeletal anatomy of a late-stage embryonic snake
and the disposition of the fangs without disrupting or destroying a unique biological
specimen.
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Abstract 26 

Proven examples of self-envenomation by venomous snakes, and especially instances of 27 

death as a result of these events, are extremely rare, if not non-existent. Here we use Region 28 

of Interest X-ray microtomography to investigate a putative case of fatal in-ovo self-29 

envenomation in the Egyptian saw-scaled viper, Echis pyramidum. Our analyses have 30 

provided unprecedented insight into the skeletal anatomy of a late-stage embryonic snake and 31 

the disposition of the fangs without disrupting or destroying a unique biological specimen.  32 

 33 
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 37 

Background 38 

Snake venom is a potent mix of proteins and peptides, honed by millions of years of natural 39 

selection for rapid prey immobilisation (Casewell et al. 2013). Safely producing and storing 40 

this lethal arsenal within the body prior to its use creates obvious issues, and these have to 41 

some extent been overcome in snakes by the evolution of a specialised gland (the venom 42 

gland (Jackson, 2003; Weinstein, Smith & Kardong, 2009)) for storing venom and by 43 

production of inactive precursor proteins (zymogens) for many venom components 44 

(Shimokawa et al. 1996; Portes-Junior et al. 2014). The issue of whether a venomous snake is 45 

immune to its own venom is still largely unresolved, although there is some evidence of 46 

possible adaptations for resistance to self-envenomation (Denson, 1976; Smith et al, 2000; 47 

Takacs, Wilhelmsen & Sorota, 2001; Takacs, Wilhelmsen & Sorota, 2004; Tanaka-Azevedo 48 

et al. 2004; Vieira et al. 2008). Investigations of the available literature have failed to identify 49 
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any definitive examples of self-envenomation by a venomous snake, although such tales are 50 

prevalent on the internet, where they seemingly rarely cause death or long-term injury.  51 

Following some breeding experiments with Egyptian saw-scaled vipers (Echis pyramidum) in 52 

summer 2014, we found a single egg failed to hatch from a clutch of thirteen otherwise 53 

successful eggs. Examination revealed that the developing embryo had used its eggtooth to 54 

create slits in the eggshell (and was therefore within a few days of hatching) and, when 55 

opened, the egg contained a dead, almost-fully-developed snake, with some un-absorbed yolk 56 

(Figure 1a). A coil of the body was firmly located within the mouth (Figures 1b-1d), 57 

suggesting a possible case of in-ovo self-envenomation. To definitively prove this however, 58 

we needed to determine whether the fangs were penetrating the body cavity, ideally without 59 

disturbing the positioning of this unique specimen.  60 

High resolution X-ray microtomography (µCT, microCT) is a non-destructive method for 61 

imaging internal structures in three dimensions at micron level spatial resolution based upon 62 

the principle that X-ray attenuation is a function of X-ray energy and the density and atomic 63 

composition of materials being scanned. The result is a 3D  ‘tomogram’ (Maire & Withers, 64 

2014), generated from hundreds or thousands of individual 2D X-ray projections sampled at 65 

the detector while the specimen rotates between the fixed X-ray source and detector. The 66 

tomogram consists of a matrix of 3D isotropic voxels, each of which is assigned a grayscale 67 

value derived from a linear attenuation coefficient that relates to the density of the scanned 68 

materials (Landis & Keane, 2010; Cnudde & Boone, 2013). MicroCT resolution can be of the 69 

order of 100 times finer than medical CT scans (Ketcham & Carlson, 2001), enabling 3D 70 

imaging and analysis of smaller internal features, although resolution is related to specimen 71 

width. Successful filtered back projection reconstruction of the 3D data requires the entire 72 

sample width to be encompassed within each 2D projection or ‘field of view’ at all rotations 73 

(Kak & Slaney, 2001) and a typical X-ray detector panel in a laboratory microCT setup has a 74 
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width of around 1000-4000 pixels. For a detector with a width of 2000 pixels, the pixel size 75 

(and ultimately 3D voxel size of the reconstructed tomogram) is therefore w/2000, where w is 76 

the maximum width of the specimen.  77 

Conventional wisdom in microCT reconstruction states that only parts of the object 78 

illuminated by X-rays in all 2D projections images will be properly reconstructed i.e. the 79 

whole object should lie within the field of view for all rotations during the scan. However, 80 

this conventional approach produces scans of larger objects at a lower resolution. Region of 81 

Interest (RoI) tomography (Kyrieleis et al. 2011) offers the potential to ‘zoom in’ to 82 

particular areas of large specimens so as to provide higher resolution tomograms of key 83 

regions. In this approach, parts of the specimen are within the field of view for some 84 

rotations, but then rotate out of the field of view at other rotational angles. We carried out 85 

Region of Interest microCT to determine the disposition of the fangs in our specimen and so 86 

reveal whether the biter had indeed been bit. 87 

 88 

Methods 89 

A clutch of thirteen eggs were laid by a wild-caught Egyptian saw-scaled viper (E. 90 

pyramidum) on the 4th July 2014 and, following incubation at 27°C, all but one had hatched 91 

by 4th September 2014. Upon removal from its egg, the specimen was fixed in 4% 92 

paraformaldehyde in phosphate buffered saline (pH7.5) and stored at 4°C. The specimen was 93 

imaged using a Leica MSV269 stereoscope and an Apple iPhone 5. To minimise physical 94 

disruption during shipping, the specimen was packed in paraformaldehyde-soaked cotton 95 

wool in a 100ml container (Gosseline TP51-004). 96 

3D geometric data was collected on a Nikon XT H 225 microfocus X-ray tomography system 97 

(Nikon Metrology, Tring, UK) at the College of Engineering, Swansea University, UK. 98 

Images were captured with a 1.3 Megapixel Varian Paxscan 2520 amorphous silicon flat 99 
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panel detector, in reflection mode with a molybdenum target. Scans were performed with 65 100 

kV X-ray tube voltage, a current of 295 µA, with an exposure of 2000 ms, capturing 1 image 101 

per rotation step of 0.119°, resulting in 3016 images per scan and a voxel (3D pixel) size of 102 

17.6 µm. The tomograms were reconstructed from the 2D projections using Nikon CTPro 103 

version 3.1.3 software (Nikon Metrology, Tring, UK). The commercial software VGStudio 104 

Max 2.1.5 (Volume Graphics, Heidelberg, Germany) and the free software Drishti (Limaye, 105 

2012) were used to view the reconstructed data, 2D slices and rendered 3D volumes.  106 

 107 

Results and discussion 108 

In order to minimise handling and potential disruption of our specimen, it was decided to 109 

conduct scans whilst it was still packed in its 52mm diameter container of cotton wool-110 

soaked preservative (Figure 1). Since scans of the entire specimen and its container would 111 

have resulted in a lower overall resolution, with a voxel size of approximately 27µm, we 112 

employed RoI tomography to ‘zoom in’ to the snake, ignoring the surrounding materials, 113 

resulting in a field of view of 33.75mm and a voxel size of 17.6µm. These RoI scans have 114 

provided astonishing insights into the skeletal anatomy of this specimen and clearly reveal 115 

the position and orientation of both fangs (Figures 2a-e). The fangs of vipers such as E. 116 

pyramidum are located on a hinged maxilla, which allows them to be folded against the roof 117 

of the mouth when not in use and to swing forward to an erect position during a strike. 118 

Perhaps disappointingly, we find that the fangs of this specimen are in the folded position and 119 

are not penetrating the body cavity (Figure 2). It is still possible however that a bite and 120 

envenomation did take place, followed by subsequent withdrawal of the fangs, where the 121 

cause of death could be either a result of venom or the physical trauma associated with the 122 

bite itself, especially if one or both fangs punctured a major organ. Alternatively, it is 123 

possible that this animal drowned within its egg, after having non-fatally bitten itself and then 124 
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being either unable or unwilling to release. Whilst it may be possible that disruption of the 125 

specimen may reveal traces of bite marks, we feel that the chances of identifiable marks 126 

being found are not high enough to risk the permanent loss of this unique specimen.  127 

Although we were unable to determine the cause of death in this case, we were easily able to 128 

identify the location and orientation of the fangs and other skeletal structures in this relatively 129 

small specimen. Our approach demonstrates the power and utility of non-destructive X-ray 130 

microtomography and Region of Interest scanning to shed light on biological problems, 131 

especially those involving rare, delicate, or unique specimens. More generally, this project 132 

highlights the importance of, awareness of, and collaboration across academic disciplines, in 133 

this case biological sciences and materials sciences. 134 

 135 

Conclusions 136 

We have successfully used Region of Interest scanning to determine the position of the fangs 137 

in an embryonic snake that seemingly died as a result of a self-inflicted bite. Whether death 138 

was a direct result of a bite involving penetration of the fangs (envenomation, organ 139 

puncture/failure) or an indirect result of a non-penetrative bite (e.g. drowning) is unclear and 140 

so the cause of death of this enigmatic specimen remains a mystery. 141 
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Figure captions 223 

 224 

Figure 1. Photographs of an Egyptian saw-scaled viper (Echis pyramidum) that failed to 225 

hatch, most likely as a result of complications from a self-inflicted bite. Panel A was taken 226 

immediately after removal from the egg (panel E, showing slits from “pipping”) and contains 227 

some substrate (vermiculite). The yolk evident in this panel suggests that death occurred prior 228 

to the absorption of the yolk mass. The specimen was preserved in 4% paraformaldehyde in a 229 

52mm diameter Gosseline 100ml container (F) and packed in cotton wool for shipping and 230 

scanning (panel G). LJ = lower jaw.  231 

 232 

Figure 2. Microtomography (µCT) scans show that the fangs (shaded red) are in the folded 233 

position and do not penetrate the body. A. whole specimen; B. frontal view; C. magnified 234 

view of the head/fang region from A; D. right view; E. left view, with digital dissection to 235 

‘remove’ sections of the body for clarity. 236 
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1
Figure 1

Photographs of an Egyptian saw-scaled viper (Echis pyramidum) that failed to hatch, most

likely as a result of complications from a self-inflicted bite. Panel A was taken immediately

after removal from the egg (panel E, showing slits from “pipping”) and contains some

substrate (vermiculite). The yolk evident in this panel suggests that death occurred prior to

the absorption of the yolk mass. The specimen was preserved in 4% paraformaldehyde in a

52mm diameter Gosseline 100ml container (F) and packed in cotton wool for shipping and

scanning (panel G). LJ = lower jaw.
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Figure 2

Microtomography (µCT) scans show that the fangs (shaded red) are in the folded position and

do not penetrate the body. A. whole specimen; B. frontal view; C. magnified view of the

head/fang region from A; D. right view; E. left view, with digital dissection to ‘remove’

sections of the body for clarity.
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