Ţ	
2	
3	
4	
5	Myocardial Force Generation and Anoxia Tolerance in the Common Cockle,
6	Cerastoderma edule
7	
8	
9	
10	
11	
12	William Joyce*, Karlina Ozolina and Holly A. Shiels
13	
14	
15 16	Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
17	
18	Short running head: ANOXIA TOLERANCE OF THE COCKLE HEART
19	
20 21 22 23	*Corresponding author: William Joyce; email: william.joyce@bios.au.dk Present Address: Department of Zoophysiology, Aarhus University, Building 1131, Universitetsparken, 8000 Aarhus C, Denmark
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	

36 ABSTRACT

The myocardium of molluscs exhibits profound anoxia tolerance, however the cellular mechanisms underlying heart performance during normoxia and anoxia are not well understood. In the present study we investigated the role of the sarcoplasmic reticulum (SR) during normoxia and chemical anoxia (2 mM sodium cyanide) in electrically paced ventricle preparations from the common cockle (Cerastoderma edule) at ~19°C. Acute anoxia caused a substantial increase in resting tension but did not significantly affect the force of contraction, rate of contraction or rate of relaxation in myocardial preparations. SR inhibition (ryanodine, μ M; thapsigargin, 2 μ M) attenuated the increase in resting tension, and also caused a significant decrease in the force of contraction during anoxia. During normoxia, SR inhibition reduced the force and rate of contraction by 20-30 % at contraction frequencies of 0.2 Hz and 0.5 Hz. SR inhibition also elicited an increase in resting tension at 0.5 Hz. Our results suggest that the SR plays a role in maintaining cardiac performance during anoxia in cockle myocardium. Furthermore, the SR is operative during normoxia and is relatively more important in the cockle heart than in many ectothermic vertebrates. As efforts to understand the evolution of the SR are advanced, anoxia tolerant invertebrates may serve as valuable model organisms.

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

Intertidal molluscs experience regular fluctuations in salinity, temperature and oxygen availability and thus serve as potential models for environmental stress tolerance. Upon exposure to air, bivalve molluscs cease ventilation and incur a progressive oxygen debt (Van Dam, 1935), which is met with a slowing of the heart (Helm and Trueman, 1967; Trueman, 1967). Accordingly, profound myocardial anoxia tolerance has been described in several species of molluscs, including whelks (*Busycon contrarium*) (Ellington, 1981) and Tapestry cockles (*Tapes watlingi*) (Jamieson and de Rome, 1979). Despite documented anoxia tolerance, the mechanisms underlying molluscan heart performance during both anoxia and normoxia are not well understood.

The sarcoplasmic reticulum (SR) is an intracellular calcium reservoir with a well-established role in excitation-contraction (E-C) coupling in mammals, birds and some high performance ectotherms (Bers, 2002; Shiels and Galli, 2014). During contraction, Ca²⁺ is released from the SR though ryanodine receptors (RyR) after being induced by Ca²⁺ entering the cell through L-type Ca²⁺ channels (Ca²⁺-induced Ca²⁺ release (CICR)) (Fabiato, 1983; Fabiato and Fabiato, 1977). This cytosolic Ca²⁺ is pumped out of the cell by the sodium-calcium exchanger or taken up in the SR by the SR Ca²⁺ ATPase (SERCA) during relaxation (Bers, 2002). The role of the SR in the hearts of invertebrates is less well understood, however a combination of ultrastructural (Dykens and Mangum, 1979; Jensen and Tjonneland, 1977) and functional studies (Altimiras, Hove-Madsen and Gesser, 1999; Gesser, et al., 1997) have established a prominent role for the SR in cephalopods. Most notably, Gesser and colleagues (1997) demonstrated that ryanodine, which blocks SR calcium release, markedly reduces twitch force (>75%) in octopus (Octopus vulgaris) myocardial preparations. This inhibition is of a similar magnitude to that observed in rat ventricles (Bers, 1985), however the hearts of most teleost fish are relatively insensitive to ryanodine (Driedzic and Gesser, 1988; Møller-Nielsen and Gesser, 1992; Tibbits, Hove-Madsen and Bers, 1991). Morphological studies have identified the SR in the hearts of other molluscs (Sanger, 1979; Watts et al., 1981) and ryanodine decreases the rate of relaxation in the Atlantic surf clam (Spisula solidissima) ventricle (Collis, Sun and Hill, 2006). However, the general importance of the SR in myocardial calcium handling in molluscs remains unclear.

100

101

The SR also has a lesser-appreciated role in maintaining long-term calcium homeostasis

during oxygen deprivation. In a study of isolated rat cardiomyocytes, Allshire et al. (1987) showed that intracellular Ca²⁺ concentration increases during anoxia, but this is reversible providing that the concentration does not become too high. However, in the presence of caffeine, which causes Ca²⁺ to leak out of the SR, cardiomyocytes could not recover from the anoxia-induced calcium overload (Allshire, et al., 1987). Further, in a study on isometric ventricular tissue preparations from armoured catfish (Pterygoplichthys pardalis), MacCormack et al. (2003) showed that SR inhibition exacerbated the loss of contractile force during anoxia (MacCormack, et al., 2003). The role of the SR during environmental stress clearly warrants further investigation, as it is possible that the SR contributes to anoxia tolerance in the hearts of bivalves and other molluscs.

112

102

103

104

105

106

107

108

109

110

The aim of the present study was to investigate the effect of chemical anoxia (2 mM sodium cyanide) on myocardial preparations from the common cockle (Cerastoderma edule), with particular emphasis on the importance of SR calcium cycling. We further investigated the role of the SR during normoxia at two physiologically relevant pacing frequencies (Trueman, 1967). Compared to cephalopods, the cockle is a relatively sedentary mollusc, thus we hypothesised the SR would be less well developed than in octopuses (Gesser, et al., 1997), in accordance with the pattern in ectothermic vertebrates (Galli and Shiels, 2012; Shiels and Galli, 2014).

121

122

120

MATERIALS AND METHODS

123 124

Animals

125

- 126 Sixteen common cockles (Cerastoderma edule), weighing 21.62 ± 10.09 g (mean ± SD),
- 127 were collected from Fairhaven, Isle of Cumbrae and maintained at the nearby Millport
- 128 Marine Station in filtered sea water for up to five days.

129 130

Myocardial Preparations

- 132 Cockles were prised open and the major ganglia were severed as the heart was rapidly
- 133 excised. The entire ventricle was dissected and served as a single preparation. Preparations
- 134 were hung vertically between two clips, the uppermost of which was attached to a force

transducer, whilst the other provided a stable anchor. The force transducers were attached to an amplifier (Transbridge 4M; World Precision Instruments), A/D converter (LT4/16-S; World Precision Instruments) and then attached to a computer running DataTrax acquisition software (World Precision Instruments). The preparations were then lowered into organ baths containing artificial sea water of the following mM concentrations: NaCl, 432; KCl, 9.1; MgCl₂, 23.4; MgSO₄, 25.6; CaCl₂, 9.2; NaHCO₃, 2.19; glucose, 5 (following Gesser, et al., 1997). All organ baths were bubbled with compressed air and experiments took place at room temperature (19±1 °C). Preparations were left to stabilize for 20 minutes before stimulation begun. A Grass SD9 electrical stimulator was attached to two electrodes either side of the preparations and provided 10 ms pulses at 90-100 V. Preparations were initially stimulated at 0.2 Hz, which is in accordance with previous studies on mollusc myocardium (Driedzic, 1985; Gesser et al., 1997). After 10 minutes of pacing, myocardial preparations were stretched with a micrometer screw until the maximum force of contraction was attained. After the preparations had stabilized at peak isometric force, the experimental protocol commenced.

135

136

137

138

139

140

141

142

143

Anoxia

153

154

155

156

157

158

159

160

161

162

163

164

5-10 minutes before anoxia, the solution was changed to fresh artificial sea water, and the percentage changes in force of contraction, rate of contraction, rate of 50 % relaxation and resting tension after five minutes were recorded to provide a control condition. Chemical anoxia was then implemented by changing the solution to 2 mM sodium cyanide dissolved in artificial sea water. The change in force of contraction, rate of contraction, rate of 50 % relaxation and resting tension, as a percentage of that immediately before the cyanide solution change, was recorded five minutes after cyanide treatment. The five-minute interval was chosen based on previous studies demonstrating that cyanide rapidly ceases oxidative phosphorylation in the mollusc heart (Jamieson and de Rome, 1979). This protocol was repeated with separate preparations that had undergone 30 minutes of SR inhibition (ryanodine (10 μ M) and thapsigargin (2 μ M)), in which case the cyanide solution also contained ryanodine and thapsigargin in the same respective concentrations.

165

SR Inhibition

167

To ascertain the effect of sarcoplasmic reticulum inhibition, myocardial preparations underwent force-frequency trials (an increase in stimulation frequency from 0.2 Hz to 0.5 Hz) before and after incubation for 20 minutes with ryanodine (10 μ M) and thapsigargin (2 μ M), which are specific blockers of RyR and SERCA, respectively (Rousseau, Smith and Meissner, 1987; Sagara and Inesi, 1991). To account for time-related decrease in contractility over the 25-minute experiment, control preparations (n=4) were run separately, with the same changes in solution and frequency, but no SR inhibition (Shiels and Farrell, 1997). Deterioration in experimental preparations was accounted for by normalizing the average percentage changes in experimental preparations relative to controls at both 0.2 Hz and 0.5 Hz. On average, 'fatigue' caused resting tension to fall to 92.59 (± 7.90) %, force of contraction 90.67 (± 5.48) %, rate of contraction 84.58 (± 11.37) % and rate of relaxation $88.00 (\pm 8.59) \%$ of initial values during the course of the experiment.

168

169

170

171

172

173

174

175

176

177

178

Statistical Analysis

186

187

188

189

190

191

192

During analysis, resting tension at the start of the experiment was normalized to 10 mN to mitigate for exaggerated relative changes. Paired t-tests were used to investigate percentage changes in force of contraction, rate of contraction, rate of 50 % relaxation and resting tension following control solution changes and cyanide solution changes. Unpaired t-tests were then used to investigate the percentage changes in all four variables elicited by cyanide in the presence or absence of SR inhibition. A regression analysis was performed to investigate the relationship between the change in resting tension and the change in force following cyanide treatment. A repeated measures two-way analysis of variance (ANOVA) was used to investigate the effect of SR inhibition on preparations paced at 0.2 Hz and 0.5 Hz. A significance level of p<0.05 was set and all values are presented as mean \pm SE.

193

194 RESULTS

195 Anoxia

196 197

198

199

200

Original and representative traces showing change in resting and peak tension after cyanide treatment with and without SR inhibition are presented in Figure 1. In control conditions resting tension and force of contraction did not change after solution change. Application of 2 mM sodium cyanide caused mean resting tension to significantly increase (t=4.52,

P=0.0014), although no significant changes were elicited in the force of contraction (t=1.09, P=0.30), rate of contraction (t=0.73, P=0.48) or rate of 50% relaxation (t=1.25, P=0.24) (Fig. 1 and 2). However, in preparations in which the SR was inhibited, both the mean force (t=2.43, P=0.029) and rate of contraction (t=2.21, P=0.045) decreased significantly more than in the non-SR inhibited condition (Fig. 1 and 3). A regression analysis further revealed a significant positive relationship ($r^2=0.32$; P=0.02) between the relative change in resting tension and the change in force during anoxia when data from SR-inhibited and non-SR inhibited preparations were pooled (Fig. 4).

209

201

202

203

204

205

206

207

208

SR Inhibition

211

At both 0.2 Hz and 0.5 Hz, SR inhibition significantly attenuated relative twitch force by 20-30% (Fig. 5A). When preparations were paced at 0.2 Hz, there was no statistically significant difference in the baseline resting tension before and after SR inhibition (Fig. 5B). However, when stimulation frequency was increased to 0.5 Hz, SR inhibition led to a relatively larger increase in resting tension (Fig. 5B). SR inhibition significantly depressed the rate of contraction at both 0.2 Hz and 0.5 Hz (Fig. 5C). There were no statistically resolvable differences in the rate of relaxation before and after SR inhibition, although there was a trend towards slower rates of relaxation following SR inhibition, particularly at 0.5 Hz (Fig. 5D).

DISCUSSION

220

219

221

222 223

224 Sarcoplasmic Reticulum

225 226

227

228

229

230

231

232

233

In the cockle ventricle, the SR is necessary both to reduce diastolic calcium levels and to maintain contraction, as evidenced by the increase in resting tension (Fig. 5B) and decrease in force of contraction (Fig. 5A), respectively, following SR inhibition. Although its relative contribution to force production is minor (20-30 %), the SR is clearly operative in the cockle myocardium, thus corroborating early ultrastructural studies on molluscan hearts (Sanger, 1979; Watts, et al., 1981). The SR appears to play a greater role in the cockle heart than in many ectothermic vertebrates, for example reptiles (Galli, et al., 2006) and many teleost fish (Driedzic and Gesser, 1988; Møller-Nielsen and Gesser, 1992; Tibbits, et al., 1991), where

the contribution is negligible. In fact, the role is comparable to that of some endotherms, such as guinea pig ventricle (Agata, Tanaka and Shigenobu, 1994). As hypothesised, the SR plays a less dominant role in cockle myocardium than in the octopus (Gesser, et al., 1997), which is likely due to the higher aerobic demands, and therefore cardiovascular capacity, of the cephalopod. As evolutionary explanations for the function of the SR are advanced (Shiels and Galli, 2014) it is clearly important to consider invertebrates, which have received comparatively little attention.

241 242

234

235

236

237

238

239

240

Anoxia

243

Cyanide treatment caused a large increase in resting tension (Fig. 2A) but did not affect the force of contraction, rate of contraction or rate of relaxation (Fig. 2B-D) in cockle ventricular myocardium. In similar heart preparations from another bivalve, *Tapes watlingi*, the force of contraction fell by up to 60 %, with the maximum decrease occurring seven minutes after cyanide treatment (Jamieson and de Rome, 1979). Cyanide also depressed contraction in cephalopod systemic ventricles after five minutes, although the decrease in contractility continued following longer exposure (up to 30 minutes) (Driedzic, 1985). In perfused whelk hearts, severe hypoxia had minimal effects on contraction amplitude for up to two hours (Ellington, 1981). Although we only sought to investigate the effect of acute anoxia (five minutes), it appears that the common cockle is as tolerant, if not more tolerant to oxygen deprivation than other molluscs.

255 256

257

258

259

260

261

262

263

264

265

266

252

253

254

The greatest manifestation of anoxia was the rise in resting tension (Fig. 1 and 2B). This implies that exudation of calcium during diastole may be compromised when oxygen is limited. In the working heart, increased resting calcium levels may result in a decreased enddiastolic volume, thereby reducing stroke volume during hypoxia (Gesser and Overgaard, 2009). Thus, an increase in resting tension is often regarded as a negative outcome that is characteristic of anoxia-sensitive species (e.g. Bailey, et al., 1999). However, it is also possible that the increase in resting levels of calcium represents a beneficial response to anoxia, at least in the cockle. During oxygen deprivation, a build-up of inorganic phosphates renders myofilaments less sensitive to calcium (Driedzic and Gesser, 1994; Jensen and Gesser, 1999; Kentish, 1986). Further, increasing extracellular calcium concentration ameliorates the negative inotropic effect of anoxia in the myocardium of ectothermic

268

269

270

271

272

273

274

275

276

277

280

281

283

284

285

286

287

288

289

290

291

292

293

294

295

297

298

299

vertebrates (Nielsen and Gesser, 1983; Nielsen and Gesser, 1984; Overgaard, Gesser and Wang, 2007; Overgaard, et al., 2005). Cyanide caused no apparent increase in resting tension in Tapes watlingi, whilst the force of contraction clearly subsided (Jamieson and de Rome, 1979). This suggests that the greater contractile performance during anoxia in cockles may go hand in hand with the increased diastolic calcium, which is strongly supported by the positive relationship observed between the change in resting tension and the change in the force of contraction following cyanide treatment (Fig. 4). The generality of this notion, however, requires further investigation. For example, the relationship between tension and calcium concentration deserves special consideration. The binding of calcium to troponin is cooperative, resulting in a sigmoidal force-calcium relationship (Sun and Irving, 2010; Sun, Lou and Irving, 2009). This means that a small change in calcium concentration may elicit small or large changes in force, depending on the initial calcium concentration. Further, the force-calcium relationship varies between species and is highly temperature sensitive (Harrison and Bers, 1990). As a result, the consequence of an increased intracellular calcium concentration during anoxia may vary greatly between species in different environmental conditions.

In SR-inhibited preparations, resting tension tended to increase less and the force of contraction fell significantly more than in uninhibited myocardium (Fig. 3). This suggests that the SR may be responsible for the increased diastolic calcium levels and remarkable contractile performance during anoxia. Indeed, in mammalian preparations it has previously been shown that cyanide increases calcium release from the SR and/or mitochondria (Jundt, et al., 1975), and further, calcium release from the SR is essential for the recovery of force production during acidosis (Orchard, 1987). This supports our hypothesis that the SR is vital during anoxia in the cockle, and also lends support to the developing view that the SR is a key regulator of calcium homeostasis during environmental stress (Galli and Shiels, 2012). Thus it appears that the SR may be more dynamic and plastic than has hitherto been appreciated.

296 Conclusion

> Intertidal molluscs represent an inexpensive and often accessible model for myocardial anoxia tolerance. Here, we have demonstrated that SR calcium cycling appears fundamental

in maintaining performance during both anoxia and normoxia in the heart of the common cockle. Whilst much of our understanding of myocardial calcium handling is based on studies in vertebrates, invertebrates such as the cockle may offer novel perspectives on the evolution of the heart.

ACKNOWLEDGEMENTS

We would like to thank Jessica Lea and Drs John Fitzpatrick, Ben Saer and Helena Bailes for

cockling assistance. We also wish to thank the staff at the Millport Field Centre who

allocated us laboratory space during the University of Manchester zoology field course.

333 REFERENCES

334

335 Agata, N., Tanaka, H. & Shigenobu, K. 1994. Inotropic effect of ryanodine and nicardipine 336 on fetal, neonatal and adult guinea pig myocardium. European Journal of Pharmacology, 337 **260**: 47-55.

338

339 Allshire, A., Piper, H.M., Cutherbertson, K.S.R. & Cobbold, P.H. 1987. Cytosolic free Ca²⁺ 340 in single rat heart cells durign anoxia and reoxygenation. *Biochemical Journal*, **244**: 381-385.

341

342 Altimiras, J., Hove-Madsen, L. & Gesser, H. 1999. Ca2+ uptake in the sarcoplasmic 343 reticulum from the systemic heart of octopod cephalopods. Journal of Experimental Biology, 344 **202**: 2531-2537.

345

Bailey, J.R., Val, A.L., Almedia-Val, V.M.F. & Driedzic, W.R. 1999. Anoxic cardiac performance in Amazonian and north-temperate-zone teleosts. Canadian Journal of Zoology-Revue Canadienne De Zoologie, 77: 683-689.

348 349

347

Bers, D.M. 1985. Ca influx and sarcoplasmic reticiulum relsease in cardiac muscle activation during postrest recovery. American Journal of Physiology, 248: H366-H381.

Bers, D.M. 2002. Cardiac excitation-contraction coupling. *Nature*, **415**: 198-205.

Collis, L., Sun, Y. & Hill, R. 2006. Length-dependent deactivation of ventricular trabeculae in the bivalve, Spisula solidissima. Journal of Comparative Physiology B-Biochemical Systemic and Environmental Physiology, 176: 371-385.

358

359 Driedzic, W.R. 1985. Contractile performance of cephalopod hearts under anoxic conditions. 360 Journal of Experimental Biology, 117: 471-474.

361

362 Driedzic, W.R. & Gesser, H. 1988. Differences in force frequency relationships and calcium 363 dependency between elasmobranch and teleost hearts. Journal of Experimental Biology, 140: 364 227-241.

365

366 Driedzic, W.R. & Gesser, H. 1994. Energy metabolism and contractility in ecothermic hearts-367 hypoxia, acidosis, and low temperature. *Physiological Reviews*, 74: 221-258.

368

369 Dykens, J.A. & Mangum, C.P. 1979. Design of cardiac myscle and the mode of metabolism 370 in mollusks. Comparative Biochemistry and Physiology a-Physiology, **62**: 549-554.

371

372 Ellington, W.R. 1981. Energy metabolism during hypoxia in the isolated, perfused ventricle 373 of the whelk, Busycon contratrium Conrad. Journal of Comparative Physiology, 142: 457-374 464.

375

376 Fabiatio, A. 1983. Calcium induced release of calcium from the cardiac sarcoplasmic 377 reticulum. *American Journal of Physiology*, **245**: C1-C14.

378

379 Fabiato, A. & Fabiato, F. 1977. Calcium release from the sarcoplasmic reticulum. Circulation 380 Research, 40: 119-129.

- 382 Galli, G.L.J., Gesser, H., Taylor, E.W., Shiels, H.A. & Wang, T. 2006. The role of the 383 sarcoplasmic reticulum in the generation of high heart rates and blood pressures in reptiles.
- 384 Journal of Experimental Biology, 209: 1956-1963.

386 Galli, G.L.J. & Shiels, H.A. 2012. The Sarcoplasmic Reticulum in the Vertebrate Heart. 387 Ontogeny and phylogeny of the vertebrate heart:: 103-124.

388

389 Gesser, H., Driedzic, W.R., Rantin, F.T. & De Freitas, J.C. 1997. Ca2+ regulation of heart 390 contractility in Octopus. Journal of Comparative Physiology B-Biochemical Systemic and 391 Environmental Physiology, 167: 474-480.

392

393 Gesser, H. & Overgaard, J. 2009. Comparative Aspects of Hypoxia Tolerance of the 394 Ectothermic Vertebrate Heart. In: Cardio-Respiratory Control in Vertebrates (M.L. Glass 395 and S.C. Wood, eds), pp. 263-284. Springer-Verlag, Berlin.

396

Harrison, S.M. & Bers, D.M. 1990. Temperature dependence of myofilament sensitivity of rat, guinea pig and frog ventricular muscle. American Journal of Physiology, 258: C274-C281.

Helm, M.M. & Trueman, E.R. 1967. The effect of exposure on heart rate of mussel Mytilus edulis. Comparative Biochemistry and Physiology, 21: 171-177.

Jamieson, D.D. & de Rome, P. 1979. Energy metabolism of the heart of the mollusc Tapes watlingi. Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology, **63**: 399-405.

Jensen, H. & Tjonneland, A. 1977. Ultrastructure of the heart muscle cells of cuttlefish Rossia macrosoma (Delle Chiaje) (Mollusca-Cephalopoda). Cell and Tissue Research, 185: 147-158.

410 411 412

409

Jensen, M.A. & Gesser, H. 1999. Influence of inorganic phosphate and energy state on force in skinned cardiac muscle from freshwater turtle and rainbow trout. Journal of Comparative Physiology B-Biochemical Systemic and Environmental Physiology, **169**: 439-444.

414 415

413

416 Jundt, H., Porzig, H., Reuter, H. & Stucki, J.W. 1975. Effect of substances released 417 intracellular calcium ions on soidum dependenct calcium efflux from guinea pig auricles. 418 Journal of Physiology, 246: 229-253.

419

420 Kentish, J.C. 1986. The effect of inorganic phopsphate and creatine phosphate on force 421 production in skinned muscles from rat ventricle. Journal of Physiology-London, 370: 585-422 604.

423

- 424 MacCormack, T.J., Treberg, J.R., Almedia-Val, V.M.F., Val, A.L. & Driedzic, W.R. 2003.
- 425 Mitochondrial K-ATP channels and sarcoplasmic reticulum influence cardiac force
- 426 development under anoxia in the Amazonian armored catfish Liposarcus pardalis.
- 427 Comparative Biochemistry and Physiology a-Molecular & Integrative Physiology, 134: 441-428 448.

- 430 Møller-Nielsen, T. & Gesser, H. 1992. Sarcoplasmic reticulum and excitation-contraction
- 431 coupling at 20 and 10°C in rainbow trout myocardium. Journal of Comparative Physiology
- 432 *B-Biochemical Systemic and Environmental Physiology*, **162**: 526-534.

434 Nielsen, K.E. & Gesser, H. 1983. Effects of Ca²⁺ on contractility in the anoxic cardiac muscle 435 of mammal and fish. Life Sciences, 32: 1437-1442.

436

437 Nielsen, K.E. & Gesser, H. 1984. Energy metabolism and intracellular pH in trout heart 438 muscle under anoxia and different Ca²⁺. Journal of Comparative Physiology, **154**: 523-527.

439

440 Orchard, C.H. 1987. The role of the sarcoplasmic reticulum in the response of ferret and rat 441 heart muscle to acidosis. *Journal of Physiology*, **384**: 431-449.

442 443

Overgaard, J., Gesser, H. & Wang, T. 2007. Tribute to P. L. Lutz: cardiac performance and cardiovascular regulation during anoxia/hypoxia in freshwater turtles. Journal of *Experimental Biology*, **210**: 1687-1699.

445 446

> Overgaard, J., Wang, T., Nielsen, O.B. & Gesser, H. 2005. Extracellular determinants of cardiac contractility in the cold anoxic turtle. Physiological and Biochemical Zoology, 78: 976-995.

Rousseau, E., Smith, J.S. & Meissner, G. 1987. Ryanoide modifies conductance and gating behaviour of single Ca²⁺ release channel. *American Journal of Physiology*, **253**: C364-C368.

Sanger, J.W. 1979. Cardiac fine-structure in selected arthropods and molluscs. American Zoologist, 19: 9-27.

456

Sagara, Y. & Inesi, G. 1991. Inhibition of the sarcoplasmic reticulum Ca²⁺ transport ATPase 457 458 by thapsigargin at subnanomolar concentrations. Journal of Biological Chemistry, 266: 459 13503-13506.

460

461 Shiels, H.A. & Farrell, A.P. 1997. The effect of temperature and adrenaline on the relative 462 importance of the sarcoplasmic reticulum in contributing Ca2+ to force development in 463 isolated ventricular trabeculae from rainbow trout. Journal of Experimental Biology, 200: 464 1607-1621.

465

466 Shiels, H.A. & Galli, G.L.J. 2014. The Sarcoplasmic Reticulum and the Evolution of the 467 Vertebrate Heart. *Physiology*, **29**: 456-469.

468

469 Sun, Y.-B. & Irving, M. 2010. The molecular basis of the steep force-calcium relation in 470 heart muscle. Journal of Molecular and Cellular Cardiology, 48: 859-865.

471

472 Sun, Y.-B., Lou, F. & Irving, M. 2009. Calcium- and myosin-dependent changes in troponin 473 structure during activation of heart muscle. *Journal of Physiology-London*, **587**: 155-163.

474

475 Tibbits, G.F., Hove-Madsen, L. & Bers, D.M. 1991. Calcium transport and the regulation of 476 cardiac contractility in teleosts- a compariosn with higer vetrebrates. Canadian Journal of 477 Zoology-Revue Canadienne De Zoologie, **69**: 2014-2019.

Trueman, E.R. 1967. Activity and heart rate of bivalve molluscs in their natural habitat. *Nature*, **214**: 832-833. Van Dam, L. 1935. On the utilisation of oxygen by Mya arenaria. Journal of Experimental Biology, 12: 86-94. Watts, J.A., Koch, R.A., Greenberg, M.J. & Pierce, S.K. 1981. Ultrastructure of the heart in the marine mussel, Geukensia demissa. Journal of Morphology, 170: 301-319. 495 496 497 498 499

515	Figure Legends
516	
517	Figure 1. Representative traces from separate cockle myocardial preparations demonstrating
518	the change in resting tension and contractile force production over time in three different
519	treatments. Initial increase in force is due to solution change (arrow). Resting tension was
520	normalized at 0 for all traces to facilitate the comparison.
521	
522	Figure 2. Relative changes in twitch force (A), resting tension (B), rate of contraction (C)
523	and rate of 50% relaxation (D) in cockle myocardial preparations (n=10) five minutes after a
524	control solution change (control; grey bars) and five minutes after the addition of a solution
525	containing 2mM sodium cyanide (cyanide; black bars). Positive values indicate an increase
526	and negative values indicate a reduction in each parameter measured. Asterisks denote
527	significant differences between control and cyanide solution changes as evaluated by paired
528	t-tests. Values are means \pm SEM.
529	
530	Figure 3. Relative changes in twitch force (A), resting tension (B), rate of contraction (C)
531	and rate of 50% relaxation (D) in cockle myocardial preparations in the absence (n=10) or
532	presence of sarcoplasmic reticulum inhibition (n=6) five minutes after the addition of a
533	solution containing 2mM sodium cyanide (cyanide; black bars). Positive values indicate an
534	increase and negative values indicate a reduction in each parameter measured. Asterisks
535	denote significant differences between non-inhibited and SR-inhibited preparations as
536	evaluated by unpaired t-tests. Values are means ± SEM.
537	
538	Figure 4. The relationship between the relative changes in resting tension and force of
539	contraction in cockle myocardium following sodium cyanide (2mM) treatment. Non-SR
540	inhibited preparations are black dots (n=10), SR inhibited preparations are represented by
541	white dots (n=6). A regression analysis on the pooled data revealed a significant positive
542	relationship between the variables ($r^2=0.32$; $P=0.02$).
543	
544	Figure 5. The effect of SR inhibition (ryanodine, $10 \mu M$; thapsigargin, $2 \mu M$) on resting
545	tension (A), force production (B), rate of contraction (C) and rate of relaxation (D) in cockle
546	heart preparations paced at 0.2 Hz or 0.5 Hz (n=6). All data are represented as relative

changes from the initial value at $0.2~\mathrm{Hz}$ normalized to 100~%. Asterisks denote significant

SEM.

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.612v1 | CC-BY 4.0 Open Access | rec: 14 Nov 2014, publ: 14 Nov 2014

differences between control and SR inhibited preparations (p<0.05). Values are means ±

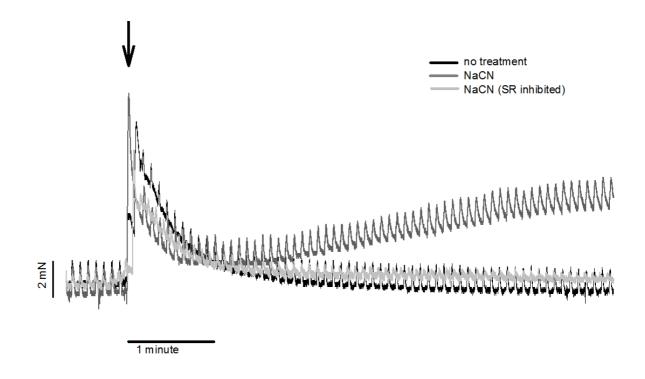


Figure 1.

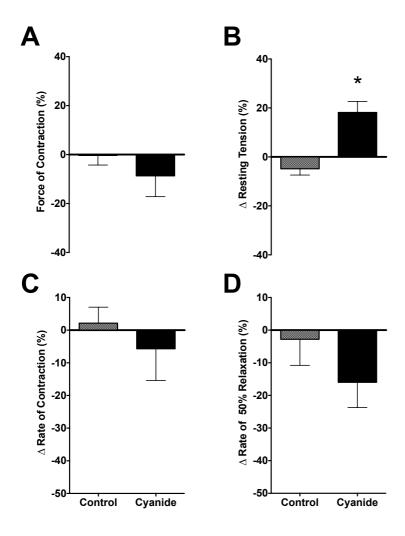
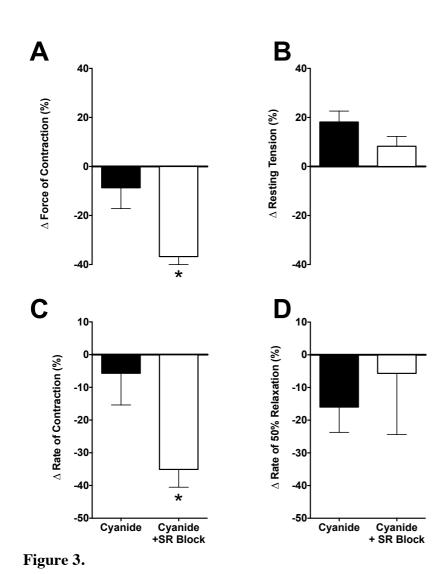



Figure 2.

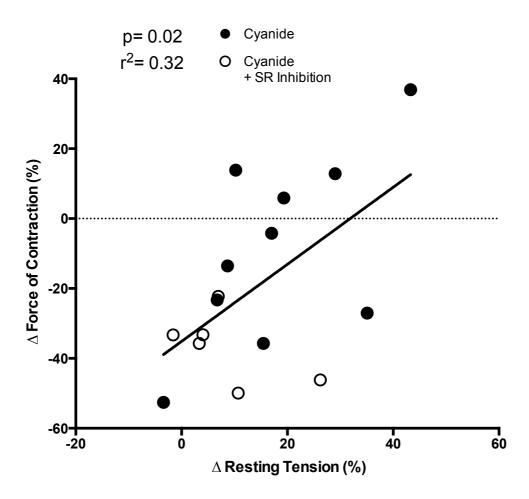
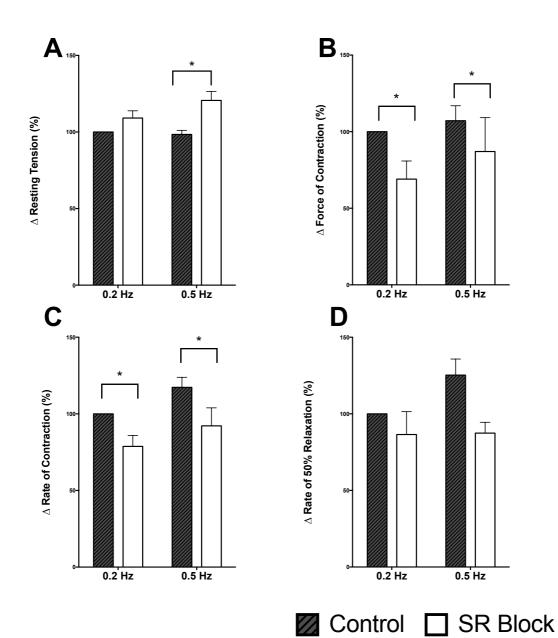



Figure 4.

Figure 5.