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Interethnic diversity of the CD209 (rs4804803) gene promoter

polymorphisms in African but not American sickle cell disease

Elucidating the genomic diversity of CD209 gene promoter polymorphisms could assist in

clarifying disease pathophysiology as well as contribution to co-morbidities. CD209 gene

promoter polymorphisms have been shown to be associated with susceptibility to

infection. We hypothesize that CD209 mutant variants occur at a higher frequency among

Africans and in sickle cell disease. We analyzed the frequency of the CD209 gene

(rs4804803) in healthy control and sickle cell disease (SCD) populations and determined

association with disease. We obtained genomic DNA from 145 SCD and 244 control

Africans (from Mali), 331 SCD and 379 control African Americans and 159 Caucasians.

Comparative analysis among and between groups was carried out by polymerase chain

reaction-restriction fragment length polymorphism (PCR-RFLP). Per ethnic diversification,

we found significant disparity in genotypic (23.4% versus 16.9% versus 3.2%) and allelic

frequencies (36.1% versus 25.1% versus 11.6%) of the mutant variant of the CD209 (snp

309A/G) gene promoter between Africans, African Americans and Caucasians respectively.

Surprisingly, there was a wide disparity in the genotypic and allelic frequencies among

African SCD versus healthy controls (10.4% versus 23.4% (genotypes) and 25.2% versus

36.1% (alleles), which is completely absent among African Americans. Comparing SCD

groups, there was no difference between Africans and Americans, implying a lack of

association between CD209 polymorphisms and sickle cell disease in either population.

The higher frequency of CD209 mutant variants in the non-SCD group reveals an impaired

capacity to mount an immune response to infectious diseases. We conclude that CD209

polymorphism play a major role in susceptibility to infectious pathogens and could

potentially delineate susceptibility to and severity of co-morbidities.
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Abstract

Elucidating the genomic diversity of CD209 gene promoter polymorphisms 

could assist in clarifying disease pathophysiology as well as contribution to 

co-morbidities. CD209 gene promoter polymorphisms have been shown to 

be associated with susceptibility to infection. We hypothesize that CD209 

mutant variants occur at a higher frequency among Africans and in sickle 

cell disease. We analyzed the frequency of the CD209 gene (rs4804803) in 

healthy control and sickle cell disease (SCD) populations and determined 

association with disease. We obtained genomic DNA from 145 SCD and 244

control Africans (from Mali), 331 SCD and 379 control African Americans 

and 159 Caucasians. Comparative analysis among and between groups 

was carried out by polymerase chain reaction-restriction fragment length 

polymorphism (PCR-RFLP). Per ethnic diversi昀椀cation, we found signi昀椀cant 

disparity in genotypic (23.4% versus 16.9% versus 3.2%) and allelic 

frequencies (36.1% versus 25.1% versus 11.6%) of the mutant variant of 

the CD209 (snp 309A/G) gene promoter between Africans, African 

Americans and Caucasians respectively. Surprisingly, there was a wide 

disparity in the genotypic and allelic frequencies among African SCD 

versus healthy controls (10.4% versus 23.4% (genotypes) and 25.2% 

versus 36.1% (alleles), which is completely absent among African 

Americans. Comparing SCD groups, there was no di昀昀erence between 

Africans and Americans, implying a lack of association between CD209 

polymorphisms and sickle cell disease in either population. The higher 

frequency of CD209 mutant variants in the non-SCD group reveals an 
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impaired capacity to mount an immune response to infectious diseases. We

conclude that CD209 polymorphism play a major role in susceptibility to 

infectious pathogens and could potentially delineate susceptibility to and 

severity of co-morbidities. 
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Introduction

Sickle cell disease (SCD) is an inherited multisystem disorder, 

characterized by chronic hemolytic anemia, vaso-occlusive crises and 

several other disease outcomes such as acute chest syndrome, 

bacteremia, leg ulcers and priapism (Bunn 1997; Benkerrou et al., 2002). 

SCD has shown marked variability in severity between individuals, with 

evidence of extensive di昀昀erences in both clinical and genotypic 

presentations, with a global distribution, especially in sub-Saharan Africa, 

Middle East, parts of the Indian subcontinent, and Americans with an 

African or Caribbean descent (Hassell, 2010; Piel et al., 2013; Bandeira et 

al., 2014; Saraf et al., 2014; Thakur et al., 2014). SCD occurs in patients 

that are homozygous for the hemoglobin S gene, produced by a defective 

β-globin gene on chromosome 11 and has also been de昀椀ned as resulting 

from compound heterozygosity for hemoglobin S and another β-globin 

chain abnormality (typically hemoglobin C or β-thalassemia), with α-

thalassemia serving as a modi昀椀er of the clinical manifestations 

(Weatherall, 2010; Saraf et al., 2014). Patients commonly require red cell 

transfusions to manage complications, with alloimmunization a common 

occurrence (Charache et al., 1983; Rosse et al., 1990; Tatari-Calderone et 

al., 2013) leaving such multiply transfused patients at risk for delayed 

hemolytic transfusion reactions (Piomelli et al., 1985; Petz et al., 1997; 

Taylor et al., 2008; Yazdanbaksh et al., 2012), development of autoimmune 

hemolytic anemia. 
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Infectious pathogens are a threat to those individuals with SCD, particularly

children, that are prone to frequent and severe attacks (Overturf, 1999; 

Halasa et al., 2007; Szczepanek et al., 2013). For children in endemic 

countries, with very high circulating immune complexes due to constantt 

exposure to multiple pathogenic stimuli, the added burden of these co-

morbidities can severely impact immune response and survival (Thomas et

al., 2012). Recent reports showing high mortality rates post-vaccination in 

transgenic animals demonstrates that a dysregulated immune response 

might be responsible for such mortality and could be a major drawback to 

the current push to vaccinate (McCavit et al., 2011; Szczepanek et al., 

2013). Infact, other reports have shown that there is an over-stimulation of 

pro-in昀氀ammatory cytokines in sickle cell disease patients, which might be 

be related to vaso-occlusion (Makis et al., 2000; Pathare et al., 2004; 

Steinberg 2006; Conran et al., 2009; Qari et al., 2012; Bandeira et al., 

2014). In fact, this hyperstimulation has been associated with sickle cell 

haplotype in Brazil, and as such, the obvious consequence of worsening 

immune response to secondary infectious pathogens or co-morbidities of 

infection. 

Recently published data have shown that there are wide di昀昀erences in 

infection rates and multiplicity of infection between children who are 

carriers of the sickle cell trait (hemoglobin AS) and those patients that 

possess the normal hemoglobin (HbAA) gene. In addition, extensive 
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di昀昀erences in genomic diversity of endothelial nitric oxide synthase (eNOS)

genes, that had been reported to bear clinical signi昀椀cance on sickle cell 

pathogenesis, has been reported between Africans and African Americans 

(Thomas et al., 2013). These polymorphisms have been shown to be 

potential modi昀椀ers of clinical disease, with signi昀椀cant di昀昀erences reported 

between Indian and African sickle cell disease patients (Nishank et al., 

2013; Thakur et al., 2014), and these di昀昀erences could be potentially 

linked to disease haplotype. These interethnic di昀昀erences can be attributed

to the introduction of single nucleotide polymorphisms over a very long 

period, which can ultimately in昀氀uence gene expression, protein structure 

and potentially function. Therefore, single nucleotide polymorphisms 

located in certain promoter regions can a昀昀ect transcription thereby altering

variability in the immune response, and contributing to disease 

susceptibility or host resistance (Sakuntabhai et al., 2005). Despite the fact

that African Americans can trace their ancestry to sub-Saharan Africa, 

recombination and genetic diversity in the African American gene pool has 

facilitated the introduction of single nucleotide polymorphisms leading to 

di昀昀ering immune response to infectious pathogens. In addition, they are 

exposed to di昀昀erent groups of infectious agents compared to their African 

counterparts, which in turn directs immune system development, alongside

circulating antibodies. These phenomena would undergo a similar 

diversi昀椀cation in the sickle cell population as well. 
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One of the most common immunogenetic markers, usually evaluated for 

immune system response and susceptibility to infectious pathogens is 

dendritic cell-speci昀椀c ICAM-3 grabbing non-integrin (DC-SIGN) encoded by 

CD209. It assists in the migration dendritic cells on endothelium as well as 

enabling the activation of signal transduction pathways (Rappociolo et al., 

2006; Dettogni et al., 2013). They are targets for pathogens, seeking to 

impair the immune response in early infection, and are known to recognize 

diverse pathogens, with reports showing association between CD209 gene 

polymorphisms and infectious agents (Mummidi et al., 2001; Martin et al., 

2004). The guanine (G) to adenine (A) transition within the gene promoter 

(SNP -336 A/G; rs4804803) polymorphism has shown the most signi昀椀cance,

demonstrating association with susceptibility to HIV, tuberculosis, 

leishmaniasis and dengue (Tailleux et al., 2003; Tassaneetrithep et al., 

2003; Van Kooyk et al., 2003; Martin et al., 2004; Sakuntabhai et al., 2005; 

Barreiro et al., 2006). Sickle cell disease presents with variability in clinical 

severity, alongside genetic diversity and selection pressure imposed on 

patients by infectious diseases, leading to single nucleotide polymorphisms

that can exacerbate or ameliorate disease outcome, especially among 

Africans, exposed to multiple infectious assaults and co-morbidities 

(Thomas et al., 2012a, 2012b). We have shown that there is an extensive 

diversity in the ethnogenomic distribution of endothelial nitric oxide 

synthase  (eNOS) polymorphisms (Thomas et al., 2013). Despite reports to 

the contrary, we have also demonstrated that endothelin-1 polymorphisms 

rather than eNOS are the most important in African SCD (Thakur et al., 
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2014). Therefore, since infections are common occurrences in SCD, there is

a need to characterize the genomic diversity as well as haplotype 

frequency of immunogenetic markers and extrapolate their potential role in

susceptibility to infectious diseases. This could clarify disease 

pathophysiology as well as their contribution to co-morbidities. To this end, 

what is the genotypic and allelic frequency of CD209 gene promoter 

polymorphisms (SNP -336 A/G; rs4804803) in control groups (African 

versus African American versus Caucasians) and between sickle cell 

disease populations (African versus African American), and does this 

polymorphism ameliorate or exacerbate disease pathophysiology? We will 

conduct our analyses using a polymerase chain reaction-restriction 

fragment length polymorphism (PCR-RFLP) assay.

Materials and Methods

Subjects 

This study encompasses sickle cell disease patients (cases) and control 

groups (Africans versus African Americans), as well as diverse ethnic 

groups (Africans, African Americans and Caucasians). The African portion 

was conducted at the Centre de Recherche et de Lutte contre la 

Drepanocytose (CRLD), a sickle cell disease treatment and referral center 

in Mali. Approval was received from the national ethical review board, and 

a written consent obtained before study was initiated. Inclusion criteria 

include diagnosis with sickle cell disease and presentation during crisis or 

during regular follow-up. Sickle cell disease demographic data has been 
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described previously (Thakur et al., 2014). Healthy population controls 

comprised of family members or those recruited by word of mouth, able to 

provide informed consent and without a diagnosis of sickle cell disease. In 

the United States, control groups are African American and Caucasian self-

identi昀椀ed individuals, recruited from Shreveport, Louisiana. African 

American sickle cell disease patients were recruited as part of the National 

Institute of Health-funded Cooperative Study of Sickle Cell Disease 

(CSSCD).

Samples and Genomic DNA Extraction

Discarded EDTA-anticoagulated blood samples, from 376 subjects (145 

sickle cell disease patients and 231 controls) were spotted onto 昀椀lter 

papers (GE Healthcare Sciences, Piscataway NJ) and genomic DNA samples

extracted from the dried, spotted samples with the Qiagen Blood Mini Kit 

(Qiagen Inc., Valencia, CA), with some changes to the manufacturer’s 

instruction (Thakur et al., 2014). Final elution volume was 100 μl and DNA 

samples were stored at −20 °C until further analysis. Genomic DNA 

samples from African American sickle cell disease patients as well as 

African American and Caucasian controls were gratefully provided (Betty 

Pace, Georgia Regents University and Joann Moulds, Grifols USA 

respectively).

Genotyping for CD209 single nucleotide polymorphism

To genotype for the single nucleotide polymorphisms of the CD209 gene 

promoter, we utilized a previously published primer and PCR assay 

(Dettogni et al., 2013), with a slight modi昀椀cation to the protocol. The 
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primer sequences are 5′- GGATGGTCTGGGGTTGACAG-3 (forward reaction) 

and 5′- ACTGGGGGTGCTACCTGGC-3′ (reverse reaction). 1 μl of genomic 

DNA served as template for PCR ampli昀椀cation, with conditions optimized to

25μl 昀椀nal volume and ampli昀椀ed using the Lucigen EconoTaq Plus Green 2X 

Master Mix PCR system (Lucigen Corporation, Middleton WI), as described 

previously (Thomas et al., 2012), and PCR cycling parameters as published 

(Sakuntabhai et al., 2005). Ampli昀椀ed PCR products (5 μl) was examined on 

a 2% (w/v) agarose gel and photographed. Positive ampli昀椀cation yielded 

products of 150 bp, with size estimated with a TriDye 100 bp DNA ladder 

(New England Biolabs, Boston MA). 

Restriction Fragment Length Polymorphism Assay 

We utilized the MscI (New England Biolabs, Boston MA) restriction 

endonuclease for restriction fragment length polymorphism analysis of 

CD209 (DC-SIGN 336A/G) variants. 10 μl of PCR product was mixed with 

0.5μl of enzyme (5000U/ml), 5μl of 1X CutSmart bu昀昀er and incubated at 

37°C for 1 hour. Digested products were analyzed on an ethidium bromide-

stained agarose gel, and band analysis carried out with a Doc-It LS Image 

Analysis Software (UVP Life Sciences, Upland CA). Restriction analysis was 

conducted by two investigators anonymously and 50% of ampli昀椀ed 

products subjected to repeat digestion (3rd investigator), with 100% 

concordance. Wild type variants (-336A/A) were undigested (150 bp) while 

mutant variants (-336G/G) produced bands of 131 and 19 bp.

Statistical analysis

Genotypic and allelic frequencies were determined with a simple PERL 
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script, as described previously (Thakur et al., 2014). Di昀昀erences in 

genotype and allele frequencies between populations were assessed by 

chi-square tests, while di昀昀erences between sickle cell disease and controls 

were assessed by odds ratio. Tests for deviation from Hardy-Weinberg 

equilibrium (HWE) were performed, with SNP’s rejected based on the 

recommended threshold of p<0.001 in control individuals. 

Results

We found a wide disparity in the genetic diversity of the promoter variant 

of CD209 (DC-SIGN1-336A/G; rs4804803) gene polymorphisms in di昀昀erent 

populations. Genotypic frequencies of 23.4%, 16.9% and 3.2% were 

observed for the mutant variant between Africans, African Americans and 

Caucasians respectively (Table 1). Similar 昀椀ndings were made for the allelic

frequencies (36.1%, 25.1% and 11.6% respectively), with a signi昀椀cant 
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di昀昀erence in both genotypic and allelic frequencies (P<0.05) of CD209 

gene promoter variants between all population groups. Surprisingly, the 

mutant variant (GG) is almost absent among Caucasians (3.2%). The 

genotypic and allelic frequencies of the mutant variant (snp-336GG) had 

the highest frequency among Africans (23.4% and 36.1% respectively). The

wild type and heterozygote variants (AA and AG), that are necessary to 

facilitate dendritic cell activation and function during immune response, 

occurred at higher frequencies among African Americans (83.1%) and 

Caucasians (~97%), and an unprecedented low frequency among Africans 

(26%) (Fig 1).

We also examined the diversity of CD209 (snp 336A/G) gene promoter 

polymorphisms between sickle cell disease and healthy control groups in 

Africa and United States. There was a an extensive and signi昀椀cant disparity

in the genotypic (Fig 2a, Table 2) frequency of the CD209 mutant variant 

(snp 336G/G) between sickle cell disease and control populations in Africa 

(P=0.002). Surprisingly, this was not the case between sickle cell disease 

and control populations recruited from the United States (Fig 2b) (P=0.54). 

In addition, the mutant variant has a higher frequency among healthy 

control groups than sickle cell patients (23.4% versus 10.4% respectively) 

in Africa, but no di昀昀erence in the United States (16.9% versus 15.1% for 

controls and cases respectively). Similar observation was made for the 

allelic frequencies between controls and cases in Africa and United States 

(Table 3).   
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Since sickle cell disease has been known to display disease severity 

between population groups, we evaluated the diversity of CD209 (snp 

336A/G) gene promoter polymorphisms between sickle cell groups 

recruited from Africa and United States. Surprisingly, there was no 

di昀昀erence either in genotypic (P=0.19) or allelic frequencies (P=0.72) of 

mutant variants (snp 336G/G) between sickle cell disease groups (Table 4). 

The similarities in the genotypic and allelic frequencies (10.4% versus 

15.1% and 25.2% versus 28.1% for genotypes and alleles respectively) of 

mutant variants were statistically insigni昀椀cant. 

Discussion

Sickle cell disease is the most commonly inherited hemoglobinopathy with 

a worldwide distribution. It is a major disease represented in populations of

sub-Saharan Africa, the Middle East and several parts of India, and remains
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a signi昀椀cant health burden borne by the African American population in the

United States, and several Caribbean island nations, whose populations are

dominated by ethnicities of African origin. It has recently been classi昀椀ed as 

a disease that would create a global challenge to the population of three 

major countries, therefore requiring a need to clarify, elucidate and 

decipher the various parameters contributing to its severity and diverse 

clinical pathophysiology among and between populations. To our 

understanding, this is the 昀椀rst report to elucidate the genomic diversity of 

CD209 promoter gene (snp-336A/G) polymorphisms in sickle cell disease, 

with the potential to clarify its role or otherwise in susceptibility to 

infectious pathogens. We chose three de昀椀nitively classi昀椀ed populations, 

and as such permits conclusive inferences based on our 昀椀nding. The 

African samples are from Mali facilitating analysis from a homogeneous 

population in comparison to the heterogeneous nature of the African 

American group. 

Our observation that the CD209 promoter gene wild-type allele (snp-

336A/A) occurred at a lower frequency among Africans compared to African

Americans and Caucasians is signi昀椀cant, though not unexpected 

considering the degree of genetic admixture in the African American 

population. This is similar to our previous 昀椀nding while examining the 

genomic diversity of endothelial nitric oxide synthase genes in di昀昀ering 

populations (Thomas et al., 2013). Though both populations share a 

common ancestry, it is expected that the several hundred years of sexual 
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recombination and both the uncomfortable and under-reported legacies of 

slavery would a昀昀ect the genetic contribution of African genes into the 

African American genome. The wild type variant is necessary for dendritic 

cell activation and initiation of adaptive immune response. Therefore the 

reduced frequency of this allele among Africans potentially is a major 

contributing factor to their susceptibility to infectious pathogens. 

Unfortunately, sub-Saharan Africa is blessed with geographic and weather 

pattern that sustains the endemicity of many pathogens, especially 

neglected tropical diseases, and could potentially explain the often-

encountered cases of disease co-morbidities with multiple infectious 

agents in a single host. In addition, this could be an evolutionary 

disadvantage in the African continent enhancing susceptibility and 

infectivity, thereby underscoring the preponderance of infections. The 

possibility that these infectious agents may have imposed a selection 

pressure on dendritic cells, that are imperative to initiate and exert 

immune pressure, is of potential signi昀椀cance and deserves further analysis.

In addition, this observation in Africans is enhanced by the reverse 

observation in the Caucasian population of the United States. The wild type

variants (AA, AG) allele is ~97% among Caucasians and 83% among 

African Americans, with the mutant variant almost absent in both groups 

(3.2% among Caucasians and 16% among African Americans). This low 

genotypic frequency of the mutant variant is similar to results from 

previous reports, which showed 0%, 3% and 5% in the Taiwan, general 
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Brazilian and Sao Paulo populations respectively (Kashima et al., 2009; 

Wang et al., 2011; Dettogni et al., 2013). In fact, in a study conducted 

among three groups of healthy control populations of Thailand, a similar 

scenario was observed, with a genotypic frequency of 5%, 1% and 3% 

(Sakuntabhai et al., 2005). This observation potentially con昀椀rms our 

hypothesis that this immunogenetic marker has undergone evolutionary 

changes over time, conferring a selective advantage on populations 

outside of Africa (Miller et al., 1994; Gibbons, 2001; Simmer et al., 2001; 

Thomas et al., 2005). In otherwords, populations with the wild type variant 

are able to 昀椀ght infections, hence the reduced prevalence of infectious 

agents, while the reverse is the case in Africa. The ancestral-susceptibility 

model, which states that disease susceptibility alleles are ancestral while 

derived variants are protective, has been proposed and validated (Di 

Rienzo and Hudson, 2005; Biswas and Akey 2006). It further emphasizes 

that ancestral alleles were adapted to historical environmental conditions, 

becoming maladaptive based on changes in human lifestyle and dispersal 

into new environmental niches (Biswas and Akey 2006). In fact, extensive 

reports of geographically restricted selection have been found in genome-

wide studies of humans and human diseases (Carlson et al., 2005; Weir et 

al., 2005; Voight et al., 2006; Nakajima et al., 2004; Zhou et al., 2004; 

Sakagami et al., 2004; Di Rienzo and Hudson, 2005; Young et al., 2005). It 

seems clear therefore that local adaptation in extant populations is a major

contributor to this observation (Fullerton et al., 2002; Rockman et al., 2004;
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Thompson et al., 2004), and is a con昀椀rmation of the out-of-Africa 

hypothesis (Biswas and Akey 2006; Thomas et al., 2013). 

Additionally, contrary to other reports, we conclude that the sickle cell 

gene potentially confer a protective mechanism against common infectious

co-morbidities in Africa, based on our present observation. The higher 

frequency of CD209 mutants in the non-SCD group reveals an impaired 

capacity to mount an immune response to infectious diseases, potentially a

contributor to the dominance of co-morbidities in this population. The red 

cell abnormality, which causes sickle cell disease, is probably protective in 

the present case, compared to normal individuals. We conclude that CD209

polymorphism play a major role in susceptibility to infectious pathogens 

among Africans and could potentially delineate severity of SCD. The 

implications of this 昀椀nding for co-morbidities or as modi昀椀ers of SCD 

pathophysiology, and its signi昀椀cance in African Americans with SCD 

deserves extensive and detailed elucidation. The next step would be to 

determine if this protection is due to disease haplotypes and evaluate 

immunoassays for immunoglobulin E and eosinophilia as markers of 

common helminthic infections between both disease and control groups. 

Our endpoint would be to decipher the synergistic or pathogenic advantage

of the sickle cell gene in disparate disease and population groups.
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Figure Legends

Fig 1. Genotypic distribution of CD209 gene promoter polymorphisms (SNP

-336 A/G; rs4804803) in Caucasian, African American and African control 

populations. Wild type variant (snp-336A) showed no digestion (150 bp), 
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while mutant variant (snp-336G) produced two bands (131 and 19 bp) on 

digestion (lower band size not shown). Marker: 100 bp ladder, where the 

500 bp band stains most intensely (New England Biolabs). Black bars-wild-

type homozygotes (AA); blue bars-heterozygotes (AG); red bars-

homozygote mutants (GG)

Figure 1

Fig 2: Genotypic frequency of CD209 gene promoter polymorphisms (SNP 

-336 A/G; rs4804803) in African (Fig 2a) and African American (Fig 2b) 

sickle cell disease and control groups. Ampli昀椀ed PCR products were 

digested with MscI restriction endonuclease (Fisher Scienti昀椀c), and 
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expressed on a 2% ethidium bromide-stained agarose gel. Wild type 

variant (snp-336A) showed no digestion (150 bp), while mutant variant 

(snp-336G) produced two bands (131 and 19 bp) on digestion (lower band 

size not shown). Marker: 100 bp ladder, where the 500 bp band stains most

intensely (New England Biolabs). Blue bars-sickle cell disease; red bars-

control groups

Fig 2a

Fig 2b
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Table 1(on next page)

Table 1. Genotypic and allelic frequency of CD209 polymorphisms in diverse populations
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Table 1. Genotypic and allelic frequency of CD209 polymorphisms in diverse populations 

Ethnic groups Polymorphism Genotype 

African 

n=244 (%) 

African American 

n=379 (%) 

Caucasian 

n=159 (%) 

Chi square P-value 

CD209 

(rs4804803) 

A/A 

60 (26.0) 

191 (50.4) 101 (63.5) 59.9243 9.72E-14 

 A/G 117 (50.6) 124 (32.7) 53 (33.3) 21.5787 2.06E-05 

 G/G 54 (23.4) 64 (16.9) 5 (3.2) 29.1326 4.72E-07 

       

  Allelic diversity   

 Allele n=488 (%) n=758 (%) n=318 (%) Chi square P-value 

CD209 

(rs4804803) 

A 179 (38.7) 444 (58.6) 229 (72.0) 83.7253 <2.2E-16 

 G 167 (36.1) 190 (25.1) 37 (11.6) 83.7253 <2.2E-16 

       

Percentile frequency of the genotypes and alleles at CD209 locus, determined among African, African American and Caucasian 

ethnic populations. Africans were recruited from Mali while African American and Caucasian populations were recruited from 

Louisiana. Odds ratio was calculated by Fisher’s two-tailed exact test 
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Table 2(on next page)

Table 2. Genotypic frequency of CD209 polymorphisms between sickle cell and control

groups
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Table 2. Genotypic frequency of CD209 polymorphisms between sickle cell and control groups 

  African   

Polymorphism Genotype SCD: n=145  

(%) 

Controls: n=231 

(%) 

Odds ratio  

(95% CI) 

P-value 

CD209 (rs4804803) A/A 45 (31.0) 60 (26.0) 1.28 (0.79-2.08) 0.2907 

 A/G 85 (58.6) 117 (50.6) 1.38 (0.89-2.15) 0.1382 

 G/G 15 (10.4) 54 (23.4) 0.38 (0.19-0.72) 0.002 

      

  African American   

  SCD: n=331  

(%) 

Controls: n=379 

(%) 

Odds ratio  

(95% CI) 

P-value 

CD209 (rs4804803) A/A 110 (33.2) 191 (50.4) 0.49 (0.36-0.67) 4.70E-06 

 A/G 171 (51.7) 124 (32.7) 2.20 (1.60-3.01) 4.33E-07 

 G/G 50 (15.1) 64 (16.9) 0.88 (0.57-1.33) 0.54 

Abbreviations: SCD, sickle cell disease; NS, not significant; CI, confidence interval 

Percentile frequency of the genotypes at CD209 locus, determined among African American sickle cell disease patients and 

control groups. Sickle cell disease populations were recruited from Mali and Georgia. Control populations (individuals without 

sickle cell disease) were recruited from Mali and Louisiana. Odds ratio was calculated by Fisher’s two-tailed exact test 
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Table 3. Allelic frequency of CD209 polymorphisms between sickle cell and control

groups
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Table 3. Allelic frequency of CD209 polymorphisms between sickle cell and control groups 

  African   

Polymorphism Allele SCD: n=290  

(%) 

Controls: n=462 

(%) 

Odds ratio  

(95% CI) 

P-value 

CD209 (rs4804803) A 133 (45.9) 179 (38.7) 1.70 (1.17-2.47) 0.003432 

 G 73 (25.2) 167 (36.1) 0.59 (0.41-0.85) 0.003432 

      

  African American   

  SCD: n=662  

(%) 

Controls: n=758 

(%) 

Odds ratio  

(95% CI) 

P-value 

CD209 (rs4804803) A 306 (46.2) 444 (58.6) 0.70 (0.54-0.91) 0.006167 

 G 186 (28.1) 190 (25.1) 1.42 (1.10-1.84) 0.006167 

Abbreviations: SCD, sickle cell disease; NS, not significant; CI, confidence interval 

Percentile frequency of the genotypes at CD209 locus, determined among African American sickle cell disease patients and 

control groups. Sickle cell disease populations were recruited from Mali (African) and Augusta GA (African American). 

Control populations (individuals without sickle cell disease) were recruited from Mali and Louisiana. Odds ratio was calculated 

by Fisher’s two-tailed exact test 
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Table 4. Genotypic and allelic frequency of CD209 polymorphisms between sickle cell disease groups 

Genotypic frequency 

Polymorphism Genotype Mali: n=145  

(%) 

USA: n=331  

(%) 

Odds ratio  

(95% CI) 

P-value 

CD209 (rs4804803) A/A 45 (31.0) 110 (33.2) 0.90 (0.59-1.40) 0.67 

 A/G 85 (58.6) 171 (51.7) 1.32 (0.87-2.00) 0.16 

 G/G 15 (10.4) 50 (15.1) 0.65 (0.33-1.23) 0.19 

      

Allelic frequency 

Polymorphism Allele Mali: n=290  

(%) 

USA: n=662  

(%) 

Odds ratio  

(95% CI) 

P-value 

CD209 (rs4804803) A 133 (45.9) 306 (46.2) 1.05 (0.79-1.41) 0.72 

 G 73 (25.2) 186 (28.1) 0.95 (0.71-1.27) 0.72 

Abbreviations: SCD, sickle cell disease; NS, not significant; CI, confidence interval 

Sickle cell disease populations were recruited from Mali (African) and Augusta GA (African American), while control 

populations, who are individuals without sickle cell disease), were recruited from Mali and Louisiana. A/G denotes the alleles 

at the locus. Odds ratio was calculated by Fisher’s two-tailed exact test 
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Figure 1

Fig 1. Genotypic distribution of CD209 gene promoter polymorphisms (SNP -336 A/G;

rs4804803) in Caucasian, African American and African control populations
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Figure 2

Fig 2a. Genotypic frequency of CD209 gene promoter polymorphisms (SNP -336 A/G;

rs4804803) in African sickle cell disease and control groups
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Figure 3

Fig 2b. Genotypic frequency of CD209 gene promoter polymorphisms (SNP -336 A/G;

rs4804803) in American sickle cell disease and control groups
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