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Abstract

We evaluate the population genetic structure of the intertidal barnacle Jehlius
cirratus across a broad portion of its geographic distribution using data from the
mitochondrial cytochrome oxidase I (COI) gene region. Despite sampling diversity
from over 3000km of the linear range of this species, there is only slight regional
structure indicated, with overall ®cr of 0.036 (p<0.001) yet no support for isolation
by distance. While these results suggest greater structure than previous studies of J.
cirratus had indicated, the pattern of diversity is still far more subtle than in other
similarly-distributed species with similar larval and life history traits. We compare
these data and results with recent findings in four other intertidal species that have
planktotrophic larvae. There are no clear patterns among these taxa that can be

associated with intertidal depth or other known life history traits.
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Introduction

A persistent question in marine biogeography and population biology involves the
interaction of species life history, geographic range, and trait or genealogical
diversity within that range. In some cases, genealogical diversity or “structure”
(Wares 2016) within a species is informative of mechanisms that act to limit other
species’ distributional ranges (Dawson 2001; Wares 2002; Wares et al. 2001). Of
course, these studies often find that organisms with limited larval or juvenile
dispersal have greater amounts of structure and less extensive ranges, but there are
often exceptions (Marko 2004). It is the variation among species, and the exceptions

to the “rules”, that offer continued opportunity to understand marine diversity.

Early approaches to comparative phylogeography (Dawson 2001; Wares 2002;
Wares & Cunningham 2001) focused primarily on regions of co-diversification of
intraspecific lineages, e.g. the regions across which species were likely to exhibit
structure. Subsequently, Marko (2004) noted that even when species had
apparently identical life history and dispersal mechanisms, the distribution of a
species across habitats (e.g. intertidal height) could influence their persistence in
distinct glacial refugia. However, certainly to understand these associations more
taxa should be compared, and Kelly and Palumbi (2010) made explicit comparisons
of diversity and population divergence for 50 species along the Pacific coast of
North America to suggest that species high in the intertidal were perhaps more

likely to exhibit spatial genetic structure than those at lower depths.
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The particular spatial structure of the species represented in Kelly and Palumbi
(2010) varies; however, there is often concordance of population structure among
species (Pelc et al. 2009; Small & Wares 2010) on this coast. Other regions that have
been similarly explored - for example, the NW Atlantic coast - have fewer instances
of strong population structure aside from regions that are also biogeographic
transitions (Altman et al. 2013; Diaz-Ferguson et al. 2009). Another such example of
this concordance of genetic diversity with biogeography was recently published by
Haye et al. (2014), looking at species with short-dispersing larval forms around the
well-characterized biogeographic transition near 30°S latitude along the coast of
Chile. Again, the structure of diversity within species was informative to the
mechanisms - including shifts in upwelling intensity and nutrient availability

(Navarrete et al. 2005) - that may limit the distribution of other taxa.

Evaluating broad-scale diversity structure on the Chilean coast is of key interest as
there are so many oceanographic and biogeographic comparisons to be made
between this well-studied coastline and the well-studied Pacific coast of North
America (Navarrete et al. 2008). However, until recently there were few data
available for species that spanned most of the length of the Chilean coastline. This
scale is of interest because it spans two major biogeographic transitions - the region
around 30°S noted above, as well as a notable biogeographic transition near 42°S

(Thiel et al. 2007).
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Some of the first such work at this spatial scale was done in the direct-developing
gastropod Acanthina monodon (Sanchez et al. 2011) and another gastropod
Concholepas concholepas (Cardenas et al. 2009). In Acanthina, which has low
dispersal potential among locations, strong concordance of intraspecific diversity
with the 30°S biogeographic boundary was found, but association with the 42°
boundary was less clear. Nevertheless, statistically significant genetic structure and
shifts in phenotypic diversity are associated with this region. The gastropod
Concholepas concholepas, on the other hand, has high potential for pelagic larval
dispersal, is similarly distributed along the coast of Chile, but exhibits no significant
genetic structure at all (Cardenas et al. 2009). These contrasts are wholly in line

with predictions based on larval life history.

Recently, large data sets have become available for other commonly encountered
taxa in the Chilean intertidal. Microsatellite data were analyzed in the mussel
Perumytilus purpuratus (Guifiez et al. 2016), which both spawns gametes and has a
long-lived planktotrophic larva, and this ecosystem engineer exhibited significant
structure with two main lineages (separated at approximately 40°S) and isolation
by distance within each lineage. Similarly, Ewers-Saucedo et al. (2016) explored
genetic variation in the high intertidal barnacle Notochthamalus scabrosus, with
nauplius larvae that have high pelagic larval dispersal potential, and found two
primary lineages that mirror the dominant biogeographical pattern of Chile: in the
northern Peruvian region only one lineage is found, while both are found in the

Intermediate Area that represents the overlap of the Peruvian and Magellanic
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regions, and only the southern lineage is found south of 42°S. Another barnacle, the
edible picoroco (Austromegabalanus psittacus) exhibits only slight structure along
most of the Chilean coast (Pappalardo et al. 2016), but nevertheless the structure is
statistically significant and seems to be associated with the northern (30°S)

biogeographic transition.

To these data we add one more layer: Zakas et al. (2009) had explored
mitochondrial sequence population structure in the high intertidal barnacle Jehlius
cirratus, a species that is biologically and ecologically very similar to
Notochthamalus but found slightly higher in the intertidal (Lamb et al. 2014; Shinen
& Navarrete 2010, 2014). Zakas et al. (2009) found that unlike Notochthamalus,
there was very little apparent genetic structure in J. cirratus. However, that analysis
comprised only a small section of the Chilean coast, from ~28-34°S. Here, we
expand the sampling of J. cirratus to include diversity from ~3500km of coastline,
including most of the known distribution (Hiussermann & Foérsterra 2009). As
chthamalid barnacles have a propensity to harbor cryptic genetic diversity (Dando
& Southward 1981; Meyers et al. 2013; Tsang et al. 2008; Wares et al. 2009; Zardus
& Hadfield 2005), we specifically look for any phylogeographic structure that may
add to our understanding of coastal biodiversity in Chile. We then more directly
compare the whole-coast data described above for the ecological implications of the

population structure identified within and among taxa.

6

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.596v4 | CC BY 4.0 Open Access | rec: 12 Sep 2016, publ: 12 Sep 2016




121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

Methods

Specimens of J. cirratus were collected from the intertidal in 2004-2013 under
permits indicated in (Ewers-Saucedo et al. 2016). Sequences of cytochrome oxidase
[ (n=153) from Zakas et al (2009) were used in this study (Genbank GU126073 -
GU126226); additional sequences (n=187) were generated from subsequent
samples collected in 2011-2013 using PCR methods as in Zakas et al. (2009).
Samples were mostly collected in central Chile (Figure 1, Table 1), but this
additional effort also added substantially to information from northern Chile and

northern Patagonia.

After quality control and alignment of sequence data using CodonCode Aligner
v6.0.2 (CodonCode Corporation), data were formatted for analysis using Arlequin
v3.5.2.2. (Excoffier et al. 2005) to identify population structure. Pairwise ®st was
calculated for all sites and compared to a matrix of pairwise geographic distance for
signal of isolation by distance (Wright 1943); this was done both with haplotypic
data as well as nucleotide data under a K2P distance model. Additionally, an exact
test of differentiation was calculated for all pairs of populations. Analysis of
molecular variance (AMOVA) was performed to identify maximal structure along
the coast as in (Dupanloup et al. 2002) and Zakas et al (2009), using an iterative
approach for K contiguous spatial groups, increasing K if there were significant
patterns of ®sc within the determined regional groups. Following the results of
AMOVA, a haplotype network was generated using PopArt (http://popart.

otago.ac.nz). Haplotypes were coded by sample location and by regions separated
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by the iterative AMOVA results that maximize ®cr to visually identify components of
diversity associated with each regional group. Population diversity was also
assessed at each sampled location; nucleotide diversity (1) and haplotype diversity

(H) are estimated at each location using Arlequin.

Results

New sequences are archived in Genbank under accession numbers KX014910 -
KX015034. Site-specific diversity is presented in Table 1; pairwise values of ®sr are
presented in Table 2. Only a single sequence was recovered from the northernmost
collection site of Arica, so this sequence was included in the Antofagasta sample
(results identical when excluded) for statistical purposes. Values of ®sr are very low
and in general not statistically significant (Table 2); the only exceptional locations
are Guanaqueros (30°S) and Pichilemu (34°S), each of which tend to exhibit higher
differentiation from a broader set of other locations. No population pairs are
significantly different under an exact test. Testing these results for a pattern of

genetic isolation by distance was not significant (p 0.245).

Although only slight structure is exhibited along the Chilean coast in J. cirratus (®sr
of -0.019, p ~ 1), there is statistical regional structure detectable with the increased
power of sampling at that scale. Our implementation of spatial AMOVA (Zakas et al.
2009) recovered two contrasts for K=2 regions in which ®¢r > 0.035 and p<0.01,
though similar results are found if the separation among regions is near to either of
these locations (Table 3). These local maxima in ®¢r separate Guanaqueros (30°S)

and sites to the north from all locations to the south; and Pichilemu (44°S) and all
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sites to the south from all locations to the north. No significant ®s is exhibited in
these comparisons. If K=3 groups are chosen using these same delineations, ®cr is

comparable (0.03661, p <0.001).

From these results, a haplotype network (minimum spanning tree) is presented in
Figure 2; “northern” diversity (from Guanaqueros northward), “southern” diversity
(including Pichilemu and southward sites), and “central” diversity (locations in

between), for visualization.

Discussion

As noted in Zakas et al. (2009) there is only slight population structure in J. cirratus.
Previous efforts had also noted that using alternate statistics such as Hudson’s
(Hudson 2000) Snn also recovered no signal of structure or pattern of isolation by
distance (Wares 2014). Here, we do identify statistically significant structure that is
roughly associated with the 30°S biogeographic transition between the Peruvian
and “Intermediate” zones, and there may also be structure further south - but not
associated with the boundary at 42°S. Overall, the statistical significance indicated -
given that pairwise statistical support was not consistent between permutational
tests of ®st and pairwise exact tests of population differentiation - suggests little
actual spatial variation but sufficient sampling to identify the differential

representation of regional samples in the 2 dominant haplotypes found (Figure 2).

Excluding the direct developer A. monodon from further consideration, the studies

reviewed earlier and current study include 5 intertidal species with high larval
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dispersal potential that are distributed and analyzed along the length of the Chilean
coast. Unfortunately, there is no clear pattern associated with intertidal depth; the
species with no or slight population genetic structure (J. cirratus, this study; A.
psittacus, Pappalardo et al. 2016; C. concholepas, Cardénas et al. 2009) are in the
highest reaches of the intertidal (J. cirratus) and the low intertidal (4. psittacus and
C. concholepas). The two species that exhibit significant structure, each with two
primary lineages and evidence for isolation by distance within each lineage, are in
the high-to-middle intertidal (N. scabrosus, Ewers-Saucedo et al. 2016; P.

purpuratus, Guifiez et al. 2016).

Clearly a sample of only 5 taxa is insufficient for statistical consideration. However,
what we can indicate is that all 3 barnacles (A. psittacus, J. cirratus, and N. scabrosus)
have at least some signal associated with the 30-32° oceanographic transition in
upwelling (Lagos et al. 2005; Navarrete et al. 2005); however the two molluscs, the
mussel P. purpuratus and abalone C. concholepas do not. The association of genetic
structure with the southern biogeographic boundary near 42°S (Thiel et al. 2007) is
far more varied; other taxa with shorter distributional ranges that span this
biogeographic transition, such as the mussel Mytilus chilensis, show little spatial
structure at mitochondrial or other putatively neutral markers (L. Besch and
Bockrath, unpublished; Areneda et al. (2016)) but can be distinguished among
different coastal environments by outlier markers (Araneda et al. 2016) and
expression profiling (Nufiez-Acufia et al. 2012). Ewers-Saucedo et al. (2016) note

that environmental transitions and current-mediated larval dispersal in this region,
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where trans-oceanic currents are separated as they reach the continental margin
(Acha et al. 2004), are likely to transport regionally-differentiated diversity along a
broad swath of this coastline. Thus, identifying concordant intraspecific diversity
patterns among taxa may require a different analytical approach that is model-

driven as in Ewers-Saucedo et al. (2016).

There is an expanding interest in exploration of genetic diversity within and among
regional populations of intertidal species along the coast of Chile (see Haye et al.
2014 for a recent synthesis). Such data are being used to explore the underlying
causes of biogeographic transition (Cardenas et al. 2009; Ewers-Saucedo et al. 2016;
Zakas et al. 2009), to inform management and aquacultural concerns (Haye &
Munoz-Herrera 2013; Nufiez-Acuia et al. 2012; Pappalardo et al. 2016), and better
understand how the dynamics of a coastal ocean influence local diversity (Aiken &
Navarrete 2014; Broitman et al. 2001; Navarrete et al. 2005). For example, even
with variation among the data and taxa evaluated here, there is a concordance
between the genetic transitions exhibited in these taxa and regions of strong

upwelling along coastal Chile (Navarrete et al. 2005).

What remains unsatisfying is our ability to predict - based on what we know of life
history, ecology, and other parameters of a given taxon - which species are likely to
exhibit structure across a certain region. Haydon et al. (1994) first noted the
problem of both stochastic and deterministic contributions to biogeography and
overall population structure. Certainly some ‘significant’ phylogeographic structure

may simply represent the interaction of genealogical processes and modest
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limitations on gene flow (Irwin 2002). However, the most direct contrast of the taxa
included here involves the barnacles N. scabrosus and J. cirratus, which are
ecologically nearly indistinguishable (Lamb et al. 2014; Shinen & Navarrete 2010,
2014) with little known distinction in larval life history. In fact, though N. scabrosus
exhibits significant phylogeographic structure (Ewers-Saucedo et al. 2016), the
larvae of N. scabrosus appear to require longer times in the plankton and longer
times for cyprid metamorphosis than J. cirratus (Venegas et al. 2000). Whether the
cause for this contrast in population structure is ecological, physiological, or simply

fortune remains unclear.
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Table 1 Collection sites, number of individuals per sampling site (n) and summary
statistics of genetic variability for Jehlius cirratus.
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Site (South Latitude) sampled | haplotypes | haplotype nucleotide
diversity diversity ()
Antofagasta/Arica (18.49°) | 31 27 0.978+0.020 0.012+0.009
Huasco (28.46°) 41 25 0.945+0.022 0.009+0.003
Temblador (29.40°) 21 16 0.948+0.040 0.009+£0.006
Guanaqueros (30.20°) 24 18 0.942+0.040 0.011£0.006
Punta Talca (30.95°) 23 14 0.893+0.052 0.008+0.004
Los Molles (32.25°) 28 23 0.971+£0.024 0.011£0.007
Monte Mar (32.95°) 28 24 0.987+0.014 0.011+£0.006
El Quisco (33.45°) 29 25 0.988+0.013 0.010£0.006
Las Cruces (33.49°) 17 16 0.993+0.023 0.012+0.006
Matanzas (33.95°) 24 20 0.975+0.024 0.011+0.006
Pichilemu (34.42°) 32 24 0.958+0.025 0.010+£0.008
Niebla (39.85°) 25 17 0.957+0.024 0.014£0.008
Afithue (43.85°) 8 7 0.964+0.077 0.016£0.009
Isla Madre de Dios (50.42°) | 7 3 0.667+£0.160 0.009+£0.004
19




Table 2 Pairwise ®¢; values among sites (indicated as header) for mitochondrial COI sequence data in J. cirratus. Statistically

significant (p<0.01) comparisons are bolded and in blue.

Antofagasta

-0.10721
-0.02397
-0.06007
-0.00797
-0.01641
-0.07084
-0.17547
-0.00509
-0.07137
0.06509
-0.03313
-0.01175
-0.0777

Huasco

-0.10075
0.00344
-0.07271
-0.09486
0.01909
-0.01582
-0.06798
0.01015
0.01927
-0.0885
0.02556
0.01877

Temblador

-0.09836
0.01272
-0.01873
-0.06296
-0.18666
0.00201
-0.05613
0.10959
0.01678
-0.00176
-0.04544

Guanaqueros Punta Talca Los Molles Monte Mar

-0.01539

-0.07157 0.00493

0.05349 -0.0808 -0.03693

0.02576 -0.1819 -0.15953 -0.03391
-0.02185 -0.02005 0.01097 -0.08597
0.04841 -0.0811 -0.04482 -0.0131
0.10642 0.01976 0.085 -0.01377
-0.04187 -0.04029 -0.02781 -0.09641
0.07232 -0.03869 0.00933 -0.03799
0.08615 -0.11043 -0.08512 0.04286
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El Quisco

-0.16477
-0.02592
-0.10077
-0.21442
-0.02988
-0.00793

Las Cruces

-0.07314
0.04336
-0.03887
-0.04939
-0.07119

Matanzas

-0.02223
-0.10159
0.00464
0.03113

Pichilemu

-0.01699
0.02127
-0.09806

Niebla

-0.05271
-0.13056

Afihue

0.04426



Table 3 Iterative AMOVA for K=2 regions of sequence diversity. Site is listed as
dividing that location and all sites to the north from all locations to the south. The
northernmost 2 sites (Arica, Antofagasta) were pooled for analysis as were the
southernmost 2 sites (Afiihue, Madre de Dios). Strongest values of ®.; (by
magnitude and p-value) indicated in bold. Similar value of ®.; (0.0366, p<0.001) i:
obtained with K=3 and the regions separated as in Figure 2.

Site O p-value
Huasco 0.01406 0.16
Temblador 0.01977 0.11
Guanaqueros 0.03679 <0.001
Punta Talca 0.02623 0.03
Los Molles 0.03215 <0.01
Monte Mar 0.02998 0.01

El Quisco 0.02896 <0.01
Las Cruces 0.03463 <0.01
Matanzas 0.03615 <0.005
Pichilemu 0.00076 0.55
Valdivia 0.00635 0.64
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Figure 1. Sample locations (bold circles) and log sample size (thin circles) indicate
sampling of J. cirratus along the Chilean coast. Additional information in Table 1.
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Figure 2. Minimum-spanning tree of mitochondrial COI diversity in J. cirratus.
Regional designations are generated from maximal ®crvalues along the coast.
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