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ABSTRACT

The atmospheric concentration of oxygen, a driver of free radical damage and tumorigenesis, decreases

sharply with rising elevation. To understand whether ambient oxygen concentrations play a role in

human carcinogenesis, we characterized age-adjusted cancer incidence (compiled by the National

Cancer Institute from 2005–2009) across counties of the elevation-varying Western United States and

compared trends displayed by respiratory cancer (lung) and non-respiratory cancers (breast, colorectal,

and prostate). To adjust for important demographic and cancer-risk factors, 8–12 covariates were

considered for each cancer. We produced sensible regression models that captured known risks. Models

demonstrated that elevation strongly, negatively associates with lung cancer incidence (p < 10−16), but

not with incidence of non-respiratory cancers. For every 1000 meter rise in elevation, lung cancer

incidence decreased by 7.23 [99% CI: 5.18–9.29] cases per 100,000 individuals, equivalent to 12.7%

of the mean incidence, 56.8. As a predictor of lung cancer incidence, elevation was second only to

smoking prevalence in terms of significance and effect size. Furthermore, no evidence of uncontrolled

confounding or ecological fallacy was detected: the lung cancer association was robust to varying

regression models, county stratification, and population subgrouping; additionally seven environmental

correlates of elevation, such as exposure to sunlight and fine particulate matter, could not capture the

association. Overall, our findings suggest the presence of an inhaled carcinogen inherently and inversely

tied to elevation, offering epidemiological support for oxygen-driven tumorigenesis. Finally, highlighting

the need to consider elevation in studies of lung cancer, we demonstrated that previously reported inverse

lung cancer associations with radon and UVB became insignificant after accounting for elevation.
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INTRODUCTION

At present, four types of cancer—prostate, breast, lung, and colorectal—exceed 100,000 new cases per

year in the United States. Of these cancers, lung cancer carries the worst prognosis and will claim an

estimated 159,260 lives in 2014 (Siegel, Ma, Zou, & Jemal, 2014). While lung cancer primarily afflicts

smokers, 10–15% of cases arise in nonsmokers (Samet et al., 2009), and over 80% of smokers never

develop lung cancer (Bilello, Murin, & Matthay, 2002, p. 5). Additional characterized risk factors include

genetic susceptibility as well as environmental exposure to carcinogens such as radon, asbestos, and

fine-particulate matter (Subramanian & Govindan, 2007). This multifactorial etiology for lung cancer

could include long-term exposure to an inhaled carcinogen.

Inspired molecular oxygen (O2) leads to intracellular formation of reactive oxygen species (ROS).

This occurs either by spontaneous ionizing radiation or by incomplete reduction of O2 during normal

cellular respiration (Fridovich, 1988). ROS are highly unstable and undergo damaging redox reactions

with a range of cellular components (Jackson, 1985). A variety of antioxidant enzymes and pathways exist

to eliminate ROS (Matés, Pérez-Gómez, & Núñez de Castro, 1999). However, formation and elimination

of ROS is a stochastic process during which cells accumulate damage, including mutations from reactions

with nucleic acids (Cooke, Evans, Dizdaroglu, & Lunec, 2003).
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The amount of DNA damage and cytotoxicity incurred is influenced both by the effectiveness of

oxygen metabolism (Passos et al., 2007; Sung et al., 2010) and the extent of oxygen exposure (Bruyninckx,

Mason, & Morse, 1978; Packer & Fuehr, 1977; Parrinello et al., 2003). Oxidative DNA damage plays

a prominent role in the pathogenesis and exacerbation of many diseases including cancer (Cooke et

al., 2003). A recent study of cancer initiation in three mouse models of tumorigenesis—P53(−/−),

APC(min/+), and a chemically-induced model—found that halving ambient oxygen concentration led

to proportional increases in tumor-free survival time and decreases in genomic instability and tumor

bulk (Sung et al., 2011). While similar studies are impossible in humans, numerous reports have indicated

significant increases in childhood cancers in cases of neonatal oxygen supplementation (Maruyama et al.,

2000; Naumburg, Bellocco, Cnattingius, Jonzon, & Ekbom, 2002; Oue et al., 2003; Spector, Klebanoff,

Feusner, Georgieff, & Ross, 2005). Importantly, oxygen toxicity appears most profound in the lung,

where exposure is direct (Jackson, 1985; Nagato et al., 2012; Pagano & Barazzone-Argiroffo, 2003).

Despite the inability to perform controlled experiments of oxygen toxicity in a human setting, elevation

provides a natural experimental platform for examining the effects of oxygen on carcinogenesis. The

relation between elevation and barometric pressure, and hence oxygen, is roughly linear at habitable

altitudes. Across United States counties, elevation accounts for a 34.9% decrease in oxygen from Imperial

County, California (-11 m) to San Juan County, Colorado (3473 m). From the concentration at sea level,

oxygen decreases to 88.7% at 1000 m, 78.5% at 2000 m, and 69.2% at 3000 m (Berberan-Santos, 1997).

Taking advantage of this natural dosage gradient, we asked whether atmospheric oxygen, assessed via

elevation, associates with carcinogenesis.

Numerous reports and observations of lower cancer rates at higher elevations appear in the literature

of the last four decades (Amsel, Waterbor, Oler, Rosenwaike, & Marshall, 1982; Burton, 1975; Hayes,

2010; Mason & Miller, 1974; Van Pelt, 2003; Weinberg, Brown, & Hoel, 1987). Of particular relevance,

Weinberg et al. (1987) and Van Pelt (2003) suggest reduced oxygen as a possible explanation. Interestingly,

both studies investigate elevation as a confounder of radiation hormesis—the theory that low, environmen-

tal doses of radiation are protective against cancer. Inevitably, neither study was designed to specifically

assess elevation, particularly how its effect on atmospheric pressure relates to cancer. Weinberg et al.

(1987) focused on a small sample of 80 metropolitan areas without a systematic selection process, while

only adjusting for proxies of urbanization and ethnicity without accounting for other demographic or

risk factors such as smoking. Regarding Van Pelt (2003), county elevation exposure was estimated by

the elevation of the largest city, rather than a more precise population-weighted calculation. Adjustment

for potential confounders was limited to subgrouping by sex and correction for smoking prevalence.

However, statewide smoking prevalence was uniformly applied to all counties within a state. Moreover,

both studies examined cancer mortality instead of the more direct outcome of incidence. All of these

issues contribute to a limited ability to compare effects across different cancer sites (i.e. respiratory versus

non-respiratory sites). While much was unconsidered due to each group’s interest in elevation primarily

as a confounder, many of these issues were simply due to a lack of available data. Elevation profoundly

impacts variables ranging from climate to behavior (Burtscher, 2014). To isolate the atmospheric-based

effects of elevation on cancer incidence, many factors must be carefully considered. A nuanced analysis

with precise, high-resolution data is required.

Building on existing experimental and epidemiological evidence, we designed a study to assess the

effect of elevation-dependent ambient oxygen on cancer incidence. We focused on the elevation-varying

western United States, maximizing variation in our exposure of interest while minimizing potential

confounding. Recent proliferation of high-resolution, publicly-available data enabled a precise ecological

evaluation of our hypothesis. We relied on county-level incidence rather than mortality to minimize quality

of care and disease progression biases. To accurately assess oxygen exposure, we incorporated subcounty

population dispersion into county elevation calculation. We accounted for potential confounding effects

by including important risk and demographic factors and evaluating a range of environmental variables

that covary with elevation. We compared elevation’s association with lung cancer versus its association

with breast, colon, and prostate cancers to discriminate between atmosphere dependent and independent

elevation effects. These steps combined with a robust and conservative statistical framework provided

a rigorous assessment of our hypothesis: cancer incidence decreases as elevation rises, a trend most

pronounced in tissue with direct atmospheric exposure.
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METHODS

Data collection & preparation

From 11 publicly-available databases, we compiled US county data on cancer risk factors, environmental

features, demographics, and quality control metrics, while avoiding redundancy. When selecting resources,

we balanced several considerations including coverage, precision, collection period, and accessibility.

To capture the long latency period of cancers and minimize observational error, we preferred collection

periods preceding the cancer incidence timeframe and spanning multiple years. Resources were integrated

using county FIPS (Federal Information Processing Standards) codes if available and name matching

otherwise. Variables collected as cancer incidence predictors are displayed in Table 1. Variables were

averaged over their entire collection periods. Unless otherwise noted, averaging was performed by the

source databases.

predictor cancers n mean sd years units

black all 259 1.9 2.6 2000 %

education all 259 24 10 2006–2010 % of adults with bachelor’s

income all 259 49 11 2006–2010 thousands of US $

metro all 259 0.43 0.5 2003 binary classification

obesity all 259 21 3.5 2003–2005 % prevalence

white all 259 86 11 2000 %

elevation all 259 0.97 0.74 2000 kilometers

diabetes c 259 6.6 1 2004–2008 % age-adjusted prevalence

drinking b,c 244 15 3.8 2002–2008 % binge drinking last 30 days

female smoking b 258 41 6.8 1997–2003 % smoked in lifetime

male c,l 259 50 1.6 2000 %

mammogram b 259 64 6.2 2000–2003 % within last two years

meat c,p 259 67 12 2006 lbs per household per year

other cancer b 259 273 33 2005–2009 age-adjusted incidence per 100,000

other cancer c 258 396 42 2005–2009 age-adjusted incidence per 100,000

other cancer l 255 382 36 2005–2009 age-adjusted incidence per 100,000

other cancer p 259 352 48 2005–2009 age-adjusted incidence per 100,000

smoking l,c 258 47 5.8 1997–2003 % smoked in lifetime

particulate l,env 259 10 1.8 2003–2008 µg/m3

radon l,env 258 1.7 1 picocuries per liter

uvb env 259 1072 239 1996–2005 kJ/m2

sunlight env 259 17060 1939 1979–2000 kJ/m3

precipitation env 259 1.9 1.5 1979–2000 average daily mm

high temp env 259 16 4.6 1979–2000 ◦C

diurnal temp env 259 9.5 1.6 1979–2000 ◦C

Table 1. Predictor information and inclusion. The cancers that each predictor was included for is

denoted by ‘l’ (lung), ‘b’ (breast), ‘c’ (colorectal), ‘p’ (prostate), ‘all’ (all 4 cancers), and ‘env’ (as an

elevation replacement in the environmental analysis). The data collection period, number of counties with

non-missing values after quality control, and unweighted mean and standard deviation are also reported.

Cancer incidence

Total county cancer incidences (‘All Races (incl. Hisp)’, ‘Both Sexes’, ‘All Ages’) were obtained from the

National Cancer Institute (NCI) State Cancer Profiles for the following categories: ‘Lung & Bronchus’,

‘Breast’, ‘Prostate’, ‘Colon & Rectum’, and ‘All Cancer Sites’ (National Cancer Institute, n.d.-b). For

‘All Cancer Sites’, incidence for ‘Sex Males’ and ‘Sex Females’ was downloaded. ‘Lung & Bronchus’

incidence was obtained for ‘Sex Males’, ‘Sex Females’, ‘Age 65+’, and ‘Age <65’. The data was collected

from 2005–2009, age-adjusted to the 2000 US standard population, and converted to cases per 100,000

individuals per year. For each cancer, we calculated the incidence for ‘other cancer’ by subtracting the

relevant cancer’s incidence from the incidence for all sites combined. Breast and prostate incidences were

subtracted from the corresponding sex-specific all-sites incidences.
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Demographic & health data

County-level education, income, and mammogram data were obtained from State Cancer Profiles (National

Cancer Institute, n.d.-b), which derived data as follows: median household income and percent of

individuals over 25 with a bachelor’s degree were calculated from the American Community Survey data

spanning 2006–2010; the percentage of women over 40 who received a mammogram in the past two years

was calculated from the Behavioral Risk Factor Surveillance System (BRFSS) and the National Health

Interview Survey (NHIS) for the period 2000–2003.

The percent of individuals having reported smoking over 100 cigarettes in their lifetime was down-

loaded from NCI Small Area Estimates (National Cancer Institute, n.d.-a). This resource provides

model-based lifetime smoking estimates from BRFSS and NHIS data for the periods 1997–1999 and

2000–2003 (Raghunathan et al., 2007). We downloaded separate estimates for males, females, and all

individuals and averaged the estimates over the two time periods. The percent of adults that reported

binge drinking in the past 30 days, calculated from BRFSS data spanning 2002–2008, was obtained from

the County Health Rankings 2010 release (University of Wisconsin Population Health Institute, n.d.).

Pounds of meat purchased per household during 2006 was extracted from the 2011 Food Environment

Atlas (United States Department of Agriculture Economic Research Service, n.d.-b).

Age-adjusted model-based estimates for obesity and diabetes prevalence were downloaded from the

Centers for Disease Control (CDC) (Centers for Disease Control and Prevention, n.d.-b). The estimates

were calculated from BRFSS data spanning 2004–2008 for diabetes and 2003–2005 for obesity. Diabetes

was reported annually, so we averaged its prevalence over the five available years. Obesity refers to the

percent of individuals over 20 who reported a body mass index of 30 or higher.

A classification of counties as metropolitan or nonmetropolitan produced in 2003 was obtained from

the USDA Economic Research Service (United States Department of Agriculture Economic Research

Service, n.d.-a). County race, population, and migration information was downloaded from the US Census

Bureau for the 2000 census (United States Census Bureau, n.d.). To achieve sub-county data resolution,

county blockgroup boundaries and populations were also downloaded from the Census Bureau. The

percents white, black, and Native American for counties were determined by the Census as the percent of

individuals claiming that race alone or in combination with another race. Census blockgroup boundaries

and the corresponding populations were downloaded in the TIGER shapefile format. We calculated 5-year

county immigration rates by dividing the difference between total movers and within-county movers

by the total population. Percent male was calculated using 2000-census data prepared by the National

Atlas (National Atlas of the United States, 2004).

Climatic & environmental data

County averages for minimum and maximum daily temperature (◦C), fine particulate matter with an

aerodynamic diameter less than 2.5 micrometers (µg/m3), precipitation (mm), and sunlight (kJ/m3)

were downloaded from the CDC WONDER database (Centers for Disease Control and Prevention,

n.d.-a). The maximum data collection time intervals were specified: temperature, precipitation, and

sunlight measurements were collected from 1979–2000, while fine particulate matter was collected

from 2003–2008. We calculated average diurnal temperature variation by subtracting the average daily

minimum temperature from the average daily maximum. Solar UVB exposure (kJ/m2), erythemally

weighted to correspond to vitamin-D induction, was obtained from a 2006 study (Boscoe & Schymura,

2006). Indoor radon concentrations in picocuries per liter were obtained from the Lawrence Berkeley

National Laboratory High-Radon Project (Lawrence Berkeley National Laboratory, n.d.). Their model-

based approach explained 64% of variation in mean radon concentration across 5027 living-areas (Apte,

Nero, & Revzan, 1998). Elevation data was downloaded from WorldClim at 30 arc-seconds (1 km)

resolution (Hijmans, Cameron, Parra, Jones, & Jarvis, 2005; WorldClim, n.d.).

Population-weighted mean elevation

Absolute barometric pressure provides a more direct measure of atmospheric oxygen concentration than

elevation, albeit marginally. Since barometric pressure data is collected at land stations, which are not

universally distributed, and frequently reported relative to sea level for weather forecasting, we instead

relied on population-weighted elevation to better assess atmospheric oxygen exposure.

We calculated county elevation by subdividing a county into census blockgroups, computing the

mean elevation for each blockgroup, and calculating the population-weighted average of the blockgroup

elevations. On average, US counties contained 66.5 blockgroups with an average population of 1348.3
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persons per blockgroup. By accounting for population dispersion within counties, this method better

assesses inhabitants’ exposure to elevation than population agnostic methods. With greater computational

resources, future researchers may choose to use census blocks as a finer subdivision combined with higher

resolution elevation data. This framework can be generalized for measuring exposure to any topological

variable across a geographical area.

County filtering

We restricted the analysis to states in the contiguous United States with elevation spans exceeding

3000 meters. The selected states—AZ, CA, CO, ID, MT, NV, NM, OR, UT, WA, WY—contained

414 counties composing the Western United States. Next, counties were filtered for quality control.

Counties with populations below 10,000 were excluded due to high missingness (values were missing for

many of the variables) and observational error (values were present but subject to large margins of error,

evidenced by source-reported confidence intervals). Counties with high Native American composition or

immigration rates were considered potentially problematic: cancer rates among Native Americans are

prone to misestimation (Puukka, Stehr-Green, & Becker, 2005); and immigrants accumulate cancer risk

prior to migration, outside of their destination county. Accordingly, we found that predictions of all-site

cancer incidence, based on eight general demographic and health predictors, diverged from reported

incidence for Native American and immigration-rich counties (Figure S1). Selecting exclusion thresholds

corresponding to this divergence, we omitted counties with five-year immigration rates exceeding 40% or

Native American population exceeding 25%. After filtering, 260 counties remained.

Regression analysis

We evaluated the association between elevation and cancer incidence using multivariate linear regression.

Counties were weighted by their population square root up to a maximum population of 250,000 where

measurement uncertainty leveled off to minimal levels. The weighting scheme accounted for increasing

measurement uncertainty among low population counties without granting heavily populated counties an

overwhelming influence.

To minimize confounding effects, we selected well-established factors to include as covariates with

elevation. We avoided excessive collinearity (Dormann et al., 2013) by carefully identifying major

cancer-specific risk factors with available county-level estimates. Smoking, radon, fine particulate matter,

and percent male were identified for lung cancer; female smoking, mammogram, and drinking for breast

cancer; smoking, drinking, diabetes, meat consumption, and percent male for colorectal; and meat

consumption for prostate. We included six additional covariates—metro, white, black, education, income,

and obesity—for all cancers to indirectly account for unknown or immeasurable risk factors or biases.

Since a large degree of risk is shared between cancers (Danaei, Vander Hoorn, Lopez, Murray, & Ezzati,

2005), for each cancer we included the incidence of all other cancer. In addition to elevation, a total

of 11 covariates were included for lung, 10 for breast, 12 for colorectal, and 8 for prostate (Table 1).

We created cancer-specific datasets by removing counties with any missing data for included variables.

Standardized versions of each dataset were created by converting cancer incidence and all predictors to

weighted z-scores.

We employed two regression methods, best subset and lasso, in parallel. The best subset approach

allowed us to force elevation into the model and exhaustively evaluate all possible models while remaining

amenable to statistical interpretation. However, evaluating all possible subsets creates the potential for

overfitting. Lasso addresses this concern by introducing coefficient shrinkage and variable selection (Tib-

shirani, 1996). Despite efforts to exclude redundant predictors, variables were characterized by moderate

yet pervasive collinearity (Figure 1). In the best subset method, severe collinearity could cause unstable

and unreliable coefficient estimates with inflated standard errors. In addition to scrutinizing best subset

results, we adopted the lasso, whose variable selection mechanism tends to include a single member

from a group of correlated predictors. This characteristic makes the lasso effective at identifying truly

associated predictors in the presence of high collinearity (Dormann et al., 2013).

Best subset regression

For each cancer, we performed best subset regression by evaluating all predictor subsets that included

elevation. Subset sizes ranged from one, where elevation was the sole predictor, up to the total number of

included variables. For a given size, the predictor set minimizing the residual weighted sum of squares

was computed. To identify an optimal model across subset sizes, we chose the subset whose model
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Figure 1. Predictor collinearity and correlation with cancer incidence. Predictors displayed

expected correlations such as a strong positive correlation between obesity and diabetes. Collinearity was

moderate but pervasive. Elevation covaried with most variables including cancers indicating the need to

adjust for covariates while carefully considering collinearity. Besides radon, elevation’s correlation with

other predictors did not exceed |ρ|= 0.55.

minimized the Bayesian Information Criterion (BIC) (Schwarz, 1978). The BIC aims to balance the

competing objectives of model parsimony and goodness-of-fit. Compared to alternative criteria, the BIC

more harshly penalizes complexity, which is favorable in situations where extra terms risk exacerbating

the effects of collinearity. To assess whether elevation was negatively correlated with incidence for each

cancer, we applied a one-tailed t-test to the elevation coefficient in the optimal best subset model. A

Bonferroni-adjusted significance cutoff of p = 0.0125 was adopted corresponding to a familywise error

rate threshold of 5%.

Lasso regression

We fit a single model for each cancer using lasso regression (Tibshirani, 1996). Lasso requires a single

regularization parameter. We optimized this parameter separately for each cancer using 10-fold cross-

validation. To prevent overfitting, we adopted the ‘one-standard-error’ rule for determining the optimal

parameter value (Friedman, Hastie, & Tibshirani, 2010).

Partial regression plots

To display the relationship between elevation and cancer incidence while accounting for the effect of

covariates, we employed partial regression plots. The x-axis represents the residual from regressing

elevation against the remaining covariates. The y-axis represents the residual from regressing cancer

incidence versus the included covariates absent elevation. The partial regression refers to the simple

weighted regression of the cancer incidence residuals (y-axis) against the elevation residuals (x-axis).

Underlying elevation and incidence values for each county are not discernable in the partial regression

plots. However, the slope of the partial regression equals the multivariate elevation coefficient, and the

residuals along the partial regression line are equivalent to the multivariate regression residuals. The

partial coefficient of determination for elevation, computed as the partial R2, signifies the proportion of

cancer variance explained by elevation.
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incidence model elevation

cancer mean (sd) n size R2 p β βz β%

lung 56.8 (14.4) 253 5 70.2% 1.34×10−17 -7.23 -0.35 -12.7%

[-9.29, -5.18] [-0.46, -0.25] [-16.35, -9.11]%

breast 119.3 (16.7) 243 6 56.8% 3.22×10−03 -3.63 -0.15 -3.0%

[-7.06, -0.20] [-0.30, -0.01] [-5.92, -0.17]%

colorectal 41.9 (6.0) 243 5 34.1% 0.883 0.65 0.08 1.5%

[-0.76, 2.06] [-0.09, 0.24] [-1.82, 4.92]%

prostate 148.6 (23.9) 259 4 18.9% 0.974 4.71 0.14 3.2%

[-1.56, 10.97] [-0.05, 0.33] [-1.05, 7.38]%

Table 2. Summary of the optimal best subset model for each cancer. The weighted mean and

standard deviation for each cancer incidence is reported. For each optimal best subset model, the number

of counties (n) and predictors (size) as well as the R2 is indicated. The elevation p-value (one-tailed test

for coefficient negativity) is denoted along with three versions of the elevation coefficient: unstandardized

(β ), standardized (βz), and as a percentage of mean incidence (β%).

County stratifications
To investigate the potential of a smoking-elevation interaction affecting lung cancer, we partitioned

counties into smoking prevalence terciles as follows: high-smoking (49.9–61.9], mid-smoking (44.9–

49.9], low-smoking [28.2–44.9]. Within each tercile, we regressed lung cancer incidence against elevation

for visual examination. For statistical evaluation, we refitted the optimal best subset model with an added

interaction term (standardized smoking prevalence × standardized elevation).

To mitigate uncontrolled confounding (i.e. omitted-variable bias), we stratified the lung cancer dataset

by state. Health policy and data collection are often enacted at the state level making stratification by state

a sensible choice for maximizing within-strata homogeneity. Within each stratum, lung cancer incidence

was regressed against elevation and smoking prevalence. The elevation effect size was estimated across

the eleven state-specific models using a fixed effects meta-analysis, which averaged elevation coefficients

weighted by their inverse-variances.

Population subgroupings
We evaluated the association between elevation and lung cancer incidence measured for the following

population subgroups: under 65 years old, 65 or older, males, and females. These subgroups were

chosen because exposure to risk factors, such as occupational or lifestyle hazards, often segregates by

sex or age. For this analysis, we created a dataset with counties that had no missing data for the four

subgroup outcomes and the predictors from the optimal best subset model. Proceeding with the best

subset covariates, we fit a separate regression model for each population subgroup. We used sex-specific

smoking prevalence for the male and female models.

Elevation substitutions
Environmental variables without established cancer risk were not evaluated in the previous regression

analyses to avoid problems of collinearity. For lung and breast cancer, we investigated whether substituting

elevation with each of seven environmental variables produced a more likely model, which could indicate

an indirect elevation-cancer association. For each environmental variable, we performed best subset

regression to find the BIC-minimizing set of predictors. The covariates evaluated for each cancer matched

those from before (Table 1) with the exception of radon and fine particulate, which were excluded as

lung cancer covariates and instead included as elevation replacements. For both cancers, the increase in

minimum-BIC for each substitution compared to elevation was recorded. Change in BIC was converted

to a Bayes factor, K ≈ e−
1
2 (∆BIC) (Raftery, 1995, p. 139). K > 1 provides evidence favoring replacement

whereas K < 1 provides evidence against.

Software
Analyses were performed using the statistical-computing language R. County elevation computation

relied on the GIS packages raster and rgdal. The best-subset regression analysis used the leaps package,

which efficiently identifies top performing models from the complete search space. The glmnet package
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Figure 2. Elevation negatively associates with lung cancer incidence across a range of models.

Elevation coefficients and 99% confidence intervals are plotted across a range of best subset model sizes

for each cancer. As determined by BIC, more likely models are shaded darker. The optimal

(BIC-minimizing) model for each cancer is denoted by a star. Lung cancer is the only cancer to display

consistently negative coefficients and confidence intervals.

implemented the lasso. The state-specific lung cancer elevation coefficients were meta-analyzed using

the rmeta package. Tables were exported using the Hmisc package. Plots were created with the ggplot2

package. Correlation plots were ordered using Ward’s hierarchical clustering.

Data availability

The county-level dataset compiled for this study is available (Dataset S1). The project GitHub repos-

itory (https://github.com/dhimmel/elevcan) contains the code used to perform analyses as well as all

intermediate files.

RESULTS

Strong, negative association between elevation & lung cancer incidence

Performing best subset regression for each cancer, we found a highly significant, strong negative associa-

tion between elevation and lung cancer incidence with a standardized coefficient (βz) of -0.35 [99% CI:

-0.46, -0.25] (p < 10−16, one-tailed t-test) (Table 2). Lung cancer incidence decreased by 7.23 [5.67–8.80]

cases (per 100,000 individuals) per kilometer rise in elevation, equating to 12.7% [9.1%–16.4%] of the

mean lung cancer incidence. For other cancers, we found a weak, negative association with breast cancer

(βz =−0.15, p < 10−2) but not with colorectal (p = 0.88) or prostate (p = 0.97) cancer.

cancer size R2 β βz β%

lung 6 67.1% -6.64 -0.33 -11.7%

breast 6 51.3% -0.39 -0.02 -0.3%

colorectal 6 27.4% - - -

prostate 2 7.8% - - -

Table 3. Summary of lasso models for each cancer. The number of predictors (size) and R2 for each

cancer’s lasso model are reported. The corresponding elevation coefficients are displayed as

unstandardized (β ), standardized (βz), and as a percentage of mean incidence (β%). Refer to

Table reftab:best-subset for cancer-specific dataset information including county number and mean

incidence.
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Figure 3. Regression models estimate elevation’s association while capturing known risk factors.

A) Summary of the predictors included in the optimal best subset model for each cancer (see Table S1 for

more detail). B) Summary of the models produced by lasso regression, displaying characteristic

coefficient shrinkage. Both regression techniques produced similar sets of models that were sensible for

lung, breast, and colorectal cancer. Elevation displayed a strong and consistent negative coefficient in

lung cancer models.

The optimal (BIC-minimizing) models contained five predictors for lung and colorectal cancers, six

predictors for breast, and four predictors for prostate cancer (Table 2). Within each cancer, we compared

the elevation coefficients across a range of model sizes (Figure 2). Unique to lung cancer, elevation

confidence intervals were consistent and wholly negative, indicating robustness to collinearity as well as to

confounding by included covariates. Other cancers displayed greater coefficient variability and uncertainty,

possibly due to covariate collinearity with elevation, which led us to implement lasso regression.

Lasso regression performs variable selection that operates well under moderate collinearity and

coefficient shrinkage that prevents overfitting. Using a conservative setup of the lasso, we again observed

a strong, negative association between elevation and lung cancer incidence with a standardized coefficient

of -0.33, changing minimally from the best subset estimate (βz =−0.35) despite the strong regularization

of the lasso (Table 3). For breast cancer, where the best subset model yielded an elevation coefficient with

high uncertainty, the lasso reduced the estimate to a trivial level (βz =−0.02) indicating that overfitting

contributed to best subset negativity. Meanwhile, the elevation term was absent in the colorectal and

prostate lasso models. Together the regression methods indicated a negative association with elevation

that was unique to lung cancer in terms of strength, significance, and statistical robustness.
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Models accurately assess known cancer associations

Models produced for each cancer by best subset (Figure 3B) and lasso (Figure 3C) regression corresponded

with the literature. The lasso (and best subset) models explained 67% (70%) of variation in lung cancer

incidence, 51% (57%) in breast, 29% (34%) in colorectal, and 9% (19%) in prostate, (Tables 3 & 2)

mirroring a previously described trend in fraction of risk attributable to modifiable factors for each of the

four cancers (Danaei et al., 2005).

For lung cancer, both regression methods found previously characterized positive associations with

smoking prevalence, percent of black residents (Greenlee, Murray, Bolden, & Wingo, 2000, p. 10), and rate

of other cancer (Ahlbom et al., 1997), as well as large negative associations with elevation and education.

The lasso also found a small negative association with radon (βz =−0.01), attributable to radon’s strong

positive correlation with elevation (Figure 1). Including covariates sharpened the association between

elevation and lung cancer, as evidenced by elevation’s higher partial R2 = 0.252 in the multivariate model

versus the bivariate R2 = 0.202 (Figure 4A-B). Of note, both best subset and lasso regression attributed

the two largest effect sizes to smoking (best subset: 0.59 and lasso: 0.52) and elevation (-0.35 and -0.33).

The best subset model also found that smoking (p < 10−35) and elevation (p < 10−16) were the two most

significant associations with lung cancer incidence (Table S1).
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Figure 4. Adjustment for covariates sharpens lung cancer’s association with elevation. Points

represent counties shaded by their regression weight based on population. Bivariate (red) and partial

(blue) regression lines are displayed with 99% confidence bands. A) Bivariate plot of county lung cancer

incidence (age-adjusted per 100,000) and elevation (km). B) Partial regression plot for elevation based on

the optimal best subset lung model. Association sharpens after adjustment for covariates, illustrated by

the tighter confidence band and higher R2 in the partial plot.

For breast cancer, the best subset regression model captured known positive associations with education

and income (Devesa & Diamond, 1980), other cancer (Ahlbom et al., 1997), metropolitan status (Hall et

al., 2005), and percent white (Greenlee et al., 2000, p. 10) (Howlader N, Noone AM, Krapcho M, Garshell

J, Miller D, Altekruse SF, Kosary CL, Yu M, Ruhl J, Tatalovich Z, Mariotto A, Lewis DR, Chen HS, Feuer

EJ, 2014). The lasso corroborated the top three positive associations found by best subset regression,

and added other known factors, mammography frequency and income (Devesa & Diamond, 1980), in

place of percent white. As for lung and breast cancer, colorectal models were sensible, finding positive

associations with other cancer, meat consumption (Norat, Lukanova, Ferrari, & Riboli, 2002), and percent

of black residents (Greenlee et al., 2000, p. 10), as well as a negative association with education (Jemal et

al., 2008)—all previously reported. In line with past ecological analyses (Danaei et al., 2005), prostate

models were incomplete and inconclusive, failing to find the known positive association with percent

black (Greenlee et al., 2000, p. 10). Overall, the plausible and well-fitting lung, breast, and colorectal

models reflected our ability to recapitulate known associations and therefore characterize the prospective
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association of elevation with lung cancer.

Elevation’s association with lung cancer is robust to stratification & subgrouping

Given the respiratory intersection of oxygen inhalation and smoking, we asked whether elevation as-

sociated differently across smoking prevalences. Stratifying counties into smoking terciles, the strong

effect of smoking on lung cancer was illustrated by the non-overlapping confidence bands (Figure 5A).

Tercile slopes were approximately parallel providing no evidence for an interaction between smoking and

elevation. Corroborating the lack of interaction, an added smoking × elevation term was not significant

(p = 0.47) when refitting the best subset model.
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Figure 5. Elevation’s association with lung cancer is consistent across county strata. Stratification

analyses provide no evidence for a smoking-elevation interaction or state-based confounding. A) Lung

cancer incidence (age-adjusted per 100,000) and elevation (km) are plotted for counties stratified into

terciles by smoking prevalence. Counties were shaded by their regression weight, and a bivariate

regression was fit for each stratum. The non-overlapping confidence bands (95%) illustrate the strong

effect of smoking on lung cancer, while the approximately parallel slopes demonstrate the lack of an

observable smoking-elevation interaction. B) Lung cancer was regressed against elevation and smoking

for each state. State-specific elevation coefficients are plotted with 95% confidence intervals. Ten of

eleven states displayed negative coefficients. State-specific elevation coefficients were meta-analyzed.

The resulting 99% confidence interval overlaps the interval from the optimal best subset model shown in

blue. The number of counties within each state analysis is indicated in parentheses.

While focusing on the elevation-varying Western United States minimized the risk of regional

confounding, possible differences in health policy or practice between higher and lower elevation states

could still exist. State-specific models that accounted for smoking found negative elevation coefficients

for ten of eleven states (Figure 5B). Moreover, while small intrastate sample sizes created coefficient

uncertainty, meta-analysis estimated that lung cancer incidence decreases by 10.8 [99% CI: 7.0–14.6]

cases (per 100,000 individuals) per kilometer, matching the best subset regression confidence estimate of

7.2 [99% CI: 5.7–8.8] and indicating absence of state-based confounding.

Disparate habits and lifestyles exist across age groups and sexes. Using subgroup-specific lung

cancer incidences, we refit the best subset model asking whether elevation association would change

(Figure 6). All four subgroupings showed significant, negative association with elevation: under 65 years

old (p < 10−12), 65 and older (p < 10−17), males (p < 10−14), and females (p < 10−18). Standardized

coefficients were large, ranging from -4.39 to -3.58. Subgroup confidence intervals all overlapped the
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confidence interval from the global model, showing no evidence for subgroup-specific effect mediation or

confounding.
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Figure 6. Elevation’s association with lung cancer is consistent across population subgroups.

Points represent counties shaded by their regression weight based on population. Partial regression plots

are displayed for each subgroup with 99% confidence bands. Subgroups displayed similar strongly

negative elevation associations, indicating that our findings were not the result of sex or age-based

confounding. The elevation coefficient, standardized elevation coefficient, and partial R2 are listed for

each partial regression.

Lung cancer associates with elevation over environmental correlates

Rising elevation leads to lower atmospheric pressure, which helps drive a repertoire of interconnected

climatic changes, including perturbations in sun exposure, temperature, and precipitation. This trend

was apparent in our data, as many environmental variables correlated with elevation, and thus also with

lung and breast cancer (Figure 7A). If either cancer’s elevation association was indirect of atmospheric

pressure but rather a product of a secondary climatic changes, we expected that environmental correlates

could outperform elevation in best-subset regression. For example, vitamin D synthesis is stimulated

by sunlight and UV exposure (Gilchrest, 2008). The hormonally active form of vitamin D, calcitriol,

potentially possesses anti-cancer properties (Krishnan & Feldman, 2011). Sunlight and UVB exposure

correlate positively with elevation in our data. Hence, a reasonable proposition would be that increased

vitamin D synthesis is driving elevation’s association with lower cancer rates (as posited by Hayes (2010))

and that replacing elevation with UVB would improve model likelihood.

We approximated the likelihood (as a Bayes factor, K) that any correlated environmental variable

could replace elevation in our models of lung and breast cancer (Figure 7B). Remarkably, for lung cancer,

all of the variables tested produced models between 108 and 1013 times less likely than the elevation-

including model. Among these, fine particulate matter was over one trillion times (K < 10−12) less likely

than elevation. In contrast, breast cancer was more effectively explained by environmental correlates or

secondary climatic changes, such as precipitation, UVB, and sunlight, than by elevation. For example,
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Figure 7. Environmental substitutes outperform elevation for breast but not lung cancer. A)

Environmental variables were strongly collinear. Correlation with elevation was high, hence many

environmental variables also covaried with lung and breast cancer. B) To test whether

elevation-association with lung and breast cancer was direct or indirect, we substituted each

environmental correlate in place of elevation during best subset selection for each cancer. The optimal

model for each elevation-replacement was compared to the unreplaced model by approximating a Bayes

factor (K) from the change in BIC. The Bayes factor indicates the odds that the replacement is superior,

thus K > 1 favors the substitution while K < 1 provides evidence against. Since the elevation model was

compared to itself, ∆BIC = 0 and K = 1 (log10K = 0). The standardized coefficient for each

environmental predictor is represented by a triangle, where size is scaled to the magnitude and orientation

indicates the sign (upwards for positive). For breast cancer (red), three substitutions increased likelihood

suggesting that any association observed with elevation was indirect. For lung cancer (blue), substituting

elevation produced models that were many orders of magnitude less likely, suggesting that the elevation

association was direct.

precipitation was 17 times more likely than elevation. Together, these results indicated that lung cancer

but not breast cancer was directly associated with atmospheric pressure.

Radon and UVB associations with lung cancer confounded by elevation
As a consequence of elevation’s numerous environmental correlates, we speculated that previous ecological

studies of lung cancer may have fallen prey to uncontrolled elevation confounding. Radon (ρ = 0.71) and

UVB (ρ = 0.50) correlated highly with elevation in our data (Figure 7A) and both had previously been

reported to associate negatively with lung cancer (Cohen, 1995; Hayes, 2010). To test for confounding,

we fit three models of lung cancer incidence with either radon or UVB exposure plus the following

predictors: 1) smoking alone; 2) smoking and elevation; and 3) the predictors from the optimal best subset

model. Similar to previous studies, model 1, which excluded elevation, identified a negative association

for both radon (p < 10−14, one-tailed) and UVB (p < 10−3). However, models 2 and 3, which both

included elevation, erased these associations (Table 4), indicating high potential for erroneous lung cancer

associations when not accounting for elevation.

DISCUSSION

We attributed a decrease of 25.2 [99% CI: 18.0–32.4] lung cancer cases per 100,000 individuals to the

range of elevation of counties of the Western United States, equating to approximately 44% of the mean

incidence (56.8). Were the entire United States situated at the elevation of San Juan County, CO (3473 m),

we estimate 65,496 [99% CI: 46,855–84,136] fewer new lung cancer cases would arise per year (ceteris

paribus and assuming 2000-census county-populations). The causal factor behind the association appears
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radon uvb

model βz p-value βz p-value

1 -0.36 [-0.44, -0.28] 1.90×10−15 -0.18 [-0.28, -0.08] 3.08×10−04

2 -0.07 [-0.18, 0.04] 0.120 0.05 [-0.04, 0.15] 0.864

3 -0.03 [-0.13, 0.07] 0.308 -0.01 [-0.10, 0.09] 0.453

Table 4. Confounding effect of elevation on radon and UVB lung cancer associations. Lung cancer

incidence models for were fit for three sets of predictors: (model 1) radon/uvb and smoking; (model 2)

radon/uvb, smoking, and elevation; and (model 3) radon/uvb and the optimal best subset predictors. The

standardized uvb/radon coefficient (βz) [95% confidence interval] and uvb/radon p-value for coefficient

negativity are reported.

to play a notable role in lung carcinogenesis, worthy of consideration by researchers, health providers,

and the general public.

Prior to covariate adjustment, elevation correlated negatively with lung, breast, and colorectal cancer.

Adjusting for demographic and risk factors using best subset and lasso regression, we produced sensible

models for each cancer that captured known risk factors. Elevation’s negative association with colorectal

cancer disappeared with adjustment for demographics, while association with breast cancer proved

to be minimal and could be better represented by several other environmental variables. In contrast,

lung cancer’s negative association with elevation was sharpened following multiple regression, failed

to be captured by any other environmental variables, and had a remarkably strong effect size and

significance. Lung-elevation association was robust to county stratification by smoking and state, as well

as to population subgrouping by age and sex.

In summary, lung cancer associated with elevation over oxygen-independent environmental factors,

and likewise elevation associated with lung cancer but not with non-respiratory cancers. Together these

points provide substantial evidence for an inversely-linked inhaled carcinogen tied directly to elevation.

Viewing our findings through the lens of the literature, atmospheric oxygen emerges as the most probable

culprit.

Confounding effect of elevation

Since elevation commonly covaries and its effect size on lung cancer is large, the potential for confounding

is high. We identified two reported lung cancer associations—radon (Cohen, 1995) and UVB (Hayes,

2010)—that we attributed wholly to elevation in our analyses. Previously, Lagarde and Pershagen (1999)

implicated ecological fallacy in the appearance of weak inverse associations between radon and lung

cancer in Sweden. However, the plausibility of ecological fallacy resulting in the strong inverse association

Cohen (1995) observed across American counties is less clear. Alternatively, Van Pelt (2003) attributed

“some, but not all” of the Cohen (1995) radon association to elevation. Follow-up correspondences by

each author revolved around the difficulty in assigning the effect wholly to elevation or radon when both

of these highly-correlated predictors remained significant Cohen (2004); Van Pelt (2003). We believe that

our data quality improvements, including county-specific smoking prevalences and population-weighted

elevations, were responsible for wholly attributing the effect to elevation.

Studies where lung cancer is incorporated as a predictor rather than outcome may also be susceptible

to confounding. Since the collection and availability of tobacco data has historically lagged behind lung

cancer data, lung cancer rates have often been adopted as a proxy for smoking prevalence (Peto, Lopez,

Boreham, Thun, & Heath, 1992). Ezzati et al. (2012) evaluated whether elevation was associated with

several mortality outcomes across US counties. Their study relied on “lung cancer as the indicator of

accumulated population exposure to smoking. This adjustment for lung cancer in multivariable regressions

may have over-adjusted, if altitude has a beneficial effect on lung cancer.”

The confounding potential of elevation extends to any analysis of lung cancer across an elevation-

varying region. To protect against this uncontrolled confounding, we urge future lung cancer studies to

strongly consider adjusting for elevation. Fortunately, elevation is well-documented across the globe, and

many existing epidemiological datasets contain locality information.
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Limitations & future directions

Cross-sectional study designs are susceptible to uncontrolled confounding where associations arise due

to an unmeasured confounding factor. We designed the study to minimize this risk by focusing on a

homogeneous and elevation-varying region, filtering error-prone counties, including established covariates,

and performing multiple stratifications and subgroupings. Furthermore, while environmental correlates of

elevation represented likely confounders, all seven pervasive environmental factors we investigated could

not replace elevation in models of lung cancer. Therefore, our findings gave no indication of uncontrolled

confounding for lung cancer. As relevant data becomes available, follow-up across different regions will

provide additional assessment of uncontrolled confounding.

Since we evaluated counties rather than individuals, ecological fallacy was also a concern. However,

several of our methods and findings limit this possibility. By focusing on US counties, the smallest

population grouping with systematic data available for the target region, we inherently reduced the risk

of ecological fallacy. Moreover, further increases in group specificity through population subgrouping

did not alter the elevation-lung association. Additionally, we reason that an exposure affecting only a

portion of the population must confer very large risk to produce the strong association observed. We find

it unlikely that an extremely damaging risk factor on the individual level, such as smoking, would have

evaded detection until now. Therefore, we speculate the causal factor is likely mild in carcinogenicity but

universal in exposure and thus amenable to translation from the individual to population level. Follow-up

biological and experimental analyses will be critical to understanding the causal factor and potential

mechanisms underlying the observed elevation association. If future research confirms oxygen-driven

tumorigenesis in the human lung, the present study will join the substantial list of ecological analyses that

spurred new insights into cancer etiology (Pearce, 2000).

Open data

This study was made possible by excellent county level resources, many of which have only recently

become available. While the trend towards available, accessible, and reusable data is encouraging, barriers

still remain. For example, the 2006–2010 State Cancer Profiles release is missing incidence for two

thirds of the counties in Washington due to “state legislation and regulations which prohibit the release of

county level data to outside entities.” As the world comes online and the number of people with access to

informatics tools expands, we see the spread of open data as a vital catalyst for progress.
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January). Collinearity: a review of methods to deal with it and a simulation study evaluating their

performance. Ecography, 36(1), 27–46. doi: 10.1111/j.1600-0587.2012.07348.x

Ezzati, M., Horwitz, M. E. M., Thomas, D. S. K., Friedman, A. B., Roach, R., Clark, T., . . . Honigman, B.

(2012, July). Altitude, life expectancy and mortality from ischaemic heart disease, stroke, COPD

and cancers: national population-based analysis of US counties. Journal of epidemiology and

community health, 66(e17). doi: 10.1136/jech.2010.112938

Fridovich, I. (1988). The Biology of Oxygen Radicals: Threats and Defenses. Developments in

Cardiovascular Medicine, 86, 1–11. doi: 10.1007/978-1-4613-1743-2\ 1

Friedman, J., Hastie, T., & Tibshirani, R. (2010, January). Regularization Paths for Generalized

Linear Models via Coordinate Descent. Journal of statistical software, 33(1), 1–22. Retrieved

from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2929880/http://

www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2929880&tool=

pmcentrez&rendertype=abstract

Gilchrest, B. a. (2008, August). Sun exposure and vitamin D sufficiency. The American journal of clinical

nutrition, 88(2), 570S–577S. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/

18689404

Greenlee, R. T., Murray, T., Bolden, S., & Wingo, P. A. (2000). Cancer statistics, 2000. CA: a cancer

journal for clinicians, 50(1), 7–33. doi: 10.3322/canjclin.50.1.7

Hall, S. a., Kaufman, J. S., Millikan, R. C., Ricketts, T. C., Herman, D., & Savitz, D. a. (2005, November).

Urbanization and breast cancer incidence in North Carolina, 1995-1999. Annals of epidemiology,

15(10), 796–803. doi: 10.1016/j.annepidem.2005.02.006

Hayes, D. P. (2010, October). Cancer protection related to solar ultraviolet radiation, altitude and vitamin

D. Medical hypotheses, 75(4), 378–82. doi: 10.1016/j.mehy.2010.04.001

Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005, December). Very high

resolution interpolated climate surfaces for global land areas. International Journal of Climatology,

25(15), 1965–1978. doi: 10.1002/joc.1276

Howlader N, Noone AM, Krapcho M, Garshell J, Miller D, Altekruse SF, Kosary CL, Yu M, Ruhl

J, Tatalovich Z, Mariotto A, Lewis DR, Chen HS, Feuer EJ, C. K. (2014). SEER Cancer

Statistics Review, 1975-2011, National Cancer Institute. Retrieved from [April 2014]http://

seer.cancer.gov/csr/1975 2011/

Jackson, R. M. (1985, December). Pulmonary oxygen toxicity. Chest, 88(6), 900–5. doi: 10.1378/

chest.88.6.900

Jemal, A., Siegel, R., Ward, E., Hao, Y., Xu, J., Murray, T., & Thun, M. J. (2008). Cancer statistics, 2008.

CA: a cancer journal for clinicians, 58(2), 71–96. doi: 10.3322/CA.2007.0010

16/21

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.587v2 | CC-BY 4.0 Open Access | rec: 12 Nov 2014, publ: 12 Nov 2014

P
re
P
ri
n
ts

http://wonder.cdc.gov/
http://apps.nccd.cdc.gov/DDT_STRS2/NationalDiabetesPrevalenceEstimates.aspx?mode=PHY
http://apps.nccd.cdc.gov/DDT_STRS2/NationalDiabetesPrevalenceEstimates.aspx?mode=PHY
http://journals.lww.com/health-physics/Abstract/1995/02000/Test_of_the_Linear_No_Threshold_Theory_of.2.aspx
http://journals.lww.com/health-physics/Abstract/1995/02000/Test_of_the_Linear_No_Threshold_Theory_of.2.aspx
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2929880/http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2929880&tool=pmcentrez&rendertype=abstract
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2929880/http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2929880&tool=pmcentrez&rendertype=abstract
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2929880/http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2929880&tool=pmcentrez&rendertype=abstract
http://www.ncbi.nlm.nih.gov/pubmed/18689404
http://www.ncbi.nlm.nih.gov/pubmed/18689404
http://seer.cancer.gov/csr/1975_2011/
http://seer.cancer.gov/csr/1975_2011/


Krishnan, A. V., & Feldman, D. (2011, January). Mechanisms of the anti-cancer and anti-inflammatory

actions of vitamin D. Annual review of pharmacology and toxicology, 51, 311–36. doi: 10.1146/

annurev-pharmtox-010510-100611

Lagarde, F., & Pershagen, G. (1999, February). Parallel Analyses of Individual and Ecologic Data on

Residential Radon, Cofactors, and Lung Cancer in Sweden. American Journal of Epidemiology,

149(3), 268–274. doi: 10.1093/oxfordjournals.aje.a009802

Lawrence Berkeley National Laboratory. (n.d.). Predicted parameters of radon distributions within

counties in the 48 conterminous states. Retrieved from [3 April 2013]http://energy.lbl

.gov/ied/high-radon/ctypred.htm

Maruyama, K., Ikeda, H., Koizumi, T., Tsuchida, Y., Tanimura, M., Nishida, H., . . . Tokunaga, Y. (2000,

October). Case-control study of perinatal factors and hepatoblastoma in children with an extremely

low birthweight. Pediatrics international : official journal of the Japan Pediatric Society, 42(5),

492–8. doi: 10.1046/j.1442-200x.2000.01287.x

Mason, T. J., & Miller, R. W. (1974, November). Cosmic radiation at high altitudes and U.S. cancer

mortality, 1950-1969. Radiation research, 60(2), 302–6. doi: 10.2307/3573965
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Figure S1. Quality control: selecting exclusion thresholds for counties with high Native

American and immigration percentages. We suspected misestimated cancer rates for counties with a

high Native American percentage and a poor ability of predictors to assess cancer-risk exposure for

counties with high immigration rates. To examine whether these counties were problematic, we created a

general model of cancer incidence by regressing all-site cancer incidence against eight demographic and

health-related covariates (metro, white, black, education, income, obesity, percent male, and smoking).

Elevation was not included in the model to prevent opportunistic threshold selection. The regression was

fit on Western-US counties with populations of at least 10,000. Absolute residuals are plotted against

percent Native American and the 5-year immigration rate for each county (shaded by their

population-based regression weight). Loess curves (displayed in blue with 95% confidence bands)

indicate that predicted incidence diverged from reported incidence for both native and immigration-rich

counties. Exclusion thresholds were selected, above which counties were filtered (red background),

corresponding to the values where absolute residuals began trending higher.
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cancer predictor β βz p-value

lung smoking 1.44 [1.25, 1.63] 0.59 [0.51, 0.66] 3.46×10−36

lung elevation -7.23 [-8.80, -5.67] -0.35 [-0.43, -0.28] 2.69×10−17

lung education -0.43 [-0.54, -0.33] -0.30 [-0.38, -0.23] 1.08×10−13

lung black 0.67 [0.33, 1.01] 0.15 [0.07, 0.22] 1.24×10−04

lung other cancer 0.05 [0.02, 0.08] 0.12 [0.04, 0.20] 3.04×10−03

lung (Intercept) -14.85 [-28.21, -1.50] 0.00 [-0.07, 0.07] 2.94×10−02

breast other cancer 0.22 [0.16, 0.28] 0.39 [0.29, 0.49] 7.98×10−13

breast education 0.58 [0.39, 0.78] 0.36 [0.24, 0.47] 8.45×10−09

breast income 0.22 [0.05, 0.39] 0.16 [0.04, 0.28] 1.08×10−02

breast white 0.21 [0.07, 0.35] 0.16 [0.05, 0.26] 2.95×10−03

breast elevation -3.63 [-6.23, -1.03] -0.15 [-0.26, -0.04] 6.44×10−03

breast metro 4.58 [0.98, 8.19] 0.13 [0.03, 0.23] 1.29×10−02

breast (Intercept) 14.45 [-3.29, 32.18] 0.00 [-0.08, 0.08] 1.10×10−01

colorectal other cancer 0.07 [0.05, 0.09] 0.45 [0.34, 0.57] 4.23×10−13

colorectal education -0.23 [-0.30, -0.17] -0.39 [-0.50, -0.28] 2.51×10−11

colorectal meat 0.09 [0.04, 0.14] 0.22 [0.10, 0.34] 3.36×10−04

colorectal black 0.28 [0.06, 0.49] 0.15 [0.03, 0.26] 1.27×10−02

colorectal elevation 0.65 [-0.42, 1.72] 0.08 [-0.05, 0.20] 2.34×10−01

colorectal (Intercept) 12.01 [3.74, 20.29] 0.00 [-0.10, 0.10] 4.62×10−03

prostate education 0.75 [0.48, 1.02] 0.32 [0.20, 0.43] 1.25×10−07

prostate other cancer 0.13 [0.06, 0.21] 0.24 [0.11, 0.38] 5.01×10−04

prostate white 0.42 [0.17, 0.66] 0.21 [0.09, 0.33] 8.60×10−04

prostate elevation 4.71 [-0.05, 9.46] 0.14 [-0.00, 0.28] 5.23×10−02

prostate (Intercept) 43.46 [11.65, 75.28] 0.00 [-0.11, 0.11] 7.61×10−03

Table S1. Optimal best subset regression models. Coefficient estimates from the best subset models

are displayed in unstandardized (β ) and standardized (βz) forms followed by the corresponding 95%

confidence interval. The two-tailed coefficient p-value is reported.
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Dataset S1. County-level dataset. Tab delimited data collected for US counties. Missing values are

blank. Source-reported 95% confidence intervals have ‘lower’ and ‘upper’ appended to the corresponding

variable name.
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