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Using network clustering to predict copy number variations

associated with health disparities

Substantial health disparities exist between African Americans and Caucasians in the

United States. Copy number variations (CNVs) are one form of human genetic variations

that have been linked with complex diseases and often occur at different frequencies

among African Americans and Caucasian populations. Here, we aimed to investigate

whether CNVs with differential frequencies can contribute to health disparities from the

perspective of gene networks. We inferred network clusters from human gene/protein

networks based on two different data sources. We then evaluated each network cluster for

the occurrences of known pathogenic genes and genes located in CNVs with different

population frequencies, and used false discovery rates to rank network clusters. This

approach let us identify five clusters enriched with known pathogenic genes and with

genes located in CNVs with different frequencies between African Americans and

Caucasians. These clustering patterns predict two candidate causal genes located in four

population-specific CNVs that play potential roles in health disparities
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Abstract

Substantial health disparities exist between African Americans and 

Caucasians in the United States. Copy number variations (CNVs) are one form

of human genetic variations that have been linked with complex diseases and

often occur at di昀昀erent frequencies among African Americans and Caucasian 

populations. Here, we aimed to investigate whether CNVs with di昀昀erential 

frequencies can contribute to health disparities from the perspective of gene 

networks. We inferred network clusters from human gene/protein networks 

based on two di昀昀erent data sources. We then evaluated each network cluster

for the occurrences of known pathogenic genes and genes located in CNVs 

with di昀昀erent population frequencies, and used false discovery rates to rank 

network clusters. This approach let us identify 昀椀ve clusters enriched with 

known pathogenic genes and with genes located in CNVs with di昀昀erent 

frequencies between African Americans and Caucasians. These clustering 

patterns predict two candidate causal genes located in four population-

speci昀椀c CNVs that play potential roles in health disparities.

Keywords:

Health disparities, Copy Number Variations (CNVs), gene network, clustering, 

gene-disease association, Gene Ontology (GO).

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.584v1 | CC-BY 4.0 Open Access | rec: 3 Nov 2014, publ: 3 Nov 2014

P
re
P
ri
n
ts



List of Key Abbreviations:

CNV: Copy number variation

SNP: Single nucleotide polymorphism

PPIN: Protein-protein interaction network

HPRD: Human protein reference database

PPI: Protein-protein interaction

AA: African American

MCL: Markov Cluster Algorithm

FDR: false discovery rate

GO: Gene ontology

OMIM: Online Mendelian Inheritance in Man

dbSNP: Single Nucleotide Polymorphism Database

SERCA1: Sarco/endoplasmic reticulum Ca2+-ATPase 1
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Introduction

Health disparities refer to di昀昀erences in the disease distribution and/or health

outcomes across racial and ethnic groups. In United States, health disparities 

in African Americans are found in life expectancy, death rates, and health 

measures (National Center for Health Statistics 2013). In addition to social 

determinants, such as socio-economical status, health care access and 

cultural practices, human genetic variations play a signi昀椀cant role in health 

disparities. Genetic variations at di昀昀erent frequencies among populations can

lead to di昀昀erences in disease susceptibility. Studies on genetic variations and 

disease association are greatly advanced by the completion of the 

International HapMap Project and new genome sequencing techniques 

(Ramos & Rotimi 2009).

Genome-wide association studies (GWAS) are currently an e昀昀ective approach 

to identify diseases-associated genetic variations (Hirschhorn & Daly 2005; 

Wang et al. 2005). Although GWAS have revealed many disease-associated 

single nucleotide polymorphisms (SNPs), GWAS are often limited to individual 

genetic variations and often do not address complex gene interactions. 

Moreover, associated SNPs are often located in haplotype blocks that contain 

more than one gene.  To address these limitations, human gene networks 

have been used to improve GWAS detection of genes associated with 

complex diseases, such as the comorbidity analysis (Sharma et al. 2013), an 

improved guilt-by-association method (Baranzini et al. 2009; Lee et al. 2011),
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and a distance-based scoring method using seeded diseases genes (Liu et al. 

2012).  

Copy number variations (CNVs) are duplications or deletions of genomic 

segments that can contain one or more genes (McCarroll & Altshuler 2007). 

CNVs have been associated with complex diseases such as autism (Gilman et

al. 2011; Glessner et al. 2009). Computational tools and methods have been 

developed, such as the CNV annotator (Zhao & Zhao 2013) and NETBAG 

(Gilman et al. 2011), to address the potential roles of CNVs in human 

diseases. Recently, it is reported that CNVs can occur at di昀昀erent frequencies

between African Americans and Caucasians (McElroy et al. 2009), and 

naturally the question about the potential roles of CNVs in health disparity is 

raised. 

Here, we aim to investigate the clustering of pathogenic genes and genes in 

CNVs with di昀昀erent population frequencies in two human gene/protein 

networks, in order to better understand health disparities between African 

Americans and Caucasians. The current human gene/protein networks 

contain thousands of interacting molecules (Barabasi et al. 2011; Vidal et al. 

2011). We will partition gene networks into clusters and use these clusters to 

predict potential diseases associated with population-speci昀椀c CNVs, based on

the rationale that interacting genes often share similar functions (Pizzuti et 

al. 2012). 

Materials and Methods
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Our overall work 昀氀ow is shown in Figure 1. To identify potential diseases 

associated with CNVs, our basic idea is to identify gene interaction clusters 

that involve genes in population-speci昀椀c CNVs. The diseases associated with 

a CNV-gene’s interacting genes are potential diseases associated with this 

CNV. Speci昀椀cally, we 昀椀rst obtained two human gene/protein networks and 

partitioned them into gene clusters. We then performed statistical tests on 

each cluster to estimate its signi昀椀cances of containing pathogenic genes and 

genes in population-speci昀椀c CNVs. Finally, we ranked gene clusters based on 

false discovery rates (FDRs). High-ranked clusters were enriched both for 

pathogenic genes and for genes in CNVs with di昀昀erential frequencies 

between African-Americans and Caucasians. These clusters were then 

searched for enriched Gene Ontology (GO) terms and related disease 

phenotypes.

Network clustering

We obtained two human gene/protein networks, one from Human Protein 

Reference Database (HPRD) (Mishra et al. 2006; Peri et al. 2003; Prasad et al.

2009) and another from MultiNet (Khurana et al. 2013). The HPRD network 

(referred to as HPRDNet) contains only physical protein-protein interactions 

(PPIs), whereas MultiNet is a uni昀椀ed network including PPI, phosphorylation, 

metabolic, signaling, genetic and regulatory networks. The two networks 

share 8468 genes (89.6% of HPRDNet and 58.6% of MultiNet) but only 8769 

interactions (23.8% of HPRDNet and 8% of MultiNet). These two networks 

were both partitioned into gene clusters using the Markov Cluster (MCL) 
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Algorithm (van Dongen 2000). Clustering was done with the in昀氀ation 

parameter I ranging from 1.1 to 2.0 with a step of 0.1. Descriptive statistics 

of the two networks and their clustering results are summarized in 

Supporting Table S1.

Mapping of CNVs and SNPs

CNV coordinates were obtained from a CNV map in African Americans and 

Caucasians (McElroy et al. 2009). There are three types of CNVs in this map: 

(1) CNVs only occur in African Americans, (2) CNVs only occur in Caucasians, 

and (3) CNVs occurred in both African Americans and Caucasians. To simplify 

the analysis, we further partitioned the last type: CNVs that occurred more 

than 50% in African Americans or in Caucasians were combined with the 昀椀rst 

and second types of CNVs, respectively. This repartition resulted in two 

modi昀椀ed CNV sets with di昀昀erential population frequencies. The coordinates of

these CNVs were then searched in the UCSC Genome Database (Karolchik et 

al. 2014) through its MySQL API to obtain the corresponding gene sets. For 

simplicity, CNVs that occur more frequently in African Americans were called 

African-American CNVs or CNV_AA; CNVs that occur more frequently in 

Caucasians were called Caucasian CNVs or CNV_CA. 

Disease-associated SNPs were retrieved from a 昀椀le, OmimVarLocusIdSNP.bcp, 

from the FTP site of Single Nucleotide Polymorphism Database (dbSNP) 

(Sherry et al. 2001). Coordinates of these SNPs were then queried against the
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MySQL API of the UCSC Genome Database to identify genes in which those 

SNPs are located. This identi昀椀ed gene set was termed as pathogenic genes. 

Details of gene mapping results are shown in Supporting Table S2.

Cluster Analyses

Clusters were obtained from both HPRDNet and MultiNet using MCL with a 

range of ten in昀氀ation parameters. For each cluster, contingency tables were 

constructed using the numbers of pathogenic genes and CNVs related genes 

(Table 1A and 1B). Right-tailed Fisher’s exact tests were applied to these 

contingency tables to calculate enrichment signi昀椀cance of pathogenic genes, 

and CNV_AA or CNV_CA genes, respectively. Based on obtained p-values, 

false discovery rates (FDRs) were calculated using the Robust FDR Routine 

(Pounds & Cheng 2006). Fisher’s exact tests and Robust FDR Routine were 

both performed in the R statistical environment (R Development Core Team 

2013). Ranking were applied to clusters with p-value<0.10 and FDR<0.20 in 

both enrichment tests for pathogenic genes and population-preferred CNVs 

genes. Assuming both enrichment tests are independent, the FDR values 

were multiplied to jointly rank the network clusters. The same cluster 

analysis procedure was applied to clustering results with di昀昀erent MCL 

in昀氀ation parameters. 
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For clarity, we focused our functional analyses on clusters that were 

consistently ranked at the 昀椀rst place with di昀昀erent MCL in昀氀ation parameter 

values.  

Biological Signi昀椀cance Analyses

Biological relevance of selected network clusters were analyzed by GOrilla 

(Eden et al. 2009) to search for enriched gene ontology (GO) terms. In GOrilla

search, genes in the selected clusters were target genes, and all genes in the

network were treated as background genes. To investigate the possible links 

of population-speci昀椀c CNVs to heath disparities, we 昀椀rst identi昀椀ed 

signi昀椀cantly enriched GO terms that are associated with CNV_AA or CNV_CA 

genes. We then focused on the pathogenic genes with the enriched GO 

terms, and examined their associated disease phenotypes in OMIM database 

(Online Mendelian Inheritance in Man 2014).

Results and Discussions

Top-ranked network clusters

We performed cluster analyses with ten MCL in昀氀ation parameters values for 

both HPRDNet and MultiNet (Table S1), and scored the resulted clusters for 

their potential roles in CNV related health disparities (Table S3). For clarity, 

we focused on clusters that are consistently top-ranked with di昀昀erent MCL 

in昀氀ation parameters. The graph representations of selected clusters are 

shown in Figure 2. 
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We found four similar clusters, (AA1, AA2, and AA3 in HPRDNet and AA4 in 

Multinet), that are enriched both for pathogenic genes and for genes located 

in African-American CNVs (Table 2). In HPRDNet, cluster AA1, AA2 and AA3 

together were ranked at 昀椀rst place 昀椀ve times; and cluster AA4 were ranked 

昀椀ve times in Multinet (Table S3). Cluster AA1 contains 11 genes, within which 

eight are pathogenic genes (Figure 2A). Cluster AA2 and AA3 contain one and

two more genes than cluster AA1, respectively (Figure S1). In MultiNet, 

cluster AA4 contains 昀椀ve genes and can be considered as a sub-cluster of 

cluster AA1, AA2 and AA3 (Figure 2B). In these four clusters, gene HSPB1 is 

mainly duplicated in African Americans (Table 2 and Table 3). Since cluster 

AA1, AA2 and AA3 were selected from the same network and are highly 

similar to each other, only cluster AA1 and AA4 were studied in biological 

signi昀椀cance analyses. 

In both HPRDNet and MultiNet, the same cluster, named as CA1, was 

identi昀椀ed to be enriched with both pathogenic genes and genes located in 

Caucasian CNVs (Table 2). Cluster CA1 was ranked at 昀椀rst place four times in 

HPRDNet and seven times in MultiNet (Table S3). This cluster contains 昀椀ve 

genes, and four of them are associated with diseases (Figure 2C). Cluster CA1

contains gene ATP2A1 that is duplicated only in Caucasians (Table 3).

Duplication of HSPB1 and health disparities in African Americans.

Gene HSPB1 is located in genomic duplication regions occurring more 

frequently in African Americans (Table 3), and is found in the cluster family of 

AA1, AA2, AA3, and AA4 (Table 2). For cluster AA1, only one GO molecular 
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function term related to gene HSPB1 is signi昀椀cantly enriched (Cluster AA1 in 

Table 4). For cluster AA4, in addition to the same enriched GO molecular 

functions term, three GO biological process terms and one GO cellular 

component term are found signi昀椀cantly enriched (Cluster AA4 in Table 4). In 

the genes with the enriched GO terms, four of them are known to be 

associated with diseases (Cluster AA1/AA4 in Table 5). Among these four 

genes, three of them are implicated in health disparities of African 

Americans. Speci昀椀cally, gene CRYAB is related to dilated cardiomyopathy and

myo昀椀brillar myopathy. African Americans were found at higher risk for 

idiopathic dilated cardiomyopathy compared with Caucasian, and this could 

not be explained by income, education, alcohol use, smoking, or history of 

some other diseases (Coughlin et al. 1993). Moreover, gene CRYAA, CRYAB 

and CRYBB2 are all related to various types of cataract. It was reported that 

age-speci昀椀c blindness prevalence was higher for African Americans compared

with Caucasian, and cataract accounts for 36.8% of all blindness in African 

American, but for only 8.7% in Caucasian (Congdon et al. 2004). 

How could HSPB1 duplication contribute to health disparities? Based on the 

direct interaction between HSPB1 and CRYAB and the fact that both genes 

are expressed in Z-disc (Table 4), it is plausible that HSPB1 may play an 

unknown role in cardiomyopathy. Alternatively, HSPB1 might be involved in 

cataract, because HSPB1, CRYAA and CRYAB interact with each other and all 

can negatively regulate apoptotic process (Table 4). Studies suggested that 

lens epithelial cell apoptosis may be a common cellular basis for initiation of 

non-congenital cataract formation (Li et al. 1995), and inhibition of epithelial 
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cell apoptosis may be one possible mechanism that inhibits cataract 

development (Nahomi et al. 2013). Our results here argue for further 

experimental studies to test the possible role of HSPB1 CNVs in 

cardiomyopathy or cataract/blindness in African Americans. 

Duplication of ATP2A1 and cardiomyopathy. 

Gene ATP2A1 in cluster CA1 is located in a genomic duplication region that 

occurs only in Caucasians (Table 3). We found that three genes in cluster CA1

are enriched with various GO biological process terms that involve ATP2A1 

(Cluster CA1 in Table 4). All of the three genes are related to diseases when 

they are mutated (Cluster CA1 in Table 5). 

How would ATP2A1 in昀氀uence health disparities? Among the diseases related 

to the pathogenic genes in cluster CA1, idiopathic dilated cardiomyopathy 

occurs less often in Caucasians than in African Americans (Coughlin et al. 

1993). One possibility is that higher copies of ATP2A1 may o昀昀er some 

bene昀椀ts to Caucasians. Studies have shown that increased activity of 

sarco/endoplasmic reticulum Ca2+-ATPase 1 (SERCA1), which is encoded by 

ATP2A1, can partially rescue the heart from ·OH-induced injury (Hiranandani 

et al. 2006), and protect the heart from ischemia-reperfusion (I/R) injury 

(Talukder et al. 2007). Another possibility is that higher copies of ATP2A1 only

lead to moderate risk of cardiomyopathy in Caucasians, and this moderate 

e昀昀ect is overshadowed by other genetics factors not covered by our CNV 

dataset. 
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Remarks and future directions

Although genetic factors play a crucial role in health disparities, only a few 

association studies have been reported in health disparities in common 

complex diseases, such as breast cancer (Long et al. 2013), prostate cancer 

(Bensen et al. 2014; Bensen et al. 2013; Xu et al. 2011), type 2 diabetes (Ng 

et al. 2014) and vascular diseases (Wei et al. 2011).

Our study here is closely related to network-based meta-analyses of GWAS 

results (Atias et al. 2013; Leiserson et al. 2013). One important aim of 

network-based meta-analysis of GWAS data is to distinguish the bona 昀椀de 

causal gene from others in the same haplotype block associated with the 

signi昀椀cant SNP. Likewise, our network approach aims to predict a potential 

causal gene from a population-speci昀椀c CNV that can be associated with 

pathogenic genes. 

Noticeably, our method does not require network permutations, whereas 

many existing methods of network/pathway based meta-analyses of GWAS 

data do. This di昀昀erence is because we 昀椀rst partitioned the network into 

clusters and then perform association tests. In comparison, many network 

based GWAS meta-analysis methods use traversal distances to seed genes to

evaluate candidate genes. This kind of traversal distance based method 

generally prohibits pre-partition of network into clusters and require network 

permutations for estimation of p-values.  It can be seen that our cluster-

based method naturally accommodate multiple candidate genes in the 
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association analysis, whereas traversal distance in a network is by de昀椀nition 

often limited to single candidate gene evaluation.  

In future studies, we plan to improve network clustering results by integrating

functional genomics data sets, such as gene expressions, into gene networks 

to generate weighted interactions. 

Conclusions

In this study, gene clusters were inferred from two human gene/protein 

networks, HPRDNet and MultiNet, by MCL clustering algorithm with di昀昀erent 

parameters. Each cluster was ranked based on products of FDR values based 

on the right-tailed Fisher’s exact tests for enrichment of pathogenic or CNV-

genes. Five clusters were consistently found to be enriched with both 

pathogenic genes and genes located in African-American or Caucasian CNVs. 

In cluster AA1, AA2, AA3 and AA4, gene HSPB1 is duplicated more frequently 

in African-Americans. In clusters CA1, gene ATP2A1 is duplicated only in 

Caucasians. All gene clusters are associated with certain diseases that occur 

more often in one population than in the other. Although we only studied 

population-preferred CNVs and did not consider the roles of other genetic 

factors, our computational studies have generated some interesting 

hypotheses for further experimental studies to understand health disparities 

in these diseases. 
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Figure 1

Overview of our approach to identify CNVs associated with health disparities
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Figure 2

Graph representations of selected clusters for biological significance analysis.

Each rounded rectangle represents a gene and each gray line represents a gene-gene

interaction. Black rounded rectangles represent non-pathogenic genes and orange rounded

rectangles represent pathogenic genes. Genes labeled with red or blue ovals are located in

African American CNVs or in Caucasian CNVs. Genes with Green lines share the same GO

terms. In each cluster, different line types represent the enrichment of different GO terms.

Line types shown in different clusters refer to the enrichment of different GO terms.
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Table 1(on next page)

Contingency tables

Table 1A. Contingency Table for FisherT� ����� ���� �� 	��
������ 
����� ����� ���

Contingency Table for FisherT� ����� ���� �� C�� ������ ��� ���
 �������� ����������� ������

were constructed for right-tailed FisherT� ����� ������ ����� �w �� ��� ���
������ ������������

test, and Table 1B is for tests of enrichment significance of CNV genes (CNV_AA or CNV_CA

genes). Q and q are the number of pathogenic genes in the whole networks and that in

current cluster, respectively. N and m are the number of genes in whole networks and that in

current cluster, respectively. S and s are the number of CNV_AA or CNV_CA genes in the

whole networks and that in current cluster, respectively.
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Table 1A. Contingency Table for Fisher’s exact Test on Pathogenic Genes

Pathogenic Genes Non-pathogenic Genes Total

Genes in this cluster q m-q m
Genes in other clusters Q-q N-Q-m+q N-m
Total Q N-Q N

Table 1B. Contingency Table for Fisher’s exact Test on CNV genes

CNV Genes Non-CNV Genes Total
Genes in this cluster s m-s m
Genes in other clusters S-s N-S-m+s N-m
Total S N-S N

For each cluster, contingency tables were constructed for right-tailed Fisher’s exact Tests. Table 1A is for 
pathogenic signi昀椀cance test, and Table 1B is for tests of enrichment signi昀椀cance of CNV genes (CNV_AA or 
CNV_CA genes). Q and q are the number of pathogenic genes in the whole networks and that in current 
cluster, respectively. N and m are the number of genes in whole networks and that in current cluster, 
respectively. S and s are the number of CNV_AA or CNV_CA genes in the whole networks and that in 
current cluster, respectively. 
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Table 2(on next page)

Cluster analysis results for HPRDNet and MultiNet
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Table 2. Cluster analysis results for HPRDNet and MultiNet

Network
Cluster
Name

CNV_AA CNV_CA
Pathogenic 

gene number
Cluster 

Size

HPRDNet AA1 HSPB1 - 8 11
AA2 HSPB1 - 8 12
AA3 HSPB1 - 8 13
CA1 - ATP2A1 4 5

MultiNet AA4 HSPB1 - 5 5
CA1 - ATP2A1 4 5

Selected clusters were listed. CNV_AA and CNV_CA are CNV-related 
genes. 
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Table 3(on next page)

Detected genes with potential roles in health disparity and their located CNVs
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Table 3. Detected genes with potential roles in health disparity and their located CNVs

Gene Chr
Gene
Coordinates

CNV 
Region

CNV 
Type

CNV Occurrence preference

HSPB1 7
75,931,861-
75,933,614

75,867,431-
76,481,102

Duplication Only in African American

75,929,740-
76,481,102

Duplication Only in African American

75,929,740-
76,568,388

Duplication
More in African American than in 
Caucasian

ATP2A1 16
28,889,726-
28,915,830

28,306,730-
28,936,772

Duplication Only in Caucasian

Chr represents chromosomes. CNV Regions are regions of CNVs identi昀椀ed in more than a single individual; 
all CNVs listed have a type of Duplication, referring to one copy increase. CNV Regions and Types are from 
the CNV map (McElroy et al. 2009). CNV Occurrence preference describes in which population those CNVs 
have higher occurrence frequency.
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Table 4(on next page)

Enriched GO terms with CNV-genes in the identified network clusters
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Table 4. Enriched GO terms with CNV-genes in the identi昀椀ed network clusters

Clusters Involved Genes GO Domain GO ID GO term

AA1 HSPB1, CRYAA, CRYAB, 

CRYBB2, CRYBA1, 

CRYBA2

Molecular Function GO:0042802 Identical protein binding

AA4 HSPB1, CRYAA, CRYAB Biological Process GO:0043086 negative regulation of catalytic activity
GO:0043066 negative regulation of apoptotic process
GO:0043069 negative regulation of programmed cell 

death
HSPB1, CRYAA, 

CRYAB, CRYBB2

Molecular Function GO:0042802 Identical protein binding

HSPB1, CRYAB Cellular Component GO:0030018 Z disc
CA1 ATP2A1, ATP2A2, PLN Biological Process GO:0048878 chemical homeostasis

ATP2A1, PLN Biological Process GO:0006937 regulation of muscle contraction
GO:0008016 regulation of heart contraction

Biological relevance of network clusters was analyzed by GOrilla (Eden et al. 2009) to search for enriched 
gene ontology (GO) terms.  Genes in the selected clusters were used as target genes, and all genes in the 
networks were treated as background genes. Three types of GO terms were analyzed: biological process, 

molecular function and cellular component. The default p-value threshold (1×10-3) was used. In the results, 
enriched GO terms that are associated with CNV_AA gene HSPB1 and CNV_CA gene ATP2A1 were selected 
and listed in the table.

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.584v1 | CC-BY 4.0 Open Access | rec: 3 Nov 2014, publ: 3 Nov 2014

P
re
P
ri
n
ts



Table 5(on next page)

Associated diseases of genes with enriched GO terms.
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Table 5. Associated diseases of genes with enriched GO terms.

Cluster Gene Associated Disease 

AA1 HSPB1 Axonal Charcot-Marie-Tooth disease type 2F
and Distal hereditary motor neuronopathy type 2B
AA4 CRYAA Multiple types of cataract 9

CRYAB Multiple types of cataract 16
Dilated cardiomyopathy-1II
Myo昀椀brillar myopathy-2
CRYAB-related fatal infantile hypertonic myo昀椀brillar 
myopathy

CRYBB2 Multiple types of Cataract 3

CA1 ATP2A1 Brody myopathy
ATP2A2 Acrokeratosis verruciformis

Darier disease
PLN Dilated cardiomyopathy-1P

Familial hypertrophic cardiomyopathy-18

Only GO terms that contain CNV-genes are studied due to our focus on 
the role of CNV-genes in health disparity. 
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