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Abstract

In August 2013, we observed a high incidence (44%) of synchronous fault bars across the rectrices of
juvenile Grasshopper Sparrows (Ammodrammus savannarum) captured near El Reno, Oklahoma. Earlier
that year, on May 31, the site was struck by a severe storm which rained hailstones exceeding 5.5cm
diameter and spawned an historic 4.2km-wide tornado <8km to the south of the site. An assessment of
Grasshopper Sparrow nesting phenology indicated that a large number of nestlings were likely growing
tail feathers when the storm hit. To assess the nature of the fault bars, we measured 8N and §C
stable isotope ratios within four 0.25-0.40mg feather sections taken from the distal end of a tail feather
from 18 juveniles captured at the site in August. The fault bar, if present, was contained within only one
section. Fault bars were located at various positions on the distal half of feathers, and fault bar width
significantly increased as a function of distance from the tip (i.e., age at formation). After correcting for
consistent, natural 6'°N variation across sections, we found that feather sections containing or located
immediately proximal to fault bars showed significantly higher 6°°N than sections from the same
feathers located distal to or further from the fault bar region. We also observed significantly higher 6°C
but lower 6°N in the feathers of juveniles with fault bars compared to normal appearing juveniles. Our
findings support the hypothesis that an abrupt environmental stressor affected Grasshopper Sparrow
chicks of various ages, and caused short term catabolism of muscle tissue that resulted in a spike in §°N
deposited into growing feathers. Furthermore, higher 8°N and lower 6§*C among juveniles lacking fault
bars suggested a seasonal change in diet consistent with these individuals hatching after the May 31
storm. Severe weather events may represent major stressors to ground-nesting birds, and we
recommend exploiting opportunities to study the effects of severe weather as part of ongoing research

efforts.

Keywords: disturbance ecology, ground-nesting, hail, stress response, severe storm
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Introduction

Growing feathers can log an inert record of environmental stressors being experienced by a bird.
For instance, stress during the time of feather tissue formation might be detectable as shifts in stable
isotope ratios (Hobson et al., 1993; Bortolloti et al., 2008; Bortolloti et al., 2009; Hatch, 2012; though see
Polito et al., 2011, Fairhurst et al., 2013) or visually-apparent structural and pigmentation deficiencies
known as fault bars (Riddle, 1908; Michner & Michner, 1938; Wood, 1950; Erritzge & Busching, 2006;
Mgller et al., 2009), Fault bars may result from severe fasting (Slagsvold, 1982), habitat degradation
(Sodhi, 2002), physical impairments (Mgller, 1989), handling by human observers (King & Murphy, 1984;
Murphy et al., 1989; Negro et al., 1994), or disease (Romano et al., 2011). Such feather malformations
often coincide with endogenous spikes of stress hormones in the blood, particularly corticosterone
(DesRochers et al., 2009; Lattin et al., 2011; Legagneux et al., 2013), and are thought to form because
the deposition of keratin and melanin into the growing feather is disrupted (Michner & Michner, 1938;
Wood, 1950; Prum & Williamson, 2001; Mgller et al., 2009). Consequently, fault bars can be readily
distinguished and studied for integrated signatures of past stressors experienced by wild bird
populations.

Fault bars are generally uncommon in natural bird populations. Among 86 European bird species
examined by Mgller et al. (2009), the mean incidence of fault bars was only 5.6% and the maximum rate
of occurrence for any given species was 38.5%. Moreover, among individuals having fault bars, the
incidence of fault bars is rarely uniform across all feathers (Bortolotti et al., 2002; Mgller et al., 2009),
which means the threshold for stress to induce fault bars likely varies among tracts of feathers (Jovani &
Blas, 2004; Serrano & Jovani, 2005). In August 2013 we observed an unusually high incidence of fault
bars among juvenile Grasshopper Sparrows (Ammodrammus savannarum) captured near El Reno,
Oklahoma; nearly half had prominent, pale-colored fault bars across their distal half of their rectrices.
All tail feathers were retained juvenile feathers with no freshly-molted tails were observed among the
juveniles captured. Since the distal half of juvenile tail feathers in this species grows from mid-way
through nestling development and continues through the early post-fledging period (Sutton, 1936;
Vickery, 1996; WAB, unpublished data) and young remain close to their natal site during the post-
fledging period (Smith, 1963; Hovick et al., 2011), these fault bars suggested that the local population
had been exposed to a widespread environmental stressor in the nest or shortly thereafter. The recent
meteorological history of the site led us to propose that the high incidence of fault bars resulted from a

severe hailstorm that struck the site on May 31, 2013 (Uccellini, 2014). We reasoned that the direct and
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indirect effects of the hailstorm (i.e., impact trauma, abrupt ground-level cooling, and/or reduction in
insect prey resources) could have been sufficient to induce widespread stress within this population.

Stress responses in animals often involve muscle catabolism (Buchanan, 2000; Wingfield, 2008),
which equates to consumption of nitrogen at a trophic level higher than dietary sources (Waterlow,
1968; Hobson et al., 1993; Cherel et al., 2005; West et al., 2006). As a result of the transamination of
proteins during catabolism the ratio of heavy nitrogen isotopes (expressed as 6°N) is expected to
increase at higher trophic levels (Doucett et al., 1999), especially in the bloodstream and tissues with
high turnover rates such as the liver (Minagawa & Wada, 1984; Kelly, 2000; Post, 2002; Jardine et al.,
2005). Indeed during starvation stress events captive Japanese Quail (Coturnix japonica) chicks and
fasting wild female Ross' Geese (Chen rossii) showed significantly elevated §"°N in muscle and liver
tissues relative to control groups (Hobson et al., 1993). Similar patterns were reported for fasting
penguins (Cherel et al., 2005; though see Polito et al., 2011), seals (Huckstadt et al., 2012), reptiles
(McCue & Pollock, 2008), spiders (Oelbermann & Scheu, 2002) and humans (Fuller et al., 2005). In
contrast, a restricted but not starvation diet was shown to actually reduce 6"°N among nestling seabirds
(Williams et al., 2007; Sears et al., 2009) and sparrows (Kempster et al., 2007), and fasting did not induce
8N enrichment in whales (Aguilar et al., 2014). Stress-induced elevation of §"°N is not necessarily
limited to starvation events as, for example, exposure to toxins without an effect on dietary intake can
have similar effects (Shaw-Allen et al., 2005; Sanpera et al., 2008).

Stable isotopes circulating in the blood are incorporated into growing feathers and these
signatures of conditions at the time of growth will be retained as part of the feather until the next molt
(Hobson, 1999; Kelly, 2000; West et al., 2006). Since both elevated §"°N and the formation of fault bars
could be expected to coincide during stress events, we predicted that feather tissues comprising fault
bars would contain spikes in 6°N. More broadly, we hypothesized that stable isotope patterns along
the length of a feather can serve as temporally-discrete archives of transient physiological responses to
environmental stressors. From single tail feathers sampled from juvenile Grasshopper Sparrows at our
study site we assessed stable isotope patterns at two levels: 1) across sections of individual feathers that
contained fault bars and 2) between juveniles showing fault bars versus juveniles without fault bars.
With the first comparison, we tested whether the fault bars were associated with a period of elevated
heavy nitrogen consistent with muscle catabolism as part of a stress response. With the second
comparison, we determined if there was evidence for trophic successional shifts in isotope ratios
indicative of a temporal separation between the groups. Finally, we also examined past records of

Grasshopper Sparrow nesting phenology in Oklahoma to determine whether it was likely that such a
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large proportion of the juvenile cohort at our site could have experienced the May 31 hailstorm. This
study represents the first quantitative analysis of shifts in stable isotopes associated with fault bar
formation, demonstrates a novel use of feathers as indicators of past stress, and provides new insights

into the potential sublethal impacts of severe weather on developing birds.

Methods

Sample collection and feather measurements

During August 27-28, 2013 we captured juvenile Grasshopper Sparrows (Ammodrammus
savannarum) by mist-net within a 29.3ha grassland unit at the United State Department of Agriculture
Grazinglands Research Laboratory (GRL; N35.555, W98.041) near El Reno, Oklahoma. Banding and
feather sampling was conducted with permission to WAB from the U.S. Fish and Wildlife Service (permit
#23836) and from the state of Oklahoma’s Wildlife Conservation Department (permit 5762). Our use of
animals followed protocols approved by University of Oklahoma Institutional Animal Care and Use
Committee (Animal Use Statement R12-019) and by the Kansas State University’s Institutional Animal
Care and Use Committee (protocol 3260). As part of a standard sequence of morphological
measurements, we scored each juvenile’s tail as having fault bars (i.e., evidence of reduced
pigmentation and/or structural weaknesses; Figure 2A) or having apparently normal feathers. We
photographed the entire tail, removed a single outer rectrix, and stored the feather in a labeled coin
envelope.

In the laboratory we photographed each sampled feather adjacent to a 0.5mm-scaled ruler,
under fixed light sources, and against separate white grid paper and matte black backgrounds. From the
pictures we measured length of the feathered rachis, width of the fault bar, and distance from the fault
bar midpoint to the feather tip using the program imagelJ (Rasband, 2014). We evaluated the pairwise
correlation between these measures using Pearson’s product-moment tests. We compared the total
vane length between fault bar and normal feathers using a t-test.

Observed pigmentation deficiencies in true fault bars should coincide with malformed feather
barbules (Michner & Michner, 1938; Wood, 1950; Prum & Williamson, 2001; Mgller et al., 2009).
Therefore, we examined and photographed select feathers under a dissecting microscope equipped
with a digital camera. We noted the physical attributes of barbules within and adjacent to fault bars, as
well as in normal juvenile rectrices originally grown as nestlings or freshly replaced during the late-
summer post-juvenile molt.

Stable isotope analysis
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In preparation for analysis we first cleaned each feather with dilute detergent and then a 2:1
chloroform—methanol solution (Paritte & Kelly, 2009) followed by oven-drying at 100°C. We then
sectioned the distal end of each feather into four or five 0.25-0.40 mg portions. The fault bar, if present,
was contained within only one of these sections (Figure 2B) and relative to this section we analyzed at
least two sections grown after (i.e., proximal) and all sections that preceded it (if possible). We packed
each section into a 3.5x5mm tin capsule for insertion into an autosampling tray. Measurements of
isotope ratios for nitrogen (§*°N) and carbon (6*C) were performed at the University of Oklahoma with
a Thermo Delta V Plus isotope ratio mass spectrometer (Thermo Scientific, Bremen, Germany)
connected to a Costech ECS 4010 elemental analyzer (Costech Analytical Technologies, Valencia, CA).

We applied two analytical approaches to the isotope data. First, we compared feathers from
juveniles showing fault bars versus those from normal juveniles using separate ANOVAs of the §"°N and
8'C data, including the following explanatory variables: whole feather category (fault bar versus
normal), feather section (ordinal from tip), individual, and pairwise interactions of section*fault bar and
section*individual. In our second approach to analyzing the §"°N and 6"3C data across sequential
sections (i.e., proximally from tip) we initially conducted separate linear regressions for each individual,
pooled the residuals, and fit these using a non-linear, second-order polynomial function. From the
residuals of this two-step fit we selected data from fault bar feathers only and conducted separate
ANOVAs for N and C using section position relative to the fault bar as the lone factor [i.e., containing,
immediately proximal, or outside (distal or >1 section proximal)]. This alternative approach improved
our ability to control for individual variation and natural patterns in stable isotopes by age (i.e., across
sections) within the population, enabling us to identify relative spikes in stable isotope ratios among
feather sections relative to fault bars.

Weather and Grasshopper Sparrow breeding phenology

We reviewed the recent management history of the grassland unit through communication with
GRL staff to determine if any anthropogenic disturbance may have occurred at that site during the 2013
breeding season. Additionally, we examined local-scale meteorology during 2013 relative to 1999-2012
means using data from the ‘ELRE’ Oklahoma Mesonet station at the GRL
(http://www.mesonet.org/index.php/sites/site_description/elre). The only notable anomaly was a
severe thunderstorm that occurred on May 31, 2013. We consulted National Weather Service reports on
this storm, including: hail observer reports made through the Severe Hazards Analysis & Verification
Experiment (SHAVE; Ortega et al., 2009) and hail estimates derived from weather RADAR data using the
Maximum Estimated Size of Hail (MESH) model (Witt et al., 1998; Stumpf et al., 2004).
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We evaluated whether the May 31 storm could have affected such a large proportion of juvenile
birds at our study site by examining the species’ nesting phenology in Oklahoma. One of the authors
(DLR) had previously collected such data for 149 Grasshopper Sparrow nests 200km to the northeast in
Washington and Osage Counties, Oklahoma from 1992 to 1996 as part of a separate study by the
George M. Sutton Avian Research Center [GMSARC; see Rohrbaugh et al. (1999) for the nest searching
methodology]. Using the 1992-1996 nest phenology data we calculated what proportion of an average
Oklahoma Grasshopper Sparrow cohort would have hatched by May 31 and then used a z-test to
determine whether this was statistically different than the proportion of juveniles showing fault bars
among those captured in late August 2013. We performed all statistical analyses in R (R Core Team,

2014).

Results

Fault bar incidence and feather characteristics

Grasshopper Sparrow juveniles captured from the GRL population displayed a very high
incidence of synchronous fault bars in the tail (11 of 25 individuals; 44%). This far exceeded the 1.5%
rate at which similar fault bars occurred among 271 juveniles captured in 2013-14 at 22 sites in
Nebraska, Kansas, and Oklahoma by one of the authors (WAB, unpublished data). Compared to species-
specific rates reported by Mgller et al. (2009) the incidence of fault bars among Grasshopper Sparrows
at the GRL in 2013 did not differ from Corvus corone (38.5%, n=13, z=0.326, p=0.741) or Streptopelia
decaocto (25%, n=8, z=0.957, p=0.169), although it significantly exceeded rates from any of the 84 other
species they examined. Among the 25 juveniles examined we noted fault bars on the wing feathers for
only one individual, and these were narrow and slightly asynchronous (see Supplemental Information
Figure S2).

The fault bars we observed among Grasshopper Sparrow juveniles were up to 3.4mm wide,
aligned across all of the tail feathers, and showed modestly-reduced pigmentation and barbule density
(Figure 2A and 3). We found no difference in mean (ts.d.) vane length between feathers with and
without fault bars [fault bar: 41.0 (x 1.1) mm; normal: 41.0 (+ 1.6) mm; t =0.127, p = 0.900]. Among
feathers having fault bars, the mean distance from fault bar midpoint to feather tip was 8.8 (x 5.0) mm
and the mean fault bar width was 1.8 (+ 0.9) mm. The relative position of fault bars ranged from 5.7%
to 42.3% the length of the vane [mean ( s.d.) = 21.4% (+ 12.3%)]. Wider fault bars were located at more
basal locations along the feather (r =0.928; t = 7.45; p < 0.001) but were not related to vane length (r =

0.018; t = 0.05; p = 0.958). The locations of fault bars were likewise not correlated with vane length (r =
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-0.025; t =-0.075; p = 0.942). We observed that the structure of feather barbules was notably
degraded in fault bars, evident as large sections of unhooked or entirely missing barbules (Figure 3).
Stable isotopes

Variation in 8N was explained by fault bar presence (F = 327.2, df = 1, p < 0.001), individual
differences (F = 50.3, df = 16, p < 0.001), feather section (F = 8.8, df = 1, p = 0.005) and feather section by
individual interactions (F = 2.4, df = 1, p = 0.016). Likewise, variation in 6"*C was associated with fault
bar presence (F =23.9, df = 1, p < 0.001), individual differences (F = 18.6, df = 16, p < 0.001), feather
section (F=14.6, df = 1, p < 0.001) and feather section by individual interactions (F=1.9,df=1, p =
0.050). Differences between normal and fault bar feathers were driven by the former having higher
8N (mean difference =2.2%o) but lower levels of §*C (mean difference = -1.2%o; see Supplemental
Information for complete results).

Our analysis of sections within fault bar feathers indicated that, after correcting for individual
and population variation, there were no significant difference among sections in terms of either §"°N (F
=2.22,df=2,p=0.121) or 82C(F=0.42,df =2, p =0.661). However, if we pooled data from sections
containing fault bars with those subsequently grown in immediately proximal sections, then relative to
the sections outside the fault bar region these sections contained elevated 8"°N (t = -2.11, p = 0.040;
Figure 4) but similar ratios of §°C (t = -0.92, p = 0.364).

Stress events and breeding phenology

Based on both weather radar and ELRE Mesonet data we estimated that hail fell over the GRL
during approximately 16:00-16:20 local time on May 31, 2013. Hailstone diameters estimated from
weather radar data using the MESH model ranged from 4.45-5.72 cm at the GRL (Figure 1). Actual
hailstone sizes reported through SHAVE matched or exceeded the MESH estimates. For instance, 4.45
cm-diameter hailstones reported 26 km ESE of the GRL in Yukon, Oklahoma suitably matched the 3.81
cm estimates made using MESH, but reports of hailstone diameters of 3.18 cm and 4.45 cm at points 30
km WSW and 26 km WNW of the GRL, respectively, far exceeded the 1.91 cm maximum sizes estimated
by MESH for those locations.

Data from the ‘ELRE’ Oklahoma Mesonet station at the GRL indicated that during the period
when juveniles captured in August would have likely been in the nest (i.e., May 1% to July 13", 2013) the
amount of precipitation recorded at the GRL was 67.0 cm. This exceeded this site’s 1999-2012 mean by
22.4 cm and represented 150 % the normal rainfall for this period. Perhaps not surprisingly this
elevated total was primarily caused by a 12.1 cm downpour during the May 31 storm. No other daily

precipitation total exceeded 4.1 cm during this period. Local weather data did not suggest any other
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possible stressors from weather. At no point between May 1% and July 13", 2013 did the maximum or
minimum temperature depart more than +5°C from 1999-2012 means. Other local stressors, such as
local land use and management, were similarly unlikely. During 2013 our grassland study site at the GRL
was grazed lightly by bulls (~1 per 10ha) and the area was not managed with herbicides, pesticides, or
mowing treatments during May-July (S. Coleman, USDA, pers. comm.)

The median date for clutch initiation observed in Oklahoma from 1992-96 as part of GMSARC
surveys was in late May (Table 1). These findings were consistent with anecdotal observations of the
species’ breeding activity at the GRL in 2013-14 (JDR, unpublished data). Dates of clutch initiation,
either directly observed or extrapolated based on incubation stage at discovery, were compiled from the
GMSARC data according to their expected status on May 31 of that year. For Grasshopper Sparrows, a
typical clutch of 4 eggs will hatch approximately 14 days after the first egg is laid and the young fledge
after 10-12 days in the nest (Vickery, 1996). According to this schedule, by the afternoon of May 31,
clutches initiated prior to May 5 would have fledged, clutches initiated May 5-18 would be nestlings, and
clutches initiated May 19-31 would still be eggs (Table 1). Clutch initiation dates indicated that in a
typical year 27.6% of a Grasshopper Sparrow cohort would have hatched or fledged by May 31. This
proportion was marginally lower than the observed proportion (44%) of juveniles captured at the GRL in

August 2013 that had fault bars (z=1.64; p=0.051).

Discussion

Our findings are all consistent with fault bars among juvenile Grasshopper Sparrows at GRL likely
resulting from an intense regional-scale stressor: the May 31, 2013 severe storm that impacted the
region with tornadoes, damaging winds, and large hail (Uccellini, 2014). For a ground-nesting species
the immediate and short-term impacts of this rare event, particularly the hailstones exceeding 5cm
diameter, are a likely candidate to cause widespread physiological stress among dependent young.
Beyond this simple event attribution, our findings provide some of the first evidence about the sublethal
impacts of severe weather and how native bird species may be affected by such periodic stressors.

Stable isotopes as records of environmental stressors

Nitrogen isotopes within the fault bar region were significantly enriched with heavy nitrogen
relative to other parts of the same feathers. These spikes in 8"°N support our predictions and are
consistent with increased muscle catabolism as part of the stress response that produced the fault bars.
Notably, we found significant among-individual variation both in the slope and magnitude of nitrogen

and carbon fractionation across feather sections, which suggested differences in diets during
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development in line with these young originating from different nests. This lends confidence to these
individuals representing a broad sampling of variation in the population.

The magnitude of differences between feathers from juveniles possessing normal feathers
versus juveniles displaying fault bars for both §C (=1.2%o) and "N (2.2%.) would be consistent with
trophic or successional (i.e., C4 to C3 plant community) shifts that one might expect among individuals
growing feathers at different times during a temperate breeding season (Kelly, 2000). More specifically,
if we assume that juveniles without fault bars were reared after the large scale disturbance, then the
data are consistent with a scenario in which Grasshopper Sparrow nestling and fledglings’ diets changed
moderately through the season. Increased 6"°N in feathers without fault bars could be attributed to
ingestion of insect prey items at higher trophic levels, and the difference in §*°C could result from an
increasingly C3 plant base (Hobson, 1999; Kelly, 2000; West et al., 2006). This trophic progression is
even evident within individual feathers, as §"°N naturally increases from tip-to-root, as observed by
Symes and Woodborne (2011) in White-bellied Sunbirds (Cinnyris talatala).

Fault bars as a response to stress

High rates of fault bars have been reported in other species, (i.e., >90% in raptors; Hawfield,
1986; Bortolotti et al., 2002), but these accounts describe isolated, narrow (i.e., <1 mm) fault bars that
show an extreme degree of structural degradation. These accounts in the literature and our own
observations suggest that there are two types of fault bars that appear in bird feathers. We argue that
fault bars like the ones observed in our Grasshopper Sparrows result from stressful experiences that
lead to transient reductions in the quality of growing feathers. As for the narrower isolated type of fault
bars, we subscribe to Michener & Michener’s (1938) original assertion that they arise due to haphazard
and short-lived disruptions to development such as a temporary reduction of circulation or minor injury
to the growing follicle. Experimental studies are needed to determine the basis for different fault bar
types.

There was a strong linear relationship between position of the fault along the length of the
feather and the width of the fault bar. If fault bars represent a malformed portion of a growth bar and
each growth bar represents a set period of growth (Grubb, 2006; Jovani & Diaz-Real, 2012), then this
pattern could indicate that feather growth linearly increased as the feather became longer. However,
Elderbrock et al. (2012) found that although width of growth bars down the vane of individual feathers
in juvenile Eastern Bluebirds (Sialia sialis) did vary substantially, these differences were randomly
located and did not linearly increase with position down the feather vane. Instead, the authors noted

that growth bar width was disconnected from the rate of feather elongation, which was constant during

10
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the development of individual feathers. Therefore, rather than feather growth increasing with age the
increasing fault bar width could alternatively indicate that the duration of the stress response itself had
linearly increased as a function of chick age. This inference agrees with prior studies showing that older
chicks are more prone to an extended stress response, either due to increased development of the
hypothalamic-pituitary-adrenal axis (Sims & Holberton, 2000; Sockman & Schwabl, 2001; Wada et al.,
2007) or because they have greater dietary intake demands and are closer to starvation than younger
chicks (Blem, 1975).

Ecological and evolutionary implications of fault bars

Fault bars are likely to be associated with reduced fitness and, therefore, may be subject to
selective pressures. For example, Goshawk (Accipiter gentilis) prey had significantly higher-than-average
incidences of fault bars (Mgller et al., 2009). In addition, fault bars are more prone to breakage (Sarasola
& Jovani, 2006), which affects flight performance (Murphy et al., 1989; Norberg, 1990; Jovani et al.,
2010), and fault bars can be subject to sexual selection as a signal of individual condition (Blanco & de la
Puente, 2002). Jovani & Blas (2004), however, argued that fault bars occur non-randomly among
feather tracts. Their “fault bar allocation hypothesis” predicts that selective pressures will favor
resource allocation toward feathers most critical to flight performance, namely the primary remiges of
the wing, at the expense of less essential feather growth (e.g., rectrices). Hence, the allocation
hypothesis would predict that fault bar formation in the tail, for instance, would reflect an adaptation
that allows birds experiencing nutritional stress to preferentially better develop feathers that are
fundamental to powered flight.

Fault bar allocation may be particularly important for juvenile birds which have intense resource
demands as their body and flight feathers grow synchronously (Dolnik & Gavrilov, 1979). Quickly
growing remiges to hasten sustained flight is likely paramount to juvenile survival. Juveniles do display
higher incidences of fault bars than adults (Hawfield, 1986; Jovani & Blas, 2004; Jovani & Diaz-Real,
2012), especially among feathers less critical to flight such as rectrices (King & Murphy, 1984; Bortolloti
et al., 2002; Serrano & Jovani, 2005; Sarasola & Jovani, 2006; Jovani et al., 2010). Yet, in many species
(including Grasshopper Sparrows) juvenile feathers containing fault bars must be retained only through
the relatively brief post-fledging period to be replaced with high-quality feathers during post-juvenile
molt, reducing possible carry-over effects during the stresses of migration and/or winter (Pap et al.,
2007). Among the Grasshopper Sparrows showing fault bars the mean age was likely less than 12 days
old at the time of the stressor [based on tail growth rates reported by Sutton (1936) and WAB,

unpublished data]. By this age the growth of remiges would have only been partially completed (Sutton,
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1936), yet in only one case did we observe fault bars in the wing that were apparently concordant with
fault bars in the tail. It seems probable that ground nesting birds like Grasshopper Sparrows, which are
frequently exposed to environmental stressors (Nice, 1957; Ricklefs, 1969), would benefit by coupling

fault bar allocation with post-juvenile molt as an adaptive response to stress during early development.

Biological relevance of severe weather

Local environmental conditions dictate whether species survive and reproduce successfully in
any given area. Lack (1966) suggested that extremes in local environments would be strongly
responsible for limiting species, as these would present the most grievous of stressors. Severe weather
is a prime example, as it can cause widespread mortality and is known to necessitate specific local
adaptations within local biological communities (Wingfield, 1988; Newton, 2007). Severe weather
impacts on birds have generally been studied in association with large, widespread, and relatively long-
lasting events such as cold snaps, hurricanes, and blizzards (Whitmore et al., 1977; Wiley & Wunderle,
1993; Brown & Brown, 1998; Newton, 2007; Fredericksen et al., 2008; Rittenhouse et al., 2010). Yet,
intense but relatively localized perturbations such as severe hailstorms or tornadoes have received little
scientific attention, outside of anecdotal or case-study reports [see Ross (in prep) for a complete
review]. These events can vary in their degree of impact across species and thus may represent a
particularly strong factor in regulating species distributions. Considering that much of the American
Great Plains experiences severe thunderstorms and hail annually (Doswell et al., 2005; Cinteneo et al.,
2012) and that hailstones as small as 1cm diameter can destroy eggs and injure adults (Ross, in prep),
these weather events are likely to have profound ecological and conservation relevance to grassland
species, especially ground-nesting birds. This is especially true during the key breeding period of April-
July, when vulnerable adults, eggs, and young face the peak of the severe thunderstorm season.

In our study, if we assume that Grasshopper Sparrow juveniles with ‘normal’ rectrices had
hatched after May 31, our analysis indicated that such individuals were marginally less abundant than
expected based on the species’ nesting phenology in Oklahoma (i.e., 56% in 2013 versus 72.4% in 1992-
96). This could be explained by local climatic differences, such as the date of last spring freeze. This is
currently only slightly earlier at GRL (Canadian County) than Osage County (Oklahoma Climatological
Survey, 2014), though 20-years of climate change between these periods could explain an earlier shift in
nesting phenology. Alternatively, the lower proportion of late-hatching young in 2013 could have
reflected an actual net loss among the latter half of the 2013 cohort, in this case ~23% relative to the

1992-96 demography. Itis probable that hailstones exceeding 4cm-diameter could have led to
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widespread destruction of eggs and that this stressor disrupted late-season nesting attempts (e.g.,
adults directly killed or abandoned the area after a storm; Ross, in prep).

During extremely heavy hailstorms nesting parents may flee, leaving young exposed to the
weather (Hanford, 1913; Hume, 1986; Kirkpatrick et al., 2009). Recently-fledged Grasshopper Sparrow
young are quite vulnerable to exposure (Hovick et al., 2011) and would, therefore, be expected to be
widely stressed during severe thunderstorms. Young that survive ‘riding the storm out’ may be
traumatized by the event itself or because of reduced provisioning by adults. If so, we may expect these
offspring to show lasting signs of developmental stress such as the degraded feather structure typical of
fault bars (DesRochers et al., 2009; Lattin et al., 2011; Legagneux et al., 2013).

Scientifically assessing the biological impacts of severe weather is commonly viewed as being
limited by our ability to predict well in advance where storms will strike so that we may organize before
and after comparisons. However, each year field studies are likely to occur at points throughout
regions where severe weather often occurs (Doswell et al., 2005; Cecil & Blankenship, 2012; Cinteneo et
al., 2012) and these researchers would be well-positioned to opportunistically study the ecological
consequences of severe weather. We call for the ecological research community, to take advantage of
severe storm events as they occur at their research sites, opportunistically sampling biologically
informative data required to assess the nature and magnitude of such stressors on animal communities.
In the face of a changing climate and the expected shifts in severe weather regimes (Trapp et al., 2007;
Goodess, 2013) there is a need to expand our knowledge of the both current and future ecological
impacts of severe weather events (Jentsch et al., 2007) so that we may work toward mitigating losses

among vulnerable species and biological communities.
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581  Table 1: Clutch initiation phenology of 149 Grasshopper Sparrow nests at 20 sites in Washington and
582 Osage Counties, Oklahoma. Expected status on May 31 was based upon a mean clutch size of 4,
583 incubation initiated on the penultimate egg, and an 11-day incubation period (Vickery 1996).

584

Proportion of

Clutch Likely Late-August
Initiation Statuson  1992-96 Flocked Cumulative
Period May 31 Count Juveniles* Proportion
<May 4 Fledged 1 0.7 0.7
May 5-18 Nestlings 36 26.9 27.6
May 19-31 Eggs 37 27.6 55.2
Jun1-Jul13  Pending™ 60 44.8 100.0
>Jul 13 Pending 15 n/a* n/a*

*By the late-August sampling period the surviving young produced by "pending" clutches
would have been either: (1) fully fledged and roaming; or (2) less likely to be capable of
sustained flight or to have flocked with other juveniles (Vickery 1996)
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Figure 1: Map of the study area (white outline) showing the maximum size of hailstones that fell across the region
on May 31, 2013. Hailstone size was estimated from National Weather Service WSR-88D radar data using the
Maximum Estimated Size of Hail model (MESH; Witt et al. 1998; Stumpf et al. 2004) and are displayed along a light
blue (<0.5”) to red (2.25 to 2.5”) color scale.
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Figure 2: Photographs of Grasshopper Sparrow rectrices from GRL. Panel A shows an
individual tail with a synchronous band of fault bars. Panel B illustrates the sections sampled
from the rectrices of juvenile Grasshopper Sparrows. Sampling was constrained to provide a
minimum of 0.2-0.3mg from each section. Shown are two examples of feathers with fault
bars (top) and one of normal growth (bottom).
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Fresh Rectrix Fault Bar

Figure 3: Backlit microscope views (20x) of Grasshopper Sparrow feather rachii and barbules in a
fresh rectrix collected after post-juvenile molt (left), a rectrix with fault bar (middle), and a normal,
worn juvenile feather (right).
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Figure 4: Distribution of 8N corrected for individual variation in slope and population-level patterns among
sections of fault bar feathers. Shown are box plots of the data from sections containing fault bars (FB),
immediately downstream from fault bars (FB+1), outside the fault bar region (Out) and pooled FB & FB+1 data
(FBregion). Significant groupings are designated by lowercase letters.
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Supplemental Information

Supplemental Table S1: Nitrogen and carbon stable isotope fractionation within sections of juvenile GRSP rectrices. Sections were sequential samples of
approximately equal weight taken from the tip (Section 1) proximally. Sections containing fault bars are highlighted with grey boxes. In three instances, the
section sample was lost due to an error during the stable isotope analysis process (indicated as “Lost”).

Individual Eault . . . . ' All Sections
(Band Bar Section 1 Section 2 Section 3 Section 4 Section 5 (meanzs.d.)
Number) 615N 613C 615N 613C 615N 613(: 615N 613C 615N 613C 615N 613C
1831-10723 No 9.71 -15.85 12.15 -15.18 12,73  -14.84 13.36 -15.95 11.98£1.60 -15.45%0.53
1831-10725 No 9.98 -15.21 10.46 -14.47 10.27 -13.73 10.40 -13.65 10.28+0.21 -14.26+0.73
1831-10736 No 9.72 -15.64 10.01 -15.74  10.37 -15.35 9.27 -15.87 9.84%0.47 -15.65+0.22
1831-10742 No 7.87 -15.29 Lost Lost 9.14 -12.88 8.55 -14.63 8.52+0.63 -14.27+1.25
1831-10743 No 6.51 -12.83 7.21 -12.31 7.44 -10.33 7.11 -12.70 7.07+0.39 -12.04+1.16
1831-10745 NG 6.39 -17.28 6.53 -15.75 6.33 -12.34 6.43 -15.46 6.42+0.09 -15.21+2.07
1831-10747 No 8.63 -13.33 9.33 -12.42 9.38 -12.65 9.55 -12.70 9.22+0.40 -12.78+0.39
Normal Feather:  Mean. 8.40 -15.06 9.28 -14.31 9.38 -13.16 9.24 -14.42
s.ds 1.52 1.52 2.10 1.58 2.09 1.68 2.28 1.42 9.07+1.94 "14.24x1.62
1831-10714 Yes  7.17 -15.83 8.24 -17.62 8.52 -18.13 8.78 -17.19 8.18+0.71 -17.19+£0.99
1831-10718 Yes  7.26 -20.25 6.81 -19.17 7.95 -15.82 7.51 -14.69 6.90 -16.17 7.29+0.47 -17.22+2.37
1831-10722 Yes  7.97 -13.99 8.01 -13.23 7.85 -13.16 717 -12.26 7.75+0.39 -13.16+0.71
1831-10724 Yes  8.61 -18.58 8.05 -14.60 8.50 -14.09 7.38 -14.00 8.13+0.56 -15.32+2.19
1831-10726 Yes  5.65 -15.11 5.03 -16.16 5.43 -16.65 5.66 -18.05 5.44%0.30 -16.49+1.22
1831-10734 Yes  6.96 -17.70 7.37 -16.05 8.42 -14.87 Lost Lost 7.58+0.75 -16.21+1.42
1831-10735 Yes  6.48 -21.44 7.80 -21.20 7.22 -21.79 7.46 -21.12 7.24+0.56 -21.39+0.30
1831-10737 Yes  9.09 -14.22 10.19 -12.22 9.98 -12.37 9.81 -13.00 9.77+0.48 -12.95+0.91
1831-10738 Yes  4.92 -16.17 Lost Lost 6.57 -13.57 4.71 -13.58 4.64 -12.68 5.21+0.91 -14.00+1.50
1831-10748 Yes  5.34 -14.72 5.67 -15.29 5.24 -14.36 5.76 -14.27 5.50+0.25 -14.66+0.46
1831-10749 Yes  3.92 -13.03 4.09 -13.02 5.14 -10.54 4.88 -11.19 4.66 -13.58 4.54+0.52 -12.27+1.32
Teaher sa 1a0 271 i7s  2sa  tas 305 1es 501 ts0 i G¢Eed  1sdsize
All Individuals: - R - R -
o TS [SEU 1S ISE B 0 18T eTr sa0 M paes sorezss
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Supplemental Figure S1: Partition plot of 8"N versus 6"°C from sections analyzed within feathers containing fault
bars (Y) and normal feathers (N). The dividing line was based upon a linear discriminant function analysis with
jackknifed prediction calculated using the ‘partimat’ function in the R package klaR. Samples indicated in red font
signify misassignments (19.4% of cases).
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Supplemental Figure S2: Photograph of fault bars in the primary wing feathers of a juvenile Grasshopper Sparrow.
Note that compared to the fault bars seen among rectrices these fault bars are narrower, do not show a loss in
pigmentation, and are not synchronous. The tail of the same individual is pictured in Figure 2A.
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