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Using empirical and simulated data to study the influence of

environmental heterogeneity on fish species richness in two

biogeographic provinces

Loss of species richness in aquatic ecosystems is occurring rapidly and many factors,

including habitat heterogeneity, have been suggested to affect the diversity of aquatic

communities. We used fish community data (> 200 species) from extensive surveys

conducted in two biogeographic provinces (extent > 1000 km) in North America to test the

hypothesis that fish species richness is greater in more heterogeneous habitats (grain <

10 km2). Our tests are based on samples collected at nearly 800 stations over a period of

five years. Using a set of environmental variables routinely measured by monitoring

programs and a random placement model of community assembly, we demonstrate that

fish species richness in coastal ecosystems is associated locally with the spatial

heterogeneity of environmental variables but not with their magnitude. The observed

effect of heterogeneity on species richness was substantially greater than that generated

by simulations. Our modeling framework opens avenues for targeted conservation of

habitat heterogeneity at broader temporal and spatial scales.
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ABSTRACT

Loss of species richness in aquatic ecosystems is occurring rapidly and many factors, including habitat

heterogeneity, have been suggested to affect the diversity of aquatic communities. We used fish

community data (> 200 species) from extensive surveys conducted in two biogeographic provinces

(extent > 1000 km) in North America to test the hypothesis that fish species richness is greater in more

heterogeneous habitats (grain < 10 km2). Our tests are based on samples collected at nearly 800 stations

over a period of five years. Using a set of environmental variables routinely measured by monitoring

programs and a random placement model of community assembly, we demonstrate that fish species

richness in coastal ecosystems is associated locally with the spatial heterogeneity of environmental

variables but not with their magnitude. The observed effect of heterogeneity on species richness was

substantially greater than that generated by simulations. Our modeling framework opens avenues for

targeted conservation of habitat heterogeneity at broader temporal and spatial scales.

Keywords: aquatic community assembly, conservation biology, diversity, heterogeneity hypothesis,

random placement model, simulation

INTRODUCTION1

The habitat heterogeneity hypothesis (MacArthur and MacArthur, 1961; MacArthur and Wilson, 1967)2

states that species richness increases with the number of ecological niches; that is, species coexistence is3

facilitated in more heterogeneous habitats because different taxa can capitalize on different environmental4

conditions. The hypothesis has been tested using many taxonomic groups across different spatial grains5

(average distance among observations) and extents (size of the whole study area) ranging from meters6

to thousands of kilometers. An extensive meta-analysis by Field et al. (2009) found that environmental7

heterogeneity was the primary factor driving species richness for 63 of the 273 cases (23%) assessing the8

relative importance of environmental heterogeneity versus other environmental factors. Environmental9

heterogeneity, however, had a stronger effect on species richness in studies conducted at small grain sizes10

(39% of the cases), suggesting that the relationship is contingent on the spatial scale. Furthermore, only 411

of the 393 relationships (1%) were from surveys of aquatic ecosystems having small grain size (< 1012

km2) and large geographical extent (> 1000 km).13

Aquatic ecologists have faced difficulties in quantifying heterogeneity across different temporal14

and spatial scales (Kovalenko et al., 2011; Tisseuil et al., 2012; Yeager et al., 2011) possibly reflecting15

the difficulties of achieving the data needs to quantify such relationship. As a consequence, the term16

’heterogeneity’ has been used rather loosely, as it could refer to habitat complexity, habitat diversity or17

environmental variability in both space and time (Palmer et al., 2010). For example, Oberdorff et al. (2011)18

assessed habitat heterogeneity at the continental scale using the proportion of different biomes found19

within river drainage basins, whereas Guégan et al. (1998) used the mean annual flow discharge as a proxy20
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for environmental heterogeneity in 183 rivers throughout the world. Although these two studies found a21

positive relationship between heterogeneity and fish species richness, their measures of environmental22

heterogeneity were confounded with biogeographic factors, such as the size of the drainage area, and with23

other global environmental descriptors including seasonality of rainfall. More recent studies of aquatic24

ecosystems investigated the heterogeneity hypothesis at smaller spatial grains and reported both positive25

(Buhl-Mortensen et al., 2010; Mellin et al., 2012) and negative (Kadmon and Allouche, 2007; Palmer26

et al., 2010) relationships between heterogeneity and the taxonomic richness of aquatic communities.27

Recent meta-analyses on the topic concluded that decrease in environmental heterogeneity always had a28

negative impact on diversity (Smokorowski and Pratt, 2007; Seiferling et al., 2014).29

Given that species richness is declining in both freshwater and marine ecosystems (Ricciardi and30

Rasmussen, 1999; Worm et al., 2006), that coastal ecosystems are increasingly impacted by human31

activities, such as overfishing, oil drilling and regulation of river runoffs, and that conservation strategies32

are more easily enforced at local scales (Fausch et al., 2002), tests of the heterogeneity hypothesis33

under these circumstances are critically needed. The objective of this study was to evaluate the effect of34

environmental heterogeneity (spatial grain < 10 km2) on fish species richness at the scale of biogeographic35

regions (spatial extent > 1000 km). We used data on fish communities (26 orders, 73 families, 136 genera,36

204 species), obtained from extensive surveys in two coastal ecosystems of North America. Using a37

set of environmental variables routinely measured by monitoring programs, we demonstrate that fish38

species richness in coastal ecosystems responds positively to the spatial heterogeneity of environmental39

conditions. We further implemented a random placement model of community assembly to describe the40

relationship between environmental heterogeneity and species richness in the absence of explicit habitat41

selection mechanisms.42

MATERIAL AND METHODS43

Study site and data collection44

Fish abundances and environmental measurements were obtained from two extensive surveys conducted45

by the by the U.S. Environmental Protection Agency’s Environmental Monitoring and Assessment46

Program (EMAP). The first data set consisted of four sampling campaigns conducted in the Virginian47

biogeographic province between 1990 and 1993 (Hale et al., 2002). Stations were located along the48

coastline and in large river estuaries of the East Coast (Delaware, Hudson, Potomac, York; Fig. 1A). The49

second data set was assembled from four sampling campaigns conducted in the Louisiana biogeographic50

province between 1991 and 1994. Stations were located along the Gulf of Mexico from the Rio Grande,51

Texas, to Anclote Island, Florida (Fig. 1B). Field campaigns in the two biogeographic provinces were52

carried out between July and September of each year.53

Fish were sampled using balloon trawls (funnel-shaped nets, 4.9 m wide with 2.5 cm stretched mesh)54

deployed from a research vessel using a hydraulic–powered boom in the vicinity of the sampling stations.55

The duration of the trawl was 10 ± 2 (mean ± SD) minutes at a speed of 2-3 knots. This corresponds to a56

length of 0.77 ± 0.15 (mean ± SD) km. Following a successful trawl, the net was hauled aboard and the57

catch was released into a plastic trough, or a fish sorting table, where species composition and abundance58

were recorded (see Appendix S1 in Supporting Information). A total of 2237 individuals (fork length:59

min. = 2.2 cm; max. = 91.18 cm; mean ± SD = 12.08 ± 7.33 cm) were captured from the Louisiana60

biogeographic province and 1883 individuals (fork length: min. = 2.5 cm; max. = 92.6 cm; mean ± SD =61

16.03 ± 10.37 cm) were captured from the Virginian biogeographic province, yielding a total of 412062

individuals (Table 1, Appendix S1).63

The environmental data comprised physical and chemical measurements. Dissolved oxygen concen-64

trations (mg × L−1) were determined using an air-calibrated oxygen meter (Yellow Springs Instruments)65

on surface water samples (625 mL) obtained with a Go-Flo bottle. Salinity (ppt), temperature (◦C),66

pH, transmissivity (% of ambient light transmitted through the water column), photosynthetically active67

radiation (µE × m−2 × s−1), fluorescence (unitless) and water density (σ t, kg × m−3 − 1000) were68

measured using a SeaBird CTD meter lowered through the water column at a rate of approximately 0.2569

m × s−1 until it reached the bottom (Table 1). Fluorescence and water density data were not available for70

the Louisiana surveys. Detailed information about the sampling and analytical procedures can be found on71

the EMAP web site (http://www.epa.gov/emap/index.html). Although other environmental72

variables such as macrophyte cover might be important determinants of environmental heterogeneity, the73

selected variables are known to affect the ecology of individual fish species (Mandrak, 1995).74
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Environmental heterogeneity75

To represent the gradient of environmental conditions among stations of the same biogeographic province,76

we used the scores of a principal component analysis (PCA) performed on the environmental variables.77

The first three PCA axes (Table 1) were retained based on Kaiser’s criterion and explained nearly 75%78

of the environmental variability in both Virginian (PC1 = 42.28%, PC2 = 19.7%, PC3 = 12.6%) and79

Louisiana (PC1 = 32.5%, PC2 = 23.8%, PC3 = 19.6%) biogeographic provinces. We quantified the degree80

of local spatial autocorrelation in environmental conditions near each station as a reciprocal measure of81

environmental heterogeneity. We calculated the local Moran I statistic on the scores of the first PCA axis82

using the localmoran function of the spdep package in R (Bivand et al., 2013). This statistic identifies83

station neighborhoods where environmental conditions of similarly high or low values cluster spatially84

(high I), as well as neighborhoods where environmental conditions are more contrasted (low I). High I85

values indicate low heterogeneity (positive autocorrelation), whereas values around zero indicate high86

heterogeneity. Negative I values indicate local over-dispersion patterns (i.e., negative autocorrelation),87

which are rarely observed in nature (Borcard et al., 2011). The I statistic is given by Anselin (1995):88

I = (n−1)
xi − X̄

n

∑
i=1

(xi − X̄)2

n

∑
j=1

wi j(x j − X̄) (1)

where xi is the value of the observation i, is the mean of the variable, wi j is the spatial weight89

(1/distance2) between observations i and j, and n is the number of stations sampled. We used dnearneigh90

function of the spdep package to identify neighbours of region points by Euclidean distance between 091

and 75 km. Because we could not determine whether patterns of over-dispersion should be associated92

with high or low levels of environmental heterogeneity, the few stations (less than 4%) with negative I93

values were removed from subsequent statistical analyses. We did not find substantial differences between94

results for I calculated using all the data pooled at the biogeographic level (spatio-temporal I) and I95

calculated for each sampling year separately (spatial I). Consequently, we view I as a measure of spatial96

heterogeneity in local environmental conditions across space (Appendix S2, Fig. 1, Eq. 1).97

Numerical simulations98

We developed a random placement model of community assembly to determine the heterogeneity–species99

richness relationship in the absence of explicit habitat selection mechanisms. The model has two main100

components: (1) environmental heterogeneity and (2) species richness, each being simulated independently101

of the other on a two-dimensional surface (Fig. 2). This approach has been successfully used in various102

ecological studies aiming to highlight the effect of landscape structures on different aspects of animal103

biodiversity (Campos et al., 2013; McGill, 2011).104

The first model component simulates the spatial patterns of environmental conditions (Fig. 2A).105

Environmental spatial patterns can be modeled as a fractional Brownian function. The spectral density S( f )106

of a two-dimensional surface follows a power spectrum S( f ) ∝ 1/ f β (Keitt, 2000), where f is frequency107

and β = 1+ 2H. The Hurst exponent (H) controls the degree of auto-correlation in environmental108

conditions; a large H(H −→ 1) results in relatively homogeneous spatial patterns, whereas a lower109

H(H −→ 0) produces more heterogeneous patterns. To generate the environmental spatial patterns in our110

simulations, we used the Matlab function noiseonf, which uses the inverse Fourier transformation of a111

power spectrum with a predetermined Hurst exponent (Kovesi, 2000). This procedure generates ’neutral’112

landscapes (e.g., With, 1997; Keitt, 2000) that share several statistical properties with environmental113

patterns observed in nature. The Hurst exponent of the simulated surface was parameterized using the114

linear slope of the log-log semi-variogram (Gallant et al., 1994) computed on the scores of the first axis of115

the PCA of environmental conditions, yielding values of H ≈ 0.4 in both biogeographical provinces.116

The second component (Fig. 2B) of our model simulates the random placement of species with117

different distribution ranges. We based our random placement model of community assembly on two118

premises (McGill and Collins, 2003; McGill, 2010): (1) the centroid of each species range is determined119

by sampling from a uniform distribution over the surface and (2) the range size of species is distributed120

according to a power distribution. McGill and Collins (2003) reported that implementing either a log-121

normal or a power distribution did not affect the results of random placement model. Each of our122

simulation runs proceeded as described in algorithm 1. Local species richness is then calculated by123
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summing the overlap of different species ranges. On the basis of the observed regional distributions of124

the sampled species (Appendix S2, Fig. 3), we used the following parameters to implement the random125

placement model: G = 1000, rmin = 10 km and rmax = 1000 km.126

Algorithm 1: Random placement of species (component 1, Fig. 2A)

1 Generate a surface of size G×G.

2 Randomly pick the distribution range r of a new species from a power function f (r) = r−a where

rmin ≤ r ≤ rmax (Appendix S2, Fig. 2).

3 Choose the species centroid randomly from a uniform distribution over the surface.

4 Repeat previous steps until the surface is completely covered by species ranges (ranges are allowed

to overlap).

To represent the range of each species on the surface, we used ellipses with major axis length r and127

minor axis length sampled from a uniform in the interval [r/4,r/2] as described in Proulx et al. (2014).128

To simulate an anisotropic spatial process, we placed the elliptical ranges with their major axis oriented129

either horizontally (with probability = 0.75) or vertically (with probability = 0.25). This decision was130

motivated by the fact that species ranges in both biogeographical provinces are preferentially oriented131

along rivers and coastlines that broadly conform to the proposed alignment. Finally, to determine the132

parameter α empirically, we calculated the range of all fish species in each biogeographical province133

(Appendix S2, Fig. 3) and estimated the power coefficient of the frequency using the log-ratio formula134

(Eq. 5 in Newman, 2005). We obtained values of α = 1.214 for the Virginian province and α = 1.189 for135

the Louisiana province, and therefore used a value of 1.2 in our simulations. Using different combinations136

of ellipse shape ratio and orientation, we found that the species richness was robust to these changes.137

Most importantly, varying the shape ratio and orientation of ellipse (species range) did not affect the138

general direction and relative effect size of the simulated environmental heterogeneity-species richness139

relationship. We generated the two model components on grids of 1000 x 1000 cells (Fig. 2A and 2B). A140

total of 10 000 simulations where performed according to algorithm 2. It is to be noted that the model141

does not aim to approximate the absolute number of species at each location. Consequently, we used142

relative changes in species richness (∆S) to compare modeled and observed results.143

Algorithm 2: Global simulation procedure

1 Generate an environmental grid (component 1, Fig. 2A).

2 Generate a species placement grid (component 2, Fig. 2B).

3 Randomly subsample 400 grid cells (roughly corresponding to the total number of sampling

stations in each biogeographic province, Appendix S2, Fig. 4).

4 Calculate the local Moran’s I at each subsampled cell on the environmental grid following the

procedure described in the Environmental heterogeneity section (Equation 1, Appendix S2, Fig. 3).

5 Pair each local I value to its associated species richness value on the environmental and the species

placement grid, respectively.

6 Fit a negative binomial regression between the paired values of local Moran’s I and species richness

(Fig. 2E).

7 Calculate the relative increase in species richness (∆S) predicted by the regression curve.

In each of the biogeographic provinces surveyed, approximately 5% of the stations yielded species144

richness values of zero. These zeros may partly arise from a ’veil effect’ (Preston, 1948), and so reflect145

insufficient sampling effort rather than true absences. Truncation of samples at the veil may induce a146

spurious negative relationship between richness and predictor variables (Fig. 2E). To represent this effect147

in the simulated data, we set three veil lines at percentiles 0%, 5% and 15% and excluded species richness148

values below these thresholds (Fig. 4).149
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Statistical analyses150

We used regression analyses to examine the relationships between species richness and the scores from151

the first PCA axis of environmental variables. To determine whether environmental heterogeneity had an152

influence on species diversity for both observed and simulated data, negative binomial regressions were153

fitted to the points above the veil effect threshold using the glm.nb function of the MASS package in R154

(version 3.0.1). We also checked for the presence of spatial autocorrelation in the model residuals.155

RESULTS156

Fish species richness was not correlated with any of the first three principal components from the analysis157

of environmental variables (Table 1; Fig. 3A, 3C), or with any of the individual environmental variables158

(results not shown). However, species richness was related to environmental heterogeneity (Fig. 3B and159

3D). For both biogeographic provinces, the negative binomial regressions showed that species richness160

was greater in more heterogeneous environments (Fig. 3B and 3D). In the Virginian province (Fig. 3B),161

the mean species richness increased from 4.1 in homogeneous environments to 6.4 in heterogeneous162

environments, representing a gain of 2.3 ± 0.11 (95% confidence limits) species which correspond to163

56% relative increase. A similar pattern was found for the Louisiana province (Fig. 3D) where mean164

species richness increased from 3.6 in homogeneous environments to 8.5 in heterogeneous environments,165

representing a gain of 4.9 ± 0.16 (95% confidence limits) species which correspond to 136% relative166

increase. We did not find spatial autocorrelation in the model residuals.167

Averaging the results of 10 000 model simulations, the mean species richness relative increase (∆S)168

were of 3.25%, 5.28% and 6.66% for the 0%, 5% and 15% veil effects, respectively (Fig. 4). The169

probabilities of observing ∆S greater or equal to 56% (Virginia province) due to a sampling effect for170

different veils (0%, 5%, 15%) were of 4.68%, 3.7% and 2.12%, respectively (Table 2). Considering a ∆S171

of 136% threshold (Louisiana province), these probabilities dropped to 0.05%, 0.01% and 0% (Table 2).172

DISCUSSION173

Many factors, including habitat heterogeneity, have been reported to affect the diversity of aquatic174

communities (Field et al., 2009). However, it is likely that the set of factors influencing species richness175

differs across spatial and temporal scales (Fausch et al., 2002). Moreover, the heterogeneity of the habitat176

has been identified as a key factor maintaining the animal biodiversity in aquatic environments (Levin177

et al., 2010). This work combines data from extensive surveys and simulations to demonstrate a positive178

influence of environmental heterogeneity (sensu stricto) on the species richness of fish communities179

at scales that fish perceive and respond to in their local context. Furthermore, the observed effect of180

heterogeneity on species richness was substantially greater (Fig. 3) than that generated by the simulations181

based on a random community assembly model, so it seems unlikely that the observed relationship arose182

solely as a byproduct of veil or sampling effects.183

Environmental variables184

Results from Field et al. (2009) and Guégan et al. (1998) suggest that climatic and primary productivity185

variables have a major influence on species richness at both regional and continental scales. Studies186

conducted at small grain indicate that environmental variables influence the species presence–absence187

and abundance structure in local fish communities in both space and time (Menge and Olson, 1990;188

Rodrı́guez and Lewis, 1997; Thiel et al., 1995). In contrast to these findings, we did not observe any direct189

effect of individual environmental variables (Table 1), including salinity, chlorophyll-a concentration, and190

water temperature, on the species richness of local fish communities in either the Virginian (Fig. 3A) or191

Louisianan (Fig. 3C) biogeographic provinces.192

Our simulation framework assumed no relationship between fish species richness and environmental193

conditions at the site of capture; an assumption supported by empirical data in the present study. Another194

major assumption of random placement models is that the probability of finding a fish species at a195

particular site is independent of other species. Such ecological independence between co-occurring196

species has been shown to accurately reproduce a number of community patterns (McGill, 2010, 2011).197

For example, a recent study of shrubland plant communities reported that only 7 to 19% of all species198

pairs showed strong and consistent spatial associations, leading the authors to conclude that ecological199

processes are leaving no discernible spatial signature (Perry et al., 2014). In contrary, our results suggest200
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that coastal fish communities may show this signature, as fish species richness was not associated locally201

with the magnitude of environmental variables, but rather with their spatial heterogeneity.202

Environmental heterogeneity203

Environmental heterogeneity influences many ecological processes such as fluxes of organisms, material204

and energy among riverscape elements (Pickett and Cadenasso, 1995). Our results demonstrate that205

fish species richness responded positively to increased habitat heterogeneity (Fig. 3B and 3D) in both206

the Virginian and Louisianan biogeographic provinces. Simulations using a random placement model207

of community assembly showed that species richness increased only slightly in more heterogeneous208

environments (Fig. 4). For instance, less than 5% of the 10 000 simulations generated ∆S greater than209

the conservative value of 56% observed in the Virgina biogeographic province (Fig. 3, Fig. 4, Table 2).210

Hence, it is unlikely that the positive relationship observed between environmental heterogeneity and211

species richness in both biogeographic provinces is the result of a sampling effect (sensu McGill, 2011).212

Aquatic ecologists often use the term ’heterogeneity’ rather loosely to refer to habitat complexity,213

habitat diversity or environmental variability over time (reviewed in Palmer et al., 2010). For example, at214

small scales, heterogeneity usually refers to the variability in structural physical properties of the aquatic215

habitat such as riparian vegetation, channel configuration, artificial riffles and substrate granulometry216

(Palmer et al., 2010). Conversely, studies conducted at regional or continental scales have used large-217

grained variables such as percentage of different types of biome or drainage area as a proxy for habitat218

heterogeneity (Field et al., 2009; Guégan et al., 1998; Oberdorff et al., 2011), possibly reflecting the219

difficulty of obtaining information at a finer resolution. Consequently, studies conducted at regional or220

continental scales are likely to capture broad-scale environmental heterogeneity that is coarse relative to221

the local heterogeneity to which individual fish respond, particularly for species having ranges smaller222

than the study grain size (O’Neill et al., 1986; Turner et al., 1989; Wiens, 1989).223

Conclusions224

Over the last century, coastal ecosystems have become increasingly impacted by anthropogenic pressures225

(Lotze et al., 2006), including many human–driven activities that reduce the temporal and spatial het-226

erogeneity of coastal habitats. For example, commercial fish trawlers are known to reduce the spatial227

heterogeneity of the sea floor structure (Helfman, 2007). Similarly, the temporal variability of water flows228

in many of the world’s largest rivers are regulated by dams (Nilsson et al., 2005). This reduced variability229

in runoffs has been shown to increase the homogeneity of water channels, as well as to degrade fish230

habitats (see Moyle and Mount, 2007 and references therein). The current study shows that, independently231

of the environmental conditions prevailing locally, more homogeneous habitats can support fewer fish232

species. Hence, restoring or actively protecting areas of high habitat heterogeneity appears of great233

importance for slowing actual trends of decreasing biodiversity in coastal ecosystems.234
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Figure 1: Spatial distribution of sampling sites for (A) Virginia and (B) Louisiana biogeographic provinces.

Surveys were conducted by the U.S. Environmental Protection Agency’s Environmental Monitoring and

Assessment Program (EMAP) between 1990 and 1994.
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B) Random placementA) Environment generation

D) Species richnessC) Local Moran (I)

E) Mapping
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Figure 2: Framework of the random placement model of community assembly used to determine the

relationship between fish species richness (S ) and habitat heterogeneity in absence of any particular habitat

selection mechanisms. Both environmental scores (A) and the regional distribution range of species (B)

were generated independently and parameterized using observed data. Habitat heterogeneity (C) and species

richness (D), the two resulting model components, were superimposed such that each Moran’s I value on

the grid was associated to a value of species richness (E). Smin and Smax represent the range spanned by a

fitted GLM negative binomial regression (red curve). To simulate possible artifacts due to unsampled fish

(false 0), we added a veil effect threshold (dashed horizontal red line) to the data generated by the model.

A total of 10 000 simulation have been produced.
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Figure 3: Relationships between species richness (S ) and PCA scores for the first axis (panels A and C)

and local Moran’s I (panels B and D) for the Virginia and Louisiana biogeographic provinces. The red

lines represent the fitted GLM negative binomial regressions between local Moran’s I and S (Virginian p <

0.001, Louisianian p < 0.001). The right-margin insets in panels B and D show the amplitude of species

richness (∆S) described by the regression curves.
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Figure 4: Results of 10000 simulations showing the influence of quantile cut (veil effect) on modeled species

richness. The green, red and blue polygons represent the distribution of ∆S under veil effects of percentiles

0%, 5% and 15%. The numbers in parentheses represent the mean of ∆S for each veil simulation. The

arrows indicate the ∆S observed in both biogeographic provinces.
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Table 1: Loadings and summary statistics for environmental variables. The first three principal components generated from
environmental variables were retained based on Kaiser’s criterion. These components explained 75% of the total environmental
variability in both biogeographic provinces.

Virginian Louisianan

Variable
Loadings

Mean Std. Dev.
Loadings

Mean Std. Dev.
Comp. 1 Comp. 2 Comp. 3 Comp. 1 Comp. 2 Comp. 3

Water density (σt) -0.49 0.02 0.12 9.08 8.68
Dissolved oxygen (mgL−1) -0.10 -0.69 0.03 6.90 1.25 -0.42 0.55 -0.10 6.89 1.33
Fluorescence 0.28 -0.34 0.42 11.82 7.70
PAR (mEm−2s−1) -0.05 -0.27 -0.85 545.76 464.29 -0.51 -0.41 -0.10 813.25 477.61
pH -0.28 -0.53 0.16 7.93 0.48 -0.40 0.47 0.41 8.00 0.46
Salinity (ppt) -0.49 -0.00 0.11 16.18 11.05 -0.06 -0.14 0.84 13.47 10.70
Temperature (◦C) 0.39 -0.21 -0.16 25.40 2.46 -0.50 0.02 -0.32 29.77 1.41
Transmissivity (%) -0.44 0.10 -0.14 53.37 23.19 -0.39 -0.54 0.11 63.97 16.12
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Table 2: The probabilities of observing ∆S greater or equal than 56% (Vir-
ginia) or Louisana (136%) due to sampling effect (i.e. random) under different
scenarios of veil effects (0%, 5%, 15%). See Methods and Fig. 4 for detailed
information.

Veil at 0% Veil at 5% Veil at 15%
Virginia (56%) 4.68 3.70 2.12

Louisiana (136%) 0.05 0.01 0.00
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