
 

A peer-reviewed version of this preprint was published in PeerJ
on 8 January 2015.

View the peer-reviewed version (peerj.com/articles/724), which is the
preferred citable publication unless you specifically need to cite this
preprint.

Singh GP. 2015. Association between intrinsic disorder and
serine/threonine phosphorylation in Mycobacterium tuberculosis. PeerJ
3:e724 https://doi.org/10.7717/peerj.724

https://doi.org/10.7717/peerj.724
https://doi.org/10.7717/peerj.724


1 

 

Association between intrinsic disorder and serine/threonine phosphorylation in 1 

Mycobacterium tuberculosis 2 

Gajinder Pal Singh 3 

School of Biotechnology,  4 

KIIT University, Campus-XI, Patia, Bhubaneswar 751024,   5 

Odisha, India 6 

Tel : +91 674 2725732 7 

Email: gajinder.pal.singh@gmail.com 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.564v1 | CC-BY 4.0 Open Access | rec: 29 Oct 2014, publ: 29 Oct 2014

P
re
P
ri
n
ts

mailto:gajinder.pal.singh@gmail.com


2 

 

Abstract 22 

 23 

Serine/threonine phosphorylation is an important mechanism to regulate protein function. In 24 

eukaryotes phosphorylation occurs predominantly in intrinsically disordered regions of proteins. 25 

While serine/threonine phosphorylation and protein disorder are much less prevalent in 26 

prokaryotes, M. tuberculosis has both high serine/threonine phosphorylation and disorder. Here I 27 

show that, similar to eukaryotes, serine/threonine phosphorylation sites in M. tuberculosis are 28 

highly enriched in intrinsically disordered regions, indicating similarity in substrate recognition 29 

mechanism of eukaryotic and M. tuberculosis kinases. Serine/threonine phosphorylation has 30 

been linked to the pathogenicity and survival of M. tuberculosis, thus better understanding of 31 

how its kinases recognize their substrates could have important implications in understanding 32 

and controlling the biology of this deadly pathogen. 33 

 34 

 35 

 36 

 37 

 38 

 39 

 40 

 41 

 42 

 43 

 44 

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.564v1 | CC-BY 4.0 Open Access | rec: 29 Oct 2014, publ: 29 Oct 2014

P
re
P
ri
n
ts



3 

 

Introduction 45 

 46 

Reversible phosphorylation of serine and threonine residues is a widespread post-translational 47 

modification in eukaryotes, with more than a third of proteins phosphorylated during their 48 

lifetime [1] . Phosphorylation can modify protein interactions, enzyme function, localization or 49 

degradation. While traditionally, regulation and signal transduction in bacteria was thought to be 50 

mediated by histidine and aspartate phosphorylation in two-component systems, recently the 51 

occurrence and importance of phosphorylation of serine/threonine (S/T) residues has gained 52 

much attention  [234]. Large scale mass-spectrometry based analysis has revealed S/T 53 

phosphorylation in a number of bacteria  [2]. M. tuberculosis shows the highest rates of 54 

phosphorylation among studied bacteria with 8 % of the proteins identified as phosphorylated 55 

[5]. 56 

 57 

One of the most interesting findings about serine/threonine phosphorylation in eukaryotes is its 58 

association with intrinsically disordered regions[6311]. Intrinsically disordered regions lack a 59 

well-defined three-dimensional structure and are characterized by low content of hydrophobic 60 

amino acids and high net charge [12]. These characteristic physiochemical properties allow 61 

accurate prediction of disordered regions across proteomes [13]. Disordered regions are often 62 

associated with binding to multiple partners in a transient manner [14319]. These regions may 63 

undergo disorder to order transition upon binding, with decrease in conformational entropy. This 64 

uncouples binding affinity and specificity, allowing highly specific interactions to be reversible 65 

[20,21]. It has been proposed that due to high surface accessibility and transient mode of  66 

interactions, disordered regions are ideally suited for regulation by reversible phosphorylation 67 
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[6,7,20,21].  Disordered regions are highly abundant in eukaryotes with about a third of the 68 

proteins predicted to have at least one long (> 30 residues) disordered region and about 19 % of 69 

the residues in disordered state [22]. In contrast, most bacteria have much less disorder in their 70 

proteome, with about 4% proteins with long disordered regions and about 6% disordered 71 

residues [22]. The association between disorder and serine/threonine phosphorylation has not 72 

been investigated in prokaryotes. 73 

 74 

Among bacteria, M. tuberculosis has one of the highest disorder content, with about 10 % 75 

disordered residues [22]. Thus, M. tuberculosis has both high level of S/T phosphorylation and 76 

disorder content. This prompted me to ask whether the association seen between S/T 77 

phosphorylation and disorder in eukaryotes might be present in M. tuberculosis, which indeed 78 

was found to be the case.  79 

 80 

Materials and Methods 81 

Data on M. tuberculosis phosphoproteins and phosphosites was obtained from Prisic et al. [5].  82 

This study identified 301 phosphoproteins and 500 S/T phosphorylation events. For 215 of these 83 

sites, the specific residue that was modified could be identified with high confidence. M. 84 

tuberculosis proteome was obtained from Tuberculist database [23]. For disorder prediction I 85 

utilized IUPred program [24]. IUPred method is based on the observation that disordered regions 86 

do not form sufficient favorable interactions to fold, and thus have high estimated energy content 87 

[25]. I also utilized ESpritz program [26], which is conceptually different from IUPred. This 88 

method is machine learning based predictor which was trained on experimentally characterized 89 

disordered regions (missing regions in X-ray structures in PDB). I also used MFDp2 disorder 90 
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prediction tool, which is an ensemble disorder prediction tool [27,28]. Secondary structure 91 

prediction was done at Network Protein Sequence Analysis (NPSA) server [29] using consensus 92 

approach [30]. To calculate statistical significance of enrichment of pS/T sites in disordered and 93 

loop regions, I also used randomization test. For example, 84 pS/T sites are observed as 94 

disordered by IUPred program out of total 215 pS/T. For testing enrichment, I randomly selected 95 

equal number of S/T sites from each phosphoprotein as observed (1000 randomizations), and 96 

counted number of randomizations in which 84 or more sites were observed in disordered 97 

regions. This was not observed in any of 1000 randomization; hence p-value is less than 1e-3.  98 

To analyze conservation of S/T sites, seven mycobacterium genus were chosen which are least 99 

similar to M. tuberculosis with respect to BLAST sequence similarity score (Mycobacterium sp. 100 

MCS, M. vanbaalenii, M. smegmatis, M. chubuense, Mycobacterium sp. JDM601, M. gilvum and 101 

M. abscessus). Orthologs of M. tuberculosis in mycobacteria were identified using reciprocal 102 

best blast approach [31], and aligned using Clustal Omega [32]. Alignment positions with gaps 103 

were excluded from the analyses. Out of 215 sites, 135 sites were present in proteins with 104 

orthologs in all 7 species. Of these 135, 103 sites were without gaps using Clustal Omega.  105 

Positions with replacement of serine with threonine and vice-versa were considered as 106 

conserved. Phosphosite data for other bacteria was obtained from respective publications [333107 

40].  108 

 109 

Results 110 

Mass-spectrometry based analysis had previously revealed 301 phosphoproteins in M. 111 

tuberculosis with 500 S/T phosphorylation sites [5].  First, I tested whether phosphoproteins in 112 

M. tuberculosis are more likely to be disordered (i.e. have long (>=30 residues) disordered 113 
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regions). I utilized IUPred program to predict disordered regions at the proteome wide level [25]. 114 

Phosphoproteins are about twice as likely to be disordered compared to non-phosphoproteins 115 

(29.6 % vs. 13.4% respectively, Fisher p 4e-12). Since longer proteins are also more likely to 116 

have long disordered regions, I tested whether phosphoproteins have higher percentage of 117 

disordered residues. Phosphoproteins also have higher percentage of disordered residues 118 

compared to non-phosphoproteins (16.7% vs. 12.0% respectively, two tailed t-test p 3e-5).  119 

 120 

Out of 500 phosphorylation events detected in M. tuberculosis, the phosphoresidue could be 121 

identified for 215 sites with high confidence [5]. For these sites, I tested whether phosphorylated 122 

S/T (pS/T) residues are more likely to be disordered compared to non-phosphorylated S/T 123 

(npS/T) residues from the same set of proteins. Overall 39.1% of pS/T sites are disordered 124 

compared to 22.4% of npS/T sites (Fisher test p 6e-8 and randomization test p < 1e-3, Figure 1). 125 

The results are very similar when another disorder prediction method, Espiritz[26]  was used 126 

(52.6% pS/T disordered compared to 27.8% npS/T sites, Fisher test p 8e-14, randomization test p 127 

<1e-3, Figure 1). A more recent disorder predictor MFDp2 [27,28] also gives similar results 128 

(43.7% pS/T disordered compared to 19.9 % npS/T sites, Fisher test p 6e-15, randomization test 129 

p <1e-3, Figure 1). Disordered regions are also characterized by high irregular secondary 130 

structure (coil regions). Thus, I tested whether pS/T residues are enriched in coil regions of 131 

proteins.  pS/T residues are more likely to occur in predicted coil regions compared to npS/T 132 

residues (70.2% pS/T sites in coil compared to 55.7% npS/T sites in coil, Fisher test p 2e-5 and 133 

randomization test p <1e-3, Figure 2). There is also depletion of pS/T residues in beta-sheet 134 

regions (4.2% pS/T sites in sheet compared to 11.3% npS/T sites in sheet, Fisher test p 4e-4 and 135 

randomization test p <1e-3, Figure 2), while no significant difference was found for helix regions 136 
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(22.8% pS/T sites in helix compared to 27.1 % npS/T sites in helix, Fisher test p 0.2 and 137 

randomization test p 0.12, Figure 2). 138 

 139 

Disordered regions evolve faster than ordered regions [41], but pS/T residues evolve slower than 140 

npS/T in eukaryotes [42,43], so I tested whether M. tuberculosis pS/T and npS/T differ in 141 

conservation among seven mycobacterial proteomes (see methods).  Conservation of pS/T is not 142 

significantly different from npS/T residues among these mycobacterial proteins (5.0 species vs.  143 

5.2 species respectively using, Wilcox test p 0.92, number pS/T sites 103). Separately analyzing 144 

disordered and ordered sites does not reveal significant difference in conservation between pS/T 145 

and npS/T sites (Wilcox p 0.85 and 0.87 respectively).  Thus pS/T are not more conserved than 146 

npS/T among mycobacteria. 147 

 148 

Prisic et al.[5] conducted in vitro phosphorylation of 13-mer synthetic peptides corresponding to 149 

in vivo phosphorylation sites with different purified kinases. They could find phosphorylation of 150 

about half of these peptides. I tested the whether different kinases have differential preference for 151 

predicted disordered phosphoacceptors.  I find that PknA has slightly higher preference for 152 

disordered phosphoacceptors than other kinases (Figure 3); however the uncorrected Chi-square 153 

test p-value is 0.04. Other kinases show uncorrected p-values > 0.05. 154 

 155 

Discussion 156 

 157 

Here I show the enrichment of localized serine/threonine phosphosites in disordered regions of 158 

proteins in M. tuberculosis. This preference is similar to that observed in eukaryotes. Association 159 
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between protein disorder and phosphorylation may offer similar advantages as those proposed in 160 

eukaryotes, including binding to multiple partners and transient mode of interaction [6,14321], 161 

which are a prerequisite for regulatory interactions. Thus M. tuberculosis and eukaryotic 162 

serine/threonine phosphorylation dependent regulation may be more similar than generally 163 

appreciated. While most bacteria have low amount of protein disorder, M. tuberculosis has high 164 

disorder content. I suggest that high disorder content might be the reason for association between 165 

disorder and phosphorylation in M. tuberculosis. This suggestion is supported by the observation 166 

that other bacteria with high disorder content (Streptomyces coelicolor and Halobacterium 167 

salinarum) also show association between disorder and S/T phosphorylation, but bacteria with 168 

low disorder content do not (Supplemental Table 1) except for Thermus thermophilus, where 169 

enrichment of phosphorylation in disordered regions with marginal statistical significance was 170 

observed (Supplemental Table 1). Previously,  a large fraction of phosphosites in Thermus 171 

thermophilus were observed in loop regions [44], albeit the statistical test for enrichment was not 172 

performed.  173 

 174 

I find that PknA has a slightly higher preference for disordered phosphoacceptor sites on 175 

synthetic 13-mer substrate peptides under in vitro conditions than other kinases (Figure 3). 176 

However these results should be taken with the caveat that the structure of a peptide in in vitro 177 

conditions might be very different from the in vivo structure in the context of the full protein. 178 

Thus differential preferences of different kinases towards disordered substrates under in vivo 179 

conditions remain an open question. 180 

 181 
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I did not find pS/T sites to be more conserved than npS/T sites among mycobacteria, this 182 

suggests that phosphorylation network in mycobacteria evolves fast and may contribute towards 183 

niche specific adaptation. Important questions for future include, whether disordered and ordered 184 

S/T phosphosites are functionally different, and whether different kinases differ in their 185 

preference for disorder in their substrates under physiological conditions. Incorporation of 186 

disorder information might also be useful to predict novel S/T phosphosites [45], as has been 187 

shown in eukaryotes [6,46]. S/T kinases and their substrates have been linked to the survival, 188 

pathogenesis and virulence of M. tuberculosis [3,47,48], thus these finding may facilitate 189 

understanding the basic biology this deadly pathogen. 190 
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 323 

 324 

 325 

Figure Legends 326 

 327 

Figure 1. Phosphorylated serine/threonine sites in M. tuberculosis are more likely to be   328 

disordered. Both phosphorylated and non-phosphorylated serine/threonine sites are from 329 

the same set of proteins. The disorder was predicted using IUPred, Espiritz and MFDp2 330 

methods. The Fisher test p values are 6e-8, 8e-14 and 6e-15 respectively. pS/T -331 

phosphorylated serine/threonine, npS/T- non-phosphorylated serine/threonine. 332 

 333 

Figure 2. Association between predicted secondary structure and phosphorylation of 334 

serine/threonine sites in M. tuberculosis. Phosphorylated serine/threonine sites occur 335 

preferentially in coil regions, while being significantly depleted in sheet regions and show 336 

no significant difference in helix regions. The Fisher test p values are 2e-5, 4e-4 and 0.2 337 

respectively. pS/T -phosphorylated serine/threonine, npS/T- non-phosphorylated 338 

serine/threonine. 339 

 340 

Figure 3. Percentage of disordered phosphoacceptors are shown for different kinases. The 341 

phosphorylation was carried out by purified kinases under in vitro conditions on synthetic 342 

13-mer peptides corresponding to in vivo phosphorylation sites (Prisic et al.). Uncorrected 343 

Chi-square p values were significant (<0.05) only for PknA. 344 

 345 

 346 
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