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Abstract 

 

Auscultation is used to evaluate heart health and can indicate when it's needed to refer a patient to a cardiologist. 

Advanced PCG signal processing algorithms are developed to assist the physician in the initial diagnosis but they are 

primarily designed and demonstrated with research quality equipment. Therefore there is a need to demonstrate the 

applicability of those techniques with consumer grade instrument. Furthermore, routine monitoring would benefit 

from a wireless PCG sensor that allows continuous monitoring of cardiac signals of patients in physical activity, e.g., 

treadmill or weight exercise. In this work, a low-cost portable and wireless healthcare monitoring system based on 

phonocardiograph signal is implemented to validate and evaluate the most advanced algorithms. Off-the-shelf 

electronics and a notebook PC are used with MATLAB codes to record and analyze PCG signals which are collected 

with a notebook computer in tethered and wireless mode. High valued diagnostics based on the S1 and S2 signals 

and MATLAB codes are demonstrated. While the prototype is based on MATLAB, the later is not an absolute 

requirement. 

Keywords: Auscultation, S1, S2, Heart sounds, Wireless Phonocardiogram, Signal processing, Diagnostic 

parameters 

1. Introduction 

The electrocardiogram (ECG) is a popular method for checking anomalies of cardiorespiratory function over many 

decades and it works by keeping track of electrical heart activity. However, heart defects may be caused by structural 

abnormalities and therefore are more likely to produce vibromechanical indicators aside from electrical ones. For that 

example, heart auscultation is more useful than ECG for characterizing murmurs and other abnormal heart sounds. Heart 

sounds convey important physiological and pathological information. The heart murmurs caused by turbulent blood flow 

and anomalous valve opening or closing, can be noticeably detected by trained ears when adequate sensors are used. 

While auscultation is useful, detection of cardiac signatures via auscultation demands extensive physician's experience, 

whether with an analog acoustic or electronic stethoscope. It is desirable to equip primary care physicians that do not 

have extensive auscultation skills with a diagnostic tool so they screen patients for referable conditions. It may also be 

beneficial for general users, patients and front line care givers to perform auscultation at home and to continuously 

monitor sporadic symptoms that may not be detected during periodical medical visits. Furthermore, the convenience of a 

sensor not tethered to the recording PC allows continuous monitoring in many relevant scenarios, for example, with the 

subject doing treadmill or weight lifting exercises. Therefore, an automated and wireless system to detect and characterize 

heart sounds is explored in this paper. Variance of PCG quality, whether due to electronic specifications of the sensor, the 

placement of the stethoscope on the chest and the additional noise introduced by the wireless operation are seen as major 

challenges on the sensor side. On the signal processing side, we would like to show that the advanced PCG algorithms 

can be implemented on a modest computing platform. The goal of the paper is to report the implementation of a simple 

wireless PCG sensor designed to operate with a notebook or tablet computer, and signal processing that minimizes the 

effects of the varying electronic performance and stethoscope's placement. The segment of users targeted by this sensor 

consists of primary care physicians and care givers. Therefore, the key requirements are robust processing algorithms 

immune to the mentioned variances, informative indicators and rudimentary classification of heart sounds to assist users 

in choosing the next action.  

An essential function of the PCG signal processing is the extraction of the first heart sound (S1) and second heart sound 

(S2). A survey of heart sound segmentation techniques based on the extraction of the waveform envelope was conducted 

by Choi in [Choi & Jiang,2008]. The paper evaluated the extraction techniques which are based on the Shannon energy 

envelope, Hilbert transform, and characteristic waveform extraction. A more recent evaluation of envelope extraction 

algorithms was reported by Liu in [Liu et al., 2011]. A novel technique developed and reported by Barabasa [Barabasa, 

Jafari, & Plumbley, 2012] has been proven to be insensitive to performance degradation and noise interference, a 

potential major issue for wireless sensors and recording during physical activity. The algorithm is also robust with respect 

to pathological signals such as heart murmurs. It is based on a musical analysis application, particularly known for its PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.559v1 | CC-BY 4.0 Open Access | rec: 26 Oct 2014, publ: 26 Oct 2014
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ability to track beats in the presence of noisy and varying background. We adopted the technique of dynamic 

programming for beat tracking published by Ellis [Ellis, D. P.W., 2007]. Robust segmentation of the heart sounds is only 

the first step in classifying heart sounds. It's proposed that diagnostic parameters [Choi & Jiang, 2005] which are derived 

from the heart sounds and cardiac waveform can be used for cardiac classification. Our goal is to demonstrate that useful 

parameters can be derived from the heart sounds and presented to the users for screening diagnostic purposes. 

Most medical algorithm development works are reported without implementation details. That makes it difficult to 

estimate the effort requires to transition research knowledge to commercial realization. In this paper, we will make an 

effort to trace the lineage of the open source codes, describe the techniques in sufficient details to aid the readers in 

reproducing results and duplicating the prototype. While the system we built is not optimum for mass production, there 

will be sufficient technical specifications for anyone interested in such an endeavor. 

2. System and prototype hardware 

The wireless microphone system is based on the commercially available Audio-Technica Model number ATR288W. Wireless 

communications between the transmitter unit and the receiver unit are via 2 VHF channels: 169.505 MHz and 170.305 MHz. To 

improve performance, we purchased a Lavalier condenser microphone (Audio-Technica AT829MW) to replace the microphone that 

came with the unit. The microphone is coupled to the stethoscope, as shown in Figure 1, and connected to the transmitter which can be 

worn by the subject (Figure 1). The receiver's output is connected to the MICROPHONE input of the laptop. The maximum sampling 

rate of 44.1 kHz and amplitude resolution of 16 bit can be selected via software control. The PCG software determines the sampling 

rate according to the purpose of the run. The frequency response window from 35 kHz to 20 kHz is sufficiently wide for PCG 

waveforms. Low-pass filtering implemented in the software is used to control the upper frequency limit to 500 Hz. The ATR288W is 

compatible with both Macintosh: Mac OSX and Windows XP, Vista, 7 and 8 (USB 1 and 2). This compatibility allows the choice of 

any computer platforms from tablet to notebook size.   

 

Fig.1 Off-the-shelf microphone and stethoscope (upper left). Side view of complete stethoscope head (upper right). The lower left panel shows the 
stethoscope strap and the lower right panel shows the laptop's screen and the microphone receiver unit. 

A chest strap was made from a body icing kit purchased from CVS pharmacy. The kit was modified after the gel was 

removed. Polyester foam, sold for pillow stuffing, is inserted into the pad sleeve to shield the microphone from acoustic 

noise and provide a cushioned contact with the chest. A hole in the pad allows positioning the microphone in the middle 

of the pad and keeping it in contact with the chest (see Figure 1). 

Any computer with a MICROPHONE input will work for this application. Our prototype is a notebook PC running 

Windows 7. While MATLAB computing language is not required in general, for rapid prototyping and easy leveraging of 

research algorithms available in the public domain, MATLAB R2013b, a scientific and engineering computing 

framework produced by Mathworks, is used to write the program. Figure 3 (upper panel) shows a typical PCG waveform. 
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Fig. 2 A comparison of wired and wireless amplitudes shows that the voltage is lower in the case of the wireless but the signal-to-noise ratios (quality) 

are comparable. The difference in voltage amplitude is attributed to the fact that the wired microphone is USB-based and it has a dedicated amplifier. 

 

 
Fig. 3 PCG waveforms. Upper panel: 3 seconds of raw PCG record showing the voltage recorded by the PC on the vertical and time in seconds as the 

horizontal axis. Middle panel: Corresponding spectrogram. The horizontal axis shows time. The vertical axis shows increasing frequency bands (1 

through 20) with the lowest frequency at the bottom. Color represents energy contained in each band (black =lowest and dark red=highest). The 

spectrogram indicates that PCG wave energy is concentrated in the low frequency bands as expected. Energy is also shown concentrated at the times of 

the heart sounds. Bottom panel: The onset strength envelope derived from the spectrogram. The ose reflects the total change in band energies and 

coincides with the onset of the “high energy” regions. 

3. Segmentation techniques 
The detection of the heart sounds S1 and S2 is accomplished with a beat finding technique developed for the music 

industry as discussed by Barabasa's paper [Barabasa, Jafari, & Plumbley, 2012] The specific beat tracking technique is 

based on dynamic programming [Davies & Plumbley, 2007]. In the first step of the detection algorithm, the audio signal 

is converted to the onset strength envelope (ose). The ose is calculated as the sum of the difference between the spectra of 

the current and previous waveform segments. The ose therefore represents the instantaneous overall change in spectral 

content (distribution of energy at different frequencies). To calculate the ose, a window of  N data points is advanced in 

equal steps until the window reaches the end of the waveform. The number of data points N  in each window     
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corresponds to 1/8 second for the audio sampling frequency. The step is only half the size of the window so there is 

overlap between consecutive. The window is analyzed to calculate the spectral content or the energy contained in 20 

frequency bins. The ose is calculated at each step k as   

                                                                        



20

1

2
)1()()(

m

mm kSkSk                                                               (2) 

The differences in power (Sm) in each of the 20 frequency bins between step k-1 and step k are squared and summed. The 

technique assumes that the ose correlates with the occurrence of a beat. As such, the likelihood of a beat is proportional to 

the magnitude of the change in spectral content and not in the amplitude of the waveform itself.  Figure 3 shows the PCG 

waveform (upper panel), the spectrogram (middle), where the energy in each spectral band (frequency) is represented by 

color shading and the onset strength envelope (bottom panel) for the same time window. Note that the strength of the 

onset envelope is highest when the spectral contents begin to change. Other techniques of envelope extraction determine 

the beat as the time the waveform's amplitude or energy exceeds a threshold, hence locating the beat at a time later than 

the one predicted by the ose. The MATLAB script beat.m and all supporting functions are distributed as open source 

codes [Ellis, 2007] are incorporated in ours. The beat.m algorithm also encourages conformance to a global tempo which 

was pre-computed for the entire record. The use of both the ose and global tempo conformity improve the technique's 

robustness and immunity with respect to ambient noise.  

The beat tracking algorithm can detect one of the two sequences of heart beats, S1 or S2. However, one cannot predict 

which one would be detected first. After the first sequence of beats is retrieved, its signature is dampened in the 

waveform and the algorithm is applied once more to retrieve the second sequence. The dampening of the signature of the 

first sequence in the waveform is accomplished by multiplying the waveform with a weighting function. The weighting 

function is unity everywhere but near zero where the beats were found in the first round. We find the following form 

quite effective: 

                                           DxxxW ii 1),2)(exp(8.01)( 22                                                         (3)          

 

where x is a location in the ose, D the length of the ose,  is the position of the ith detected beat (in first sequence) and   the 

width of the “ditches” in the weighting function. The weighting function is defined as one plus a series of inverse 

Gaussian functions. The latter are a series of ditches with small minima (<< 1) which, when multiplied to the original ose, 

would dampen the signature of the first sequence. The algorithm is applied once more to retrieve the second sequence. 

With both sequences retrieved, one still has to identify which one is S1. The codes identify the S1 sequence by inspecting 

the timing relationship between consecutive beats in the two sequences. Specifically, the separation between consecutive 

S1 beats cannot be greater than 1.3 times the average heart period and less than 0.22 seconds. 

4. Data collection routine 

Data collection first starts with strapping on the microphone over the heart, secondly wearing headphones to monitor and 

ensure the detection of heartbeats, and thirdly commanding the MATLAB program to record heart sounds and display its 

collection of PCG signal over a 50 second period. Longer records of 200 seconds are sometimes collected to study the 

heartbeat recovery phase after physical exercise. PCG were recorded only as a demonstration and not intended as a study 

of human subjects. The microphone is connected to the transmitter unit and the receiver is connected to the laptop to 

record microphonic sounds. A pair of headphones is also connected to another port in the laptop configured to monitor 

the audio from the microphone. Ideally, the microphone only detects the heart sounds of the chosen subject. Thus, data 

collection is best in a quiet room, the subject sits completely still, and the chest strap is adjusted so that the microphone is 

directly over the heart. However, the processing techniques are effective in alleviating the effects of extraneous noises. 

The individual can wear the wireless microphone, jog on a treadmill while data is collected. With the data taker listening 

through the headphones, he can help with the adjustment and placement of the sensor over the heart. Once the all the 

adjustments are made and collection is ready to be started, the data collector initiates the program to collect data. 

5. Analyses and results 

In a common data collect, 50 seconds of audio data is collected by the USB microphone by using the MATLAB 

audiorecorder built-in function, at a rate 32000 samples per second. The entire record consists of 1600000 numbers. The 

block diagram is shown in Figure 4 for reference. Since the sampling rate is much higher that the highest frequency found 

in the actual heart sound, high frequency signal higher than 1000 Hz is filtered out. The beat tracking script, beat.m, made 

available at the LabROSA internet site [Ellis, 2007] is designed to extract a single dominant beat. The codes are modified 

to extract both heart sounds by running the algorithm in two passes. After the first pass, the signal that corresponds to the 

first detected sequence of heart sounds is removed and the pruned signal is run again to detect the second sequence.  
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Fig. 4 Block diagram of PCG program 

Using timing relationship between the S1 and S2 sounds, we determine which sequence is attributed to S1. The S1 and S2 

beats are subsequently paired up and the beat intervals (T11) and the systolic intervals (T12) are computed. The 

additional diagnostic parameters, heart sound durations T1 and T2, are calculated directly from the Shannon energy 

envelope. The program displays the four diagnostic parameters and indicates the range of normal parameters. Users can 

use the display to classify the cardiac function for the targeted purpose. 

6. Diagnostic parameters 

The diagnostic parameters consist of the instants of the first heart sounds, S1 and S2 and parameters derived from them. It 

is conventional to define the characteristic times as in [Choi & Jiang 2005]. The interval T11 between consecutive S1 

occurrences is defined as shown in Figure 5. 

 

Fig. 5 Diagnostic parameters of the heart sounds. S1 and S2 are the instants of the first and second heart sound. T11 is the heart beat interval. T12 is the 

interval between the first and second heart sound. 

While the recorded time of S1 depends on the technique of segmentation, the inter-beat interval is less affected by any 

bias on S1 itself. As remarked, the first sound instant retrieved by out segmentation technique is biased towards the onset 

of the generation of the sound as opposed to the time when the sound exceeds an artificially chosen threshold. Therefore, 

our S1 times are ahead of the ones chosen by other segmentation techniques. The systolic period (T12) is defined as the 
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interval between S1 and S2. The diastolic period (T21=T11-T12) is the interval between S2 and the S1 of the following 

heartbeat. T12 and T21 are in principles not affected the mentioned bias.  The relationship between the instantaneous 

heart rate (1/T11) and the systolic and diastolic periods, T12 and T21, were reported to be useful indicators for patients at 

rest, in exercise and taking medication [Bombardini et al., 2008]. For example, cardiac cycle anomalies of patients with 

heart conditions are characterized by an elongation of the systole and a shortening of the diastole. A reversal of the 

systolic/diastolic period ratio, e.g., going from less than 1 to above 1, may indicate a compromised cardiac function, e.g., 

a deficiency in cardiac filling. The systolic-diastolic change is accentuated during exercise but in the recovery, patients 

with heart conditions or on medication may show recovery trends different from a normal person. Figure 6 shows a 

scatter plot of T12 times (x 10) versus T11 times (x 10) for the participants in 50-second PCG records.  Because the 

widths are only in the order of 0.01-0.03 seconds, an artificial magnification of 10 helps show the variability of T1 and T2 

in the same scale as T12 and T11. The data points for each record are shown in different colors. The ellipse indicates the 

region where the [T12 ,T11] data point would fall for a normal person. Figure 6 also shows the scatter of the widths of the 

S1 and S2 sounds. The widths T1 and T2, defined as in Figure 4, are shown in Figure 6 for the mentioned PCG records. 

To calculate the widths, we did not use the ose but used the Shannon energy envelope instead. The Shannon energy 

envelope is calculated as shown in Choi's paper [Choi & Jiang, 2008]. The square in the plot indicates the region where 

the [T1,T2] data points would be for a normal person. Because of the robustness of the segmentation technique with 

respect to varying heart rate, the system can monitor the heart sounds and perform reliably even when the heart rate is 

changing, such as in the recovery after physical exercise, e.g. slow walk on a treadmill. Figure 7 shows the recovery of 

the systolic/diastolic period ratio that follows the end of a treadmill jog. In this example, the ratio r, is shown for an   

)1211(12 TTTr                                                                                         (4) 

individual recovering from moderate exercise. The heart beat interval (T11) increases with elapsed time as shown in the 

left panel of Figure 7. The systolic period (T12) also decreases in the recovery. The systolic to diastolic period ratio, 

defined as in (4), is shown in the right panel of Figure 7. For this individual, the ratio is normal according to [Bombardini 

et al., 2008]. The reversal of the systolic/diastolic ratio, defined as a systole longer than the diastole, is capable of 

indicating abnormal condition induced by stress. In these measurements, we found the wireless USB microphone very 

convenient and the noise due to the walking not affecting the beat recording. Even when the interfering noise makes the 

algorithm miss a few beats, the general tempo was observed and the general trend of the characteristic times unaffected. 

The sensor can record the diagnostic parameters from the beginning of the exercise through the recovery phase. 

 

 

Fig. 6 Normal heart sound parameters. 

7. Discussion and conclusion 

The objective of demonstrating that a low-budget wireless PCG recorder and analyzer can achieve high performance with 

modern analysis techniques is met. An advanced segmentation technique, based on beat tracking algorithms developed 

for the music industry, relying on change in frequency contents instead of change in energy, has been instrumental in 

making the algorithm robust and immune to variation in background noise, heart sound volume and heart rate. Though 

the segmentation of the S1 and S2 sounds is achieved by detecting frequency content change, the width of the heart 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
T12 vs T11,    T2 vs T1

[10xT1, T11(s)]

[1
0

x
T

2
, 
T

1
2

(s
)]

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.559v1 | CC-BY 4.0 Open Access | rec: 26 Oct 2014, publ: 26 Oct 2014

P
re
P
rin

ts



sounds is obtained with the Shannon energy envelope to be comparable with previously reported values. In the case of 

monitoring patients in or recovering from physical exercise, both the heart rate and sound volume correspond with the 

physical intensity. This situation requires a sensor and an analysis technique which is immune to the variability. The 

implemented technique is found to retrieve the heart sounds reliably under these strenuous conditions. 

The sensor is a prototype system capable of producing sophisticated diagnostic parameters. The first and second heart 

sounds, as well as the additional diagnostic parameters T1, T2, T11, and T12 could be recorded reliably and displayed in 

plots that convey pathological information about the cardiac cycle. The diagnostic tool can be useful in many scenarios: 

patients needing long term and persistent monitoring in a home care setting with or without the assistance of care 

providers, primary care physicians, physical therapists, or students needing an affordable educational tool. We would like 

to extend the study to include anomalous and pathological heart sounds in the next phase of our research. 
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Fig. 7 Diagnostic parameters derived from the PCG recorded in the recovery from exercise. 
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