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Abstract 

Large-scale recovery of genomes from isolates, single cells, and metagenomic data has been made 

possible by advances in computational methods and substantial reductions in sequencing costs. While 25 

this increasing breadth of draft genomes is providing key information regarding the evolutionary and 

functional diversity of microbial life, it has become impractical to finish all available reference 

genomes. Making robust biological inferences from draft genomes requires accurate estimates of their 

completeness and contamination. Current methods for assessing genome quality are ad hoc and 

generally make use of a limited number of ‘marker’ genes conserved across all bacterial or archaeal 30 

genomes. Here we introduce CheckM, an automated method for assessing the quality of a genome 

using a broader set of marker genes specific to the position of a genome within a reference genome 

tree and information about the collocation of these genes. We demonstrate the effectiveness of 

CheckM using synthetic data and a wide range of isolate, single cell and metagenome derived 

genomes. CheckM is shown to provide accurate estimates of genome completeness and 35 

contamination, and to outperform existing approaches. Using CheckM, we identify a diverse range of 

errors currently impacting publicly available isolate genomes and demonstrate that genomes obtained 

from single cells and metagenomic data vary substantially in quality. In order to facilitate the use of 

draft genomes, we propose an objective measure of genome quality that can be used to select genomes 

suitable for specific gene- and genome-centric analyses of microbial communities.  40 

Introduction 

Recent advances in high-throughput sequencing combined with improving computational methods are 

enabling the rapid, cost effective recovery of genomes from cultivated and uncultivated 

microorganisms across a wide range of host-associated and environmental samples. Large-scale 

initiatives such as the Genomic Encyclopedia of Bacteria and Archaea (GEBA; Wu et al. 2009) aim to 45 

provide reference genomes from isolated species across the Tree of Life, while targeted efforts such 

as the Human Microbiome Project (HMP; Turnbaugh et al. 2007) and the GEBA-Root Nodulating 

Bacteria (GEBA-RNB; http://jgi.doe.gov/) initiatives are providing reference genomes necessary for 

understanding the role of microorganisms in specific habitats. These efforts are complemented by 
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initiatives such as the GEBA-Microbial Dark Matter (GEBA-MDM) project which used single-cell 50 

genomics to obtain genomes from uncultivated bacterial and archaeal lineages (Rinke et al. 2013). 

Several studies have also demonstrated the successful recovery of high-quality population genomes 

directly from metagenomic data (Tyson et al. 2004; Wrighton et al. 2012; Albertsen et al. 2013; 

Sharon et al. 2013). Together these initiatives have produced thousands of draft genomes, and stand to 

provide tens of thousands more as sequencing technology and computational methodologies continue 55 

to improve. While this rapid recovery of genomes stands to greatly improve our understanding of the 

microbial world, it is outpacing our ability to manually assess the quality of individual genomes.  

In order to make robust inferences from the increasing availability of draft genomes, it is critical to 

distinguish between genomes of varying quality (Mardis et al. 2002; Chain et al. 2009). In particular, 

genomes recovered from single cells or metagenomic data require careful scrutiny due to the 60 

additional complications inherent in obtaining genomes using these approaches (Dick et al. 2010; 

Albertsen et al. 2013). The quality of isolate genomes has traditionally been evaluated using assembly 

statistics such as N50 (Salzberg et al. 2012; Gurevich et al. 2013), while single cell and metagenomic 

studies have relied on the presence and absence of universal single-copy ‘marker’ genes for 

estimating genome completeness (Wrighton et al. 2012; Haroon et al. 2013; Rinke et al. 2013; Sharon 65 

et al. 2013). However, the accuracy of this completeness estimate has not been evaluated and the 

approach is likely to be limited by both the uneven distribution of universal marker genes across a 

genome and their low number, typically accounting for <10% of all genes (Sharon and Banfield 

2013). These limitations have been partially addressed by identifying genes that are ubiquitous and 

single copy within a specific phylum, which increases the number of marker genes used in the 70 

estimate (Swan et al. 2013). Single-copy marker genes present multiple times within a recovered 

genome have also been used to estimate potential contamination (Albertsen et al. 2013; Soo et al. 

2014; Sekiguchi et al. 2015). 

Here we describe CheckM, an automated method for estimating the completeness and contamination 

of a genome using marker genes that are specific to a genome’s inferred lineage within a reference 75 

genome tree. Using simulated genomes of varying degrees of quality, we demonstrate that lineage-

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.554v2 | CC-BY 4.0 Open Access | rec: 20 May 2015, publ: 20 May 2015

P
re
P
rin

ts



This article was published by Genome Research: doi:10.1101/gr.186072.114 

(http://genome.cshlp.org/content/early/2015/05/14/gr.186072.114.abstract) 

 

 

 

 

specific marker genes provide refined estimates of genome completeness and contamination 

compared to the universal or domain-level marker genes commonly used. Marker genes that are 

consistently collocated within a lineage do not provide independent evidence of a genome’s quality, 

so collocated marker genes were grouped into marker sets in order to further refine estimates of 80 

genome quality. We show that lineage-specific collocated marker sets provide robust estimates across 

all bacterial and archaeal lineages, with completeness and contamination estimates generally having a 

low absolute error even when genomes are relatively incomplete (70%) with medium contamination 

(10%). We also propose a fixed vocabulary for defining genome quality based on estimates of 

completeness and contamination that is suitable for automated screening of genomes from large-scale 85 

sequencing initiatives and for annotating genomes in reference databases.  We envisage that CheckM 

will help identify problematic genomes before they are deposited in public databases. For single-cell 

genomes and population genomes recovered from metagenomic data, the improved quality estimates 

provided by CheckM allow biological inferences to be made in the context of genome quality, and 

highlight genomes that would benefit from further refinement. 90 

Results 

Simulation Models for Evaluating the Accuracy of Quality Estimates 

Three independent models were used to generate simulated genomes suitable for evaluating the 

completeness and contamination estimates provided by CheckM. Under the ‘random fragment’ 

model, 3324 high-quality draft genomes (spanning 39 classes and 20 phyla) obtained from IMG were 95 

fragmented into non-overlapping windows of 5 to 50 kbp and randomly sampled in order to generate 

genomes with varying degrees of completeness and contamination (see Methods for more details). 

This model allows a large number of genomes to be simulated at varying degrees of quality and 

provides a baseline for assessing the accuracy of completeness and contamination estimates. In order 

to simulate genomes reflecting the characteristics of assembled contigs, the 2430 high-quality draft 100 

genomes (spanning 31 classes and 18 phyla) comprised of ≥20 contigs were used to simulate 

incomplete genomes contaminated with foreign DNA. Under this ‘random contig’ model, incomplete 
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genomes were generated by randomly removing contigs to achieve a desired level of completeness 

and contamination introduced by randomly adding contigs from a randomly selected draft genome.  

The final model simulates genomes that reflect the limitations of metagenomic binning methods 105 

which rely on the statistical properties of assembled contigs (e.g., tetranucleotide signatures, 

coverages) to determine their source genome. Since the variance of genome statistics increase with 

decreasing contig length, binning methods are more likely to incorrectly bin shorter contigs (Dick et 

al. 2010; Albertsen et al. 2013; Imelfort et al. 2014). The ‘inverse length’ model captures this 

limitation by generating incomplete and contaminated genomes in a manner similar to the random 110 

contig model, but with contigs removed or added with a probability inversely proportional to a 

contig’s length.  

For all three models, genomes were generated at 50 to 100% completeness and 0 to 20% 

contamination. While genomes recovered using single-cell genomics are often <50% complete, we 

have focused on relatively complete genomes as these have a broader range of applications and we 115 

believe the methodology of combining reads from multiple single cells belonging to the sample 

population, which often results in highly complete genomes, will become common practice. Similarly, 

we have focused on genomes with ≤20% contamination as there are limited applications for genomes 

with excessive levels of contamination. 

Assessment of Universal- and Domain-level Marker Gene Sets 120 

Within CheckM, a gene identified as single copy in ≥97% of genomes is considered to be a marker 

gene. The genome quality estimates provided by the marker sets used by CheckM were compared 

with three universal (Mende et al. 2013; Rinke et al. 2013; Darling et al. 2014), three bacterial (Wu 

and Scott 2012; Dupont et al. 2012; Rinke et al. 2013), and two archaeal (Wu and Scott 2012; Rinke 

et al. 2013) marker sets using genomes simulated under the random fragment model. The universal 125 

marker sets had similar performance with the exception of the SpecI set (Mende et al. 2013), which 

provided superior contamination estimates at the expensive of substantially less accurate 

completeness estimates (Supplemental Table S1). Among the CheckM, GEBA-MDM (Rinke et al. 
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2013) and PhyloSift (Darling et al. 2014) sets, the mean absolute error in quality estimates provided 

by CheckM never deviated by more than 1.4% and was typically within 1% of the best performing 130 

universal marker set. The four bacterial- and three archaeal-specific marker sets provided far more 

accurate estimates than the universal sets with the exception of the poorly performing Amphora 2 set 

(Wu and Scott, 2012; Supplemental Table S1). The mean absolute error in the completeness 

estimates provided by CheckM’s domain-specific marker sets were always within 1% of the best 

performing marker set, while the contamination estimates were generally within 1% and always 135 

within 1.8%.  

Organizing Marker Genes into Collocated Sets 

As marker genes are required to be present in nearly all genomes within a lineage (e.g., all bacteria or 

archaea), they often encode essential functions and are frequently organized into operons 

(Supplemental Fig. S1). Marker genes that are consistently collocated do not provide independent 140 

information regarding the completeness or contamination of a genome. To address this, we grouped 

marker genes that were consistently collocated within a lineage into marker sets and used this 

grouping structure to refine estimates of genome completeness and contamination. Collocated marker 

genes are common across all taxonomic groups with 36% of marker genes, on average, being grouped 

into a set with one or more other marker genes (Supplemental Table S2). 145 

We evaluated the benefit of collocated marker sets for assessing genome quality by applying 

CheckM’s domain-specific markers (bacteria: 104 markers organized into 58 sets; archaea: 150 

markers organized into 108 sets) to genomes simulated under the random fragment model. 

Completeness and contamination estimates calculated with collocated marker sets were superior to 

estimates determined with individual marker genes regardless of the completeness or contamination 150 

of the simulated genomes (Fig. 1; Supplemental Table S3). The mean absolute error in completeness 

(contamination) estimates across all simulated genomes increased from 4.3% to 5.7% (3.8% to 4.7%) 

when using marker sets compared to 5.5% to 9.0% (4.7% to 6.8%) when using individual marker 

genes as the window size was increased from 5 to 50 kbp (Supplemental Table S3). 
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To further evaluate the benefits of using collocated marker sets, domain-specific markers were used to 155 

estimate the quality of genomes simulated under the random contig and inverse length models. Under 

the random contig model, the mean absolute error in the completeness and contamination estimates 

across all simulated genomes was reduced from 8.5% to 5.4% and 5.9% to 4.1%, respectively, when 

genome quality was estimated with collocated marker sets as opposed to individual marker genes 

(Supplemental Fig. S2; Supplemental Table S4). Similar improvements were obtained under the 160 

inverse length model though estimates were less accurate for genomes generated under this model 

(completeness: 10.3% to 6.6%, contamination: 8.2% to 5.6%; Supplemental Fig. S3; Supplemental 

Table S5). 

Inference of Reference Genome Tree 

Estimates of completeness and contamination can be further refined by using lineage-specific, 165 

collocated marker sets determined from the placement of a query genome within a reference genome 

tree (Fig. 2). The reference tree used by CheckM was inferred from the concatenation of 43 conserved 

marker genes with largely congruent phylogenetic histories (Supplemental Tables S6 and S7). It 

incorporates 2052 finished and 3604 draft genomes obtained from the Integrated Microbial Genomes 

(IMG; Markowitz et al. 2014) database identified as being near complete with minimal contamination 170 

(see Methods). The inferred tree (Supplemental Fig. S4) shares features in common with recently 

published genome trees, including the class Clostridia being highly paraphyletic (Yutin and Galperin, 

2013) and the class Epsilonproteobacteria residing outside the Proteobacteria phylum (Rinke et al. 

2013). These discrepancies between phylogeny and taxonomy will cause marker genes calculated 

from named lineages within the genome tree to deviate from those determine strictly from assigned 175 

taxonomy. More importantly, a reference tree allows lineage-specific marker genes to be established 

for any internal nodes and not just those representing a named taxonomic group. 

Assessment of Lineage-specific Marker Sets 

Lineage-specific marker sets were determined for all nodes within the reference genome tree by 

identifying single-copy genes present in ≥97% of all descendant genomes. The quality of a genome 180 
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can be estimated using the marker set defined at any parental node between the genome’s position in 

the reference tree and the root. A simulation framework was used to establish the parental lineage 

with the most favourable set of markers for assessing the quality of genomes placed along any branch 

in the reference tree (Fig. 3). Briefly, finished genomes were used to simulate incomplete and 

contaminated genomes placed along a branch, and the parental lineage whose marker genes most 185 

accurately estimated the quality of these genomes was determined.  

We evaluated the effectiveness of the selected lineage-specific marker sets on genomes generated 

under all three simulation models. The quality of each simulated genome was estimated using 

collocated marker sets inferred from genomes within i) the archaeal or bacterial lineage, ii) the lineage 

selected by the simulation framework, and iii) the parental lineage producing the most accurate 190 

estimates. Case iii represents an idealized case where the parental lineage is selected independently 

for each simulated genome, which is in contrast to case ii where the single parental lineage selected 

by the simulation framework must be used for all simulated genomes placed along a given branch. 

Under all three models, the selected lineage-specific marker sets provided more accurate 

completeness and contamination estimates than domain-specific marker sets, and produced estimates 195 

nearly as accurate as the best performing lineage-specific marker sets (Fig. 4; Table 1; Supplemental 

Figs S5 and S6; Supplemental Tables S8-S10). The improvement in quality estimates can be 

substantial with the mean absolute error in completeness and contamination being reduced by 44.4% 

(5.4% to 3.0%) and 19.5% (4.1% to 3.3%), respectively, when using selected lineage-specific sets 

instead of the domain-specific sets to estimate the quality of genomes generated with the random 200 

contig model. In addition, the variances of the completeness and contamination estimates are 

substantially reduced. Summarizing results by the taxonomic group affiliated with each simulated 

genome indicated that the selected lineage-specific sets provided improved estimates across all 39 

classes (20 phyla) considered in this study, with the exception of the poorly sampled Synergistetes 

lineage where the estimates were largely unchanged (Supplemental Fig. S7; Supplemental Tables 205 

S11-S13).   
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Influence of Taxonomic Novelty 

‘Natural’ taxonomic novelty within the test set of 3324 draft genomes was examined in order to 

explore the influence of novelty on genome quality estimates. As expected, increasing taxonomic 

novelty results in the preferential use of more broadly defined lineage-specific marker sets 210 

(Supplemental Table S14). For example, 69.7% of the 33 test genomes which are sole 

representatives of different taxonomic families within the reference genome tree were evaluated with 

a lineage-specific marker set at a rank of class or higher, while only 17.9% of the 1923 genomes with 

multiple strains within the reference genome tree were evaluated with such broad marker sets. The use 

of more broadly defined marker sets had a direct impact on the genome quality estimates for 215 

simulated genomes generated under the random fragment model (Supplemental Table S15). While 

simulated genomes derived from the six draft genomes representing novel phyla or classes resulted in 

less accurate quality estimates then genomes from less novel lineages, the estimates were consistent 

with the performance expected for genomes evaluated with a domain-specific marker set (contrast 

Supplemental Tables S8 and S15). This suggests that the novelty of a genome is less critical than the 220 

specificity of the marker set used to evaluate genome quality, and that even genomes representing 

novel phyla can be assessed at the error rates expected for domain-specific marker sets. While 

genome quality estimates improved gradually as the taxonomic novelty of genomes decreases from 

order to species, the mean absolute error of the quality estimates across the test sets never deviated by 

more than 0.8%, suggesting that the accuracy of lineage-specific marker sets are relatively stable at 225 

this degree of novelty (Supplemental Table S15). 

Bias in Genome Quality Estimates 

Quality estimates based on individual marker genes or collocated marker sets exhibit a bias resulting 

in completeness being overestimated and contamination being underestimated (Figs. 1 and 4). This 

bias is the result of marker genes residing on foreign DNA which are otherwise absent in a genome 230 

being mistakenly interpreted as an indication of increased completeness as opposed to contamination. 

This bias approximately follows a binomial distribution suggesting a potential avenue for bias 
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correction (see Supplemental Methods). We have elected not to correct for this bias as confounding 

factors such as gene collocation make the correction approximate and the bias is small (<3%) when 

genomes are substantially complete (>70%) with medium contamination (≤10%; Supplemental Fig. 235 

S8). 

Assessment of Isolate Genomes 

To benchmark CheckM on real world data, we assessed the quality of 2281 isolate genomes from the 

GEBA, GEBA-KMG, GEBA-PCC, GEBA-RNB, and HMP datasets (Table 2). Using lineage-specific 

marker sets, 2190 (96%) of these genomes were estimated to be ≥95% complete with ≤5% 240 

contamination (Supplemental Table S16) making them excellent reference genomes for analyses 

such as assigning taxonomy to anonymous genomic fragments (Brady and Salzberg, 2009; Parks et al. 

2011) or characterizing metagenomic samples using marker genes (Darling et al. 2014). The 

remaining 91 (4%) genomes were found to be <95% complete or >5% contaminated making them 

less reliable reference genomes for some analyses. A small number of the genomes have an estimated 245 

completeness <90% (14 genomes) or an estimated contamination >10% (5 genomes). These genomes 

suffer from a diverse range of problems which we illustrate using three public genomes from the 

HMP available at the time of preparing this manuscript: 

 The Capnocytophaga sp. oral taxon 329 genome (HMP id: 9074; GenBank id: 

AFHP00000000; IMG id: 651324019) was estimated as 100% complete and 100% 250 

contaminated by CheckM.  Investigation of the 157 contigs comprising this genome revealed 

a bimodal GC-distribution suggesting the presence of two distinct genomes (Supplemental 

Fig. S9). We separated the contigs into two clusters by applying k-means clustering with k=2 

to the tetranucleotide signatures of each contig. Placing the resulting clusters into a genome 

tree identified one cluster as a novel Capnocytophaga genome (99.0% complete, 0.2% 255 

contaminated) and the other cluster as closely related to Paraprevotella clara YIT 11840 

(100% complete, 0.4% contaminated; Supplemental Fig. S10). 
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 The least complete HMP genome reported by CheckM was the gastrointestinal Clostridiales 

sp. SM4/1 genome (HMP id: 924; GenBank id: FP929060; IMG id: 2524023221) annotated 

as finished at IMG and GOLD, but estimated as only 56% complete. CheckM determined the 260 

coding density of this genome to be 66% suggesting substantial assembly or gene calling 

errors. Further investigation revealed that 667 kbp (21.5%) of this 3.1 Mbp genome is 

comprised of ambiguous base pairs (Ns).     

 The Lactobacillus gasseri MV-22 genome (HMP id: 515) available from IMG (id: 

643886189) consists of 93 contigs comprising 1.89 Mbp with only 193 ambiguous bases. 265 

CheckM estimated the completeness of this genome as 90.9% when using the lineage-specific 

marker sets and 81.2% complete when using the bacterial marker set (Supplemental Table 

S17). While these low completeness estimates could be the result of lineage-specific gene 

loss, the other three Lactobacillus gasseri genomes from HMP are all estimated to be ≥96% 

complete with only the Leucyl-tRNA synthetase protein family (PF13603) exhibiting lineage-270 

specific gene loss across the bacterial marker genes (Supplemental Table S18). This 

indicates that Lactobacillus gasseri MV-22 is incomplete with ≥9% of its genome estimated 

to be missing. The incomplete state of this genome is not transparent from its genome size, as 

available Lactobacillus gasseri genomes are between 1.78 and 2.01 Mbp.  

The issues exemplified above are not limited to the HMP or large-scale sequencing efforts. For 275 

example, the Paracoccus denitrificans SD1 genome (Siddavattam et al. 2011) at IMG (id: 

2511231195) was estimated to be only 59% complete by CheckM (Supplemental Table S19). 

Comparing this genome to Paracoccus denitrificans PD1222 suggests that this species has two 

chromosomes and a plasmid, and that the SD1 genome is currently missing both a chromosome and 

its plasmid. CheckM also identified several putative submission errors as exemplified by the type 280 

strain Oligotropha carboxidovorans OM5 (IMG id: 650716069) which is reported as 99.7% complete 

and 100.9% contaminated as a result of both draft and finished versions of its chromosome and 

plasmid being contained in its genome sequence file.  
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Assessment of Single-Cell Genomes 

The GEBA-MDM initiative applied single-cell genomics to novel uncultivated bacterial and archaeal 285 

cells (Rinke et al. 2013). While this is the largest single-cell sequencing initiative currently published, 

other large-scale initiatives are underway and have submitted initial genomes to IMG. To assess the 

quality of genomes recovered through single-cell genomics, we applied CheckM to i) 201 genomes 

recovered from individual cells in the GEBA-MDM initiative, ii) 21 genomes co-assembled from 

GEBA-MDM cells belonging to the same population, and iii) 410 additional genomes from 290 

unpublished studies annotated as uncultured type or single cell in IMG (Table 2). 

Technical challenges in obtaining single-cell genomes such as low DNA yield and the associated need 

for genome amplification make it challenging to recover complete genomes. CheckM quality 

estimates indicate that only 3 of the 201 (1.5%) GEBA-MDM genomes and 17 of the 410 (4.4%) 

unpublished single-cell genomes have an estimated completeness ≥90%. Combining cells from the 295 

same population can substantially improve completeness with the 21 combined assemblies in GEBA-

MDM having an average completeness of 64.9% ± 24.3% compared to 34.9% ± 20.6% for the 201 

single-cell genomes (Supplemental Table S20). Although current techniques for recovering genomes 

from single cells result in highly incomplete genomes, these are still valuable reference genomes for 

analyses such as assigning taxonomy to anonymous genomic fragments and resolving phylogenetic 300 

relationships (Rinke et al. 2013). However, these reference genomes should be free from substantial 

contamination as this will be a source of inaccuracy in such analyses. CheckM estimates identified 62 

of the 410 (15.1%) unpublished single-cell genomes have ≥5% contamination. All the GEBA-MDM 

genomes were found to have <5% contamination, except one Omnitrophica sp. with 5.3% 

contamination and two combined assemblies that were estimated to be 11.3% (Marinimicrobia sp.) 305 

and 21.5% (Cloacimonetes sp.) contaminated. Comparison of duplicate marker genes within these 

genomes suggests the contamination is the result of foreign DNA being amplified and not an 

assembly error.  

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.554v2 | CC-BY 4.0 Open Access | rec: 20 May 2015, publ: 20 May 2015

P
re
P
rin

ts



This article was published by Genome Research: doi:10.1101/gr.186072.114 

(http://genome.cshlp.org/content/early/2015/05/14/gr.186072.114.abstract) 

 

 

 

 

Assessment of Population Genomes 

Unlike genomes recovered from cultured isolates or single cells, genomes obtained from 310 

metagenomic data typically represent a consensus across a microbial population. CheckM was applied 

to 146 population genomes recovered from four metagenomic studies (Table 2). As expected, the 

estimated completeness and contamination of these genomes vary substantially (Fig. 5). While 

population genomes are often incomplete (74 of 146 genomes are between 50% and 95% complete), 

they can be recovered with relatively little contamination (43 of the 74 partial genomes have ≤5% 315 

contamination; Supplemental Table S21). In addition to this set of 74 partial genomes, an additional 

16 (11%) population genomes were estimated to be ≥95% complete with <5% contamination. These 

estimates account for several of the population genomes recoding the opal stop codon as CheckM 

automatically identifies such recodings (see Supplemental Methods). 

Poor quality estimates are expected for genomic elements such as plasmids or phage as the marker 320 

genes used by CheckM are specific to bacterial and archaeal chromosomes. The 10 plasmids and 11 

phage identified within the acetate-amended aquifer (Wrighton et al. 2012) and infant gut (Sharon et 

al. 2013) datasets were estimated to be 0% complete and 0% contaminated, with the exception of two 

plasmids (CARSEP1P, ACD71) and one phage (ACD33) which were estimated as 4.2%, 2.7%, and 

0.15% complete, respectively (Supplemental Table S21). The completeness of reduced genomes 325 

without representation in the reference genome tree will also be underestimated when genome 

reduction has resulted in the loss of marker genes. This is illustrated by the four candidate phylum 

Saccharibacteria (TM7) genomes obtained from sludge bioreactor metagenomes which were 

estimated to be 60-70% complete by CheckM, though shown to be ≥85% complete after accounting 

for lineage-specific gene loss (Albertsen et al. 2013). 330 

We compared the quality estimates obtained for the 90 putative population genomes recovered from 

the acetate-amended aquifer (Wrighton et al. 2012) community using domain-level and lineage-

specific marker sets (Supplemental Table S22). While the completeness and contamination of these 

population genomes is unknown, these results demonstrate the degree to which quality estimates can 
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change under these two conditions. We have focused on the acetate-amended aquifer dataset as it 335 

contains population genomes spanning a wide range of qualities, while other studies have focused 

exclusively on high-quality population genomes. On average, completeness changed by 13.0% and 

contamination by 5.1% when using lineage-specific instead of domain-specific marker sets. Estimates 

varied substantially for some genomes with completeness estimates changing by ≥15% for 36 

genomes and contamination estimates changing by ≥10% for 12 genomes. While completeness 340 

estimates with domain-level and lineage-specific marker sets are highly correlated (R
2
=0.84), domain-

level estimates tend to overestimate the completeness of genomes relative to lineage-specific 

estimates (Supplemental Fig. S11). The correlation between contamination estimates is weaker 

(R
2
=0.69) and any global trend is less clear as the majority of population genomes exhibit <5% 

contamination (Supplemental Fig. S12). 345 

Estimating Strain Heterogeneity 

CheckM can distinguish between contamination resulting from the presence of genomic fragments 

from multiple strains and contamination resulting from the inclusion of genomic fragments from more 

divergent taxa. This is particularly useful for genomes recovered from metagenomic data as 

separating strains into individual genomes remains a challenging problem (Imelfort et al. 2014). These 350 

two types of contamination are differentiated automatically by CheckM by using the amino acid 

identity (AAI) between multi-copy genes as a measure of phylogenetic relatedness (Konstantinidis 

and Tiedje, 2005). Reanalysis of the methanotrophic ANME-1 genome recovered from metagenomic 

data by Meyerdierks et al. (2010) with CheckM illustrates that this population genome is a chimera of 

closely related strains. Of the 229 lineage-specific marker genes used to evaluate the quality of this 355 

genome, 42 were identified as being multi-copy within the ANME-1 genome (38 present twice, 2 

present three times; 82.3% completeness). While this represents approximately 21% contamination, 

82.0% of the comparisons between multi-copy genes have an AAI ≥90% (76.0% at ≥95% AAI; 

Supplemental Fig. S13) revealing that the contamination is largely the result of incorporating 

genomic fragments from closely related taxa and that multiple ANME-1 strains are likely present 360 

within this environment.  
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Proposed Genome Quality Classification Scheme 

Genomes recovered from isolates, single cells, or metagenomic data vary substantially in their quality 

(Fig. 5). To make full use of these genomes, their quality must be reported in reference databases 

along with other essential genome information (Field et al. 2008). A qualitative vocabulary for 365 

discussing genomes of varying quality was proposed by Chain et al. (2009), and here we supplement 

this effort by proposing a vocabulary based on quantitative threshold which augment existing schemes 

for describing draft genome quality (Table 3). The status of finished is reserved for genomes 

assembled into a single contiguous sequence containing no gaps or ambiguities, where extensive 

efforts have been made to identify errors (Mardis et al. 2002; Chain et al. 2009). Genomes assembled 370 

into multiple sequences as a result of repetitive regions, but otherwise of a finished quality may be 

classified as noncontiguous finished (Chain et al. 2009). We propose that all other genomes be 

designated as draft, and the quality of genomes qualified based on both establish vocabularies for 

describing genome quality and estimates of genome completeness and contamination.  

The proposed quantitative vocabulary permits automated assignments of completeness and 375 

contamination estimates, which are critical for quality control in large-scale genome sequencing 

initiatives, and for updating genome databases as new genomes are added or techniques for estimating 

genome quality improve. Of the 3059 genomes (2281 isolates, 632 single cell, 146 metagenomic) 

considered in this study, 2292 (74.9%) were classified as being near complete with either no 

detectable (833 genomes; 27.2%) or low (1461 genomes; 47.8%) contamination. These genomes are 380 

strong candidates for being classified as finished or noncontiguous finished, but this designation 

should only be applied after extensive additional verification. The wide range of quality within the 

remaining 767 (25.1%) genomes illustrates the need for a verbose vocabulary when discussing draft 

genomes, e.g., 84 (2.7%) were classified as substantially-complete drafts with 22 (0.7%) exhibiting no 

contamination, 55 (1.8%) having low contamination, and 5 (0.2%) having medium contamination. 385 

The presence of metagenomic and single-cell genomes was also transparent as 125 (4.1%) of the 

genomes were classified as moderately-complete drafts and 521 (17.0%) were classified as partial 

draft genomes. 

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.554v2 | CC-BY 4.0 Open Access | rec: 20 May 2015, publ: 20 May 2015

P
re
P
rin

ts



This article was published by Genome Research: doi:10.1101/gr.186072.114 

(http://genome.cshlp.org/content/early/2015/05/14/gr.186072.114.abstract) 

 

 

 

 

Discussion 

Here we introduce CheckM, a new tool developed to estimate the completeness and contamination of 390 

genomes derived from isolates, single cells and metagenomes using lineage-specific marker genes. To 

evaluate the robustness of genome quality estimates, we simulated genomes under three distinct 

models: i) a random fragment model where genomic fragments were removed or added uniformly 

across the genome, ii) a random contig model which accounts for the characteristics of assembled 

contigs, and iii) an inverse length model reflecting the limitations of metagenomic binning methods. 395 

Our results on simulated genomes demonstrate that when lineage-specific marker genes are organized 

into collocated sets, they are sufficiently spaced throughout a genome to provide accurate estimates of 

genome quality. For substantially-complete genomes (≥70% to 90%) with medium contamination 

(5% to ≤10%), our results suggest that completeness and contamination estimates generally have an 

absolute error of ≤ 6% and that the error in the quality estimates tends to decrease as the quality of a 400 

genome improves (Fig. 4; Supplemental Figs. S5 and S6; Supplemental Tables S8-S10). 

The robust estimates of genome quality provided by CheckM allow for automated quality screening 

of bacterial and archaeal genomes. Using CheckM, we were able to identify isolate genomes 

exhibiting a wide range of problems. Incorporation of these low-quality genomes into reference 

datasets will diminish the accuracy of inferences made in many studies. For example, a study of 405 

horizontal gene transfer might incorrectly predict a large number of transfers between 

Capnocytophaga and Paraprevotella genomes due to the Capnocytophaga sp. oral taxon 329 genome 

erroneously containing genes from both of these genera. Similarly, a comparative genomics study 

including the Clostridiales sp. SM4/1 genome identified as 56% complete may incorrectly report the 

number of core genes among Clostridiales genomes or the ubiquity of key metabolic pathways. 410 

Comparison of the incomplete Lactobacillus gasseri MV-22 genome considered in this study to its 

GenBank (id: GL531761) counterpart revealed that this issue was localized to the IMG repository, 

illustrating the benefit of independently verifying the quality of genomes at different repositories. 
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Many of the erroneous genomes reported in this study were brought to the attention of IMG and have 

subsequently been removed from their database. The Capnocytophaga sp. oral taxon 329 has also 415 

been retracted from NCBI. While removal of contaminated or incomplete genomes is warranted, the 

statistics provided by CheckM can help identify the problems associated with these genomes. In the 

case of Capnocytophaga sp. oral taxon 329, the CheckM statistics directly suggested the presence of 

two distinct populations which allowed for the recovery of two near-complete genomes with low 

contamination.  420 

Incomplete draft genomes are valuable references for many genomic analyses and their use is likely to 

increase as partial genomes of novel species are recovered from single cells and metagenomic data. 

While methodologies for handling genomes of varying qualities are currently in their infancy, it is 

clear many analyses will benefit from accurate estimates of completeness and contamination. The 

benefit of using partial genomes with low contamination for assigning taxonomy to anonymous 425 

genomic fragments and resolving phylogenetic relationships has already been demonstrated (Rinke et 

al. 2013). Other analyses such as comparing the metabolic capability of different groups of genomes 

will likely benefit from restricting the analyses to only near-complete genomes in order to ensure 

confident predictions can be made in regards to differences in their metabolic capabilities. Because 

the quality of a genome is essential for determining its suitability for different analyses, we 430 

recommend public genome repositories and new genome announcements include completeness and 

contamination estimates (Table 3). 

The limitations of the proposed approach must be considered when interpreting CheckM quality 

estimates. Eukaryotic or phage genomes will be reported as highly incomplete as we have focused on 

marker sets suitable for evaluating bacterial and archaeal genomes. The quality of plasmids must also 435 

be assessed independently of CheckM. When recovering genomes from metagenomic data, the 

additional genome statistics reported by CheckM (e.g., coding density, coverage) can be used along 

with the quality estimates to help distinguish putative genomes representing fragments of an archaeal 

or bacterial chromosome from phage, plasmids, or eukaryotic genomes. However, incorporation of 

CheckM into a complete quality control and annotation pipeline where plasmids (Jørgensen et al. 440 
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2014), genomic islands (Langille et al. 2010), phage (Akhter et al 2012), and other genomic elements 

are automatically identified and screened will likely improve the quality and characterization of 

recovered genomes. Use of taxonomic assignment methods (Patil et al. 2011; Dröge et al. 2014) 

would also be of benefit within a complete quality control pipeline in order to identify genomes 

exhibiting clear chimerism and sources of contamination within single-cell and isolate genomes. The 445 

estimates for highly incomplete or highly contaminated genomes must be interpreted with regards to 

the observed systematic bias, which arises from marker genes from foreign genome being 

misinterpreted as an indicating of additional completeness (Supplemental Fig. S8).  The novelty of a 

genome will also influence the accuracy of CheckM estimates. Estimates for bacterial and archaeal 

genomes from deep basal lineages with few reference genomes are necessarily determined using 450 

domain-level marker sets instead of lineage-specific markers which generally provide superior 

estimates. This limitation is most evident for novel lineages undergoing genome reduction as 

demonstrated by our reanalysis of the candidate phylum Saccaribacteria (TM7) genomes. While 

CheckM can provide refined estimates for reduced genomes in well-characterized lineages (see 

Supplemental Results), a manual assessment of gene loss or duplication is required to improve quality 455 

estimates for  reduced genomes recovered from novel lineage (Albertsen et al. 2013). CheckM 

provides outputs to aid in performing this refinement.    

We anticipate several improvements that will further refine the estimates produced by CheckM. The 

most substantial impact is likely to be the inclusion of additional reference genomes from lineages 

that are currently poorly represented. This will mitigate the number of genomes that are evaluated 460 

using broad, less accurate marker sets and improve refinements for lineage-specific gene loss and 

duplication. Incorporation of eukaryotic genomes into the reference tree would also be a substantive 

benefit when assessing population genomes recovered from environmental samples where fungi and 

other microbial Eukaryotes may be present. Further exploration of the parameter space of CheckM 

may also result in improved estimates. For instance, the 97% ubiquity criteria used to delineate 465 

marker genes is likely not optimal and the use of a probabilistic model for assessing the 

presence/absence of a gene across all genomes in a lineage may improve the inferred marker sets 
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(Segata et al., 2013). Ultimately, we expect to adopt a strategy that will allow optimal values for key 

parameters to be determined independently for each lineage.  

CheckM is the first automated tool for estimating the completeness and contamination of isolate, 470 

single cell, and population genomes. The need for accurate estimates of genome quality will only 

grow in importance as we continue to fill out the microbial tree of life and are better able to utilize 

draft genomes to inform gene- and genome-centric analyses of microbial communities. 

Methods 

Inference of Reference Genome Tree 475 

A genome tree incorporating 5656 trusted reference genomes (see Supplemental Methods) was 

inferred from a set of 43 genes with largely congruent phylogenetic histories. An initial set of 66 

universal marker genes was established by taking the intersection between bacterial and archaeal 

genes determined to be single copy in >90% of genomes. From this initial gene set, 18 multi-copy 

genes with divergent phylogenetic histories in >1% of the reference genomes were removed. A multi-480 

copy gene within a genome was only deemed to have a congruent phylogenetic history if all copies of 

the gene were situated within a single conspecific clade (i.e., all copies were contained in a clade from 

a single named species) within its gene tree. Genes were aligned with HMMER v3.1b1 

(http://hmmer.janelia.org) and gene trees inferred with FastTree v2.1.3 (Price et al. 2009) under the 

WAG (Whelan and Goldman, 2001) and GAMMA (Yang, 1994) models. Trees were then modified 485 

with DendroPy v3.12.0 (Sukumaran et al. 2010) in order to root the trees between archaea and 

bacteria unless these groups were not monophyletic in which case midpoint rooting was used. A 

further five genes found to be incongruent with the IMG taxonomy were also removed as these genes 

may be subject to lateral transfer. Testing of taxonomic congruency was performed as described in 

Soo et al. (2014). The final set of 43 phylogenetically informative marker genes (Supplemental 490 

Table S6) consists primarily of ribosomal proteins and RNA polymerase domains, and is similar to 

the universal marker set used by PhyloSift (Darling et al. 2014; Supplemental Table S7). A reference 

genome tree was inferred from the concatenated alignment of 6988 columns with FastTree v2.1.3 
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under the WAG+GAMMA model and rooted between bacteria and archaea. Internal nodes were 

assigned taxonomic labels using tax2tree (McDonald et al. 2012). 495 

Identification of Marker Genes in Putative Genomes 

Genes are predicted using Prodigal v2.60 (Hyatt et al. 2012) and Pfam (Finn et al. 2014) and 

TIGRFAMs (Haft et al. 2003) protein families identified using HMMER v3.1b1 

(http://hmmer.janelia.org) with model specific cutoff values for both the Pfam (-cut_gc) and 

TIGRFAMs (-cut_nc) HMMs. Pfam annotations are assigned using the same methodology as the 500 

Sanger Institute and IMG, which accounts for homologous relationships between Pfam clans (see 

pfam_scan.pl on the Sanger Institute FTP site). Gene calling errors occasionally occur due to 

ambiguous bases in a contig that can result in adjacent, erroneous genes being called which are 

assigned to the same marker gene. These errors are resolved by checking if adjacent marker genes 

have a best match to adjacent, non-overlapping portions of a marker gene’s HMM.  505 

Determination of Lineage-specific Marker Genes 

Single-copy Pfam and TIGRFAMs genes were identified within reference genomes using the 

annotations provided by IMG. A gene was defined as a linage-specific marker gene if it occurs only 

once in >97% of the genomes within a lineage. Lineage-specific marker genes were inferred for all 

internal nodes within the reference genome tree. Pfam and TIGRFAMs families were considered 510 

redundant if they matched the same genes in >90% of the finished IMG genomes in which case only 

the Pfam gene was used as a marker. 

Organization of Marker Genes into Collocated Marker Sets 

A pair of marker genes were considered to be collocated within a lineage if they occurred within 5 

kbp of each other in >95% of genomes within a lineage. Sets of collocated markers were formed from 515 

collocated gene pairs by clustering together all pairs with a shared gene (e.g., if genes A and B, and 

genes B and C are collocated, then they are clustered into the collocated set ABC).  
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Estimation of Completeness, Contamination, and Strain Heterogeneity 

Genome completeness is estimated as the number of marker sets present in a genome taking into 

account that only a portion of a marker set may be identified: 520 

 
(1) 

where s is a set of collocated marker genes, M is the set of all collocated marker sets s, and GM is the 

set of marker genes identified in a genome. Genome contamination is estimated from the number of 

multi-copy marker genes identified in each marker set: 

 

(2) 

where Cg is N-1 for a gene g identified N≥1 times, and 0 for a missing gene. CheckM also supports 

estimating completeness and contamination without arranging marker genes into collocated sets.  525 

Equations 1 and 2 can be applied to this case by assigning each marker gene to its own set (i.e., 

∀𝑠: |𝑠| = 1). 

Contamination resulting from multiple strains or closely-related species being binned into a single 

putative genome is identified by examining the AAI between multi-copy marker genes. Specifically, a 

strain heterogeneity index is calculated as the fraction of multi-copy gene pairs above a specified AAI 530 

threshold: 
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where g={g1,g2,…gN} is the set of hits to a marker gene, G is the set of all marker genes, and aai is 1 if 

the AAI between gi and gj is greater than t (default = 0.9) and 0 otherwise. 
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Placement of Genomes into the Reference Genome Tree 

Identification of the 43 phylogenetically informative marker genes within a putative genome are 535 

identified using HMMs as described in the preceding section “Identification of Marker Genes in 

Putative Genomes”. Identified genes are aligned with HMMER and the concatenated alignment used 

to place a genome into the reference genome tree using pplacer v2.6.32 (Matsen et al. 2010). Putative 

genomes consisting of an insufficient number of unique phylogenetic marker genes (default = 10) to 

be robustly placed within the reference genome tree are evaluated using the universal marker set. 540 

Selection of Lineage-specific Marker Genes 

Marker genes can be inferred for all internal nodes in the reference tree along the path from the 

putative genome to the root (Fig. 3A). The most suitable set of marker genes for assessing a genome 

depends on a number of factors including the novelty of the putative genome relative to the 

surrounding reference genomes and the breadth of diversity covered by these genomes. A simulation 545 

framework was used to establish the parent node producing the most suitable marker set for 

estimating the completeness and contamination of a genome placed on a given branch within the 

reference genome tree.  

The simulation framework was restricted to the 2052 finished reference genomes in IMG, as draft 

genomes were used for evaluating the performance of CheckM. For each branch, the descendant 550 

lineage with the fewest genomes was removed from the reference tree (Fig. 3B). These genomes were 

used as proxies to simulate genomes placed on this branch. Each genome was fragmented into 10 kbp 

windows and used to simulate 100 independent genomes with completeness randomly selected 

between 50-100% and contamination randomly selected between 0-20% (Fig. 3C). Marker genes 

were then inferred for each parent node using the 97% single-copy criterion and used to assess the 555 

completeness and contamination of the simulated genomes. Marker genes were not formed into 

marker sets in order to reduce computational complexity and to allow a fair assessment of how this 

feature influences genome assessment. The parental node whose inferred marker genes minimize the 
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error in the estimated completeness and contamination over all simulated genomes was assigned to 

the branch (Fig. 3D): 560 

arg⁡min
𝑚∈𝑀

= ∑∑|𝑐𝑜𝑚𝑝𝑒𝑠𝑡(𝑔𝑖, 𝑚) − 𝑐𝑜𝑚𝑝𝑡(𝑔𝑖)| + |𝑐𝑜𝑛𝑡𝑒𝑠𝑡(𝑔𝑖,𝑚) − 𝑐𝑜𝑛𝑡𝑡(𝑔𝑖)|

𝑁

𝑖=1𝑔∈𝐺

 (4) 

where m is a set of marker genes, M is the set of marker gene for each parent node, compest(gi,m) is the 

estimated completeness of simulated genome gi using m, compt(gi) is the true completeness of gi, 

contest(gi,m) and contt(gi) are analogous functions for contamination, and N is the number of simulated 

genomes derived from g. Marker genes associated with each internal node were calculated de novo 

during the simulation to reflect removing the test genomes and then re-calculated afterwards using all 565 

available reference genomes in order to produced refined sets of marker genes. This simulation 

framework is computationally expensive, but only needs to be performed once and the results 

distributed with the CheckM software. 

Simulation of Incomplete and Contaminated Isolate and Population Genomes 

Simulated genomes were generated from an initial set of 3604 draft genomes within IMG identified as 570 

being of high quality (see Supplemental Methods). To help alleviate bias towards well-sampled 

lineages, 280 of the 3604 high-quality draft genomes with identical phylogenetic marker genes were 

not used during the generation of simulated genomes. Simulated genomes were generated at varying 

degrees of completeness and contamination using three distinct random sampling models. Under the 

random fragment model, each contig comprising a genome was fragmented into non-overlapping 575 

windows of a fixed size between 5 and 50 kbp. This size range was selected as it approximates the 

contig lengths of genomes recovered from metagenomic data or single-cell genomics: the mean N50 

of the GEBA-MDM single-cell genomes, Wrighton acetate-amended aquifer population genomes, and 

Sharon infant gut population genomes is ~28 kbp, ~17 kbp, and ~ 12 kbp, respectively. In order to 

generate genomes at a desired level of completeness and contamination fragments were sampled 580 

without or with replacement, respectively. Windows were sampled until a simulated genome had 

completeness and contamination equal to or just greater than the target values. Generation of 
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simulated genomes was limited to draft genomes as finished genomes were used to determine 

appropriate lineage-specific marker sets suitable for evaluating genomes (Fig. 3). 

The 2430 draft reference genomes comprised of ≥20 contigs were used to simulate partial and 585 

contaminated genomes reflecting the characteristics of assembled contigs. Under this random contig 

model, genomes were generated by randomly removing contigs until the simulated genome reached or 

fell below a target completeness level. Contamination was introduced by randomly adding contigs 

with replacement from a single randomly selected genome until the desired level of contamination 

was reached or exceeded. These 2430 draft genomes were also used to generate genomes reflecting 590 

the limitations of metagenomic binning methods which rely on the statistical properties of contigs 

(e.g., tetranucleotide signature, coverage) to establish putative population genomes. To simulate this, 

partial genomes were generated by randomly removing contigs with a probability inversely 

proportional to their length until the simulated genome reached or fell below a target completeness 

level. Contamination was introduced by randomly selecting another draft reference genome and 595 

adding contigs from this genome with a probability inversely proportional to length until the desired 

level of contamination was reached or exceeded. 

Evaluation using Simulated Genomes 

Evaluation of CheckM was performed using simulated genomes generated at all combinations of 50, 

70, 80, 90, 95 and 100% completeness with 0, 5, 10, 15, or 20% contamination. Marker genes and 600 

marker sets were inferred with the test genome removed from the set of reference genomes (i.e., 

leave-one-out testing) and their performance evaluated by considering the error in completeness and 

contamination estimates. To evaluate the performance of the lineage-specific markers selected by the 

simulation framework (Fig. 3), results were compared to the lineage-specific markers resulting in the 

best performance as determined by applying Equation 4 independently to each set of simulated 605 

genomes generated from a test genome at a specific level of completeness and contamination. This 

represents a highly idealized case, as it assumes a method capable of selecting different optimal 
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lineage-specific markers for the same genome under varying levels of completeness and 

contamination.  

Evaluation of Universal- and Domain-level Marker Gene Sets 610 

Several universal- and domain-level marker gene sets were obtained either directly from the authors 

or from available software packages (Supplemental Table S1). PhyloSift (Darling et al. 2014) 

originally used the 40 marker genes suggested by Wu et al. (2013), but was reduced to 37 markers in 

version 1.0.1 of the PhyloSift software. Marker genes were identified using the pre-calculated 

‘gathering’ and ‘noise’ cutoffs for the Pfam and TIGRFAMs models, respectively. Marker genes of 615 

COG or custom protein families were identified using an e-value cutoff of 1e
-5

, 1e
-10

, 1e
-15

, and 1e
-20

 

and results reported for the cutoff providing the best mean performance. Results were highly similar 

across this range of e-values.  

Evaluation of Taxonomic Novelty 

The influence of taxonomic novelty on genome quality estimates was evaluated by identifying 620 

‘natural’ novelty within the test set of high-quality draft genomes used to generate simulated 

genomes. A test genome was classified as having taxonomic novelty at a given rank (e.g., genus) if 1) 

it was the only genome within the reference genome tree from the named group (e.g., the only 

genome from genus Ruminobacter), and 2) the parent group (e.g., the family Succinivibrionacea) 

contains at least 2 named groups at the rank of interest (e.g., Ruminobacter and at least one other 625 

Succinivibrionacea genus). The taxonomic rank of a lineage-specific marker set is defined as the most 

specific taxonomic rank containing the internal node from which the marker set was inferred (e.g., a 

marker set defined at an internal node between a named order and class was assigned to the broader 

rank of class).   

Genome Datasets 630 

Population genomes from the Wrighton et al. (2012) and Sharon et al. (2013) studies were 

downloaded from ggKbase (http://ggkbase.berkeley.edu/) on March 31, 2014. Tyson et al. (2004) and 
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Meyerdierks et al. (2010) population genomes were obtained from NCBI. The population genomes 

from the Albertsen et al. (2013) study can be obtained from http://ecogenomic.org/checkm/public-

data. Reference genomes at NCBI and IMG are occasionally removed or modified. For posterity, the 635 

reference genomes analyzed in this paper have been archived at http://ecogenomic.org/checkm/public-

data. The GEBA, GEBA-KMG, GEBA-PCC, GEBA-RNB, GEBA-MDM, and HMP genomes 

comprise part of the data downloaded from IMG on April 4, 2014.  

Software Availability 

CheckM is open source software available at http://ecogenomics.github.io/CheckM. CheckM v0.9.4 640 

was used during the preparation of this manuscript and is available as Supplemental Material. 
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Figure Legends 

 

Figure 1. Error in completeness and contamination estimates on simulated genomes with 50%, 70%, 

80%, or 90% completeness (comp.) and 5%, 10%, or 15% contamination (cont.). Quality estimates 655 

were determined using domain-level marker genes treated as individual markers (IM) or organized 

into collocated marker sets (MS). Simulated genomes were generated under the random fragment 

model from 3324 draft genomes spanning 39 classes (20 phyla) with each draft genome being used to 

generate 20 simulated genomes. A systematic bias in the estimates results in completeness being 

overestimated on average (median value to the right of zero) and contamination being underestimated 660 

on average (median value to the left of zero). Results are summarized using box-and-whisker plots 

showing the 1
st
 (99

th
), 5

th
 (95

th
), 25

th
 (75

th
), and 50

th
 percentiles. 
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Figure 2. CheckM consists of a workflow for precomputing lineage-specific marker genes for each 665 

branch within a reference genome tree (top box) and an online workflow for inferring the quality of 

putative genomes (bottom box). Starting with a set of annotated reference genomes, the quality of 

these genomes is assessed in order to produce a set of near-complete genomes suitable for inferring 

marker genes. These genomes form the basis of a reference genome tree. A simulation framework is 

then used to associate each branch in the reference genome tree a lineage-specific marker set suitable 670 

for robustly estimating the quality of genomes placed along a given branch (Fig. 3).  To determine the 

quality of a putative genome, its position within the reference genome tree is inferred in order to 

establish the set of marker genes suitable for assessing its quality. These marker genes are identified 

within the putative genome and the presence/absence of these genes used to estimate its completeness 

and contamination. 675 
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Figure 3. Overview of simulation framework for selecting lineage-specific marker genes. To evaluate 

a genome G, it is placed into a reference genome tree (A). Each parental node from the point of 

insertion to the root of the tree defines a lineage-specific marker set which can be used to estimate the 680 

completeness and contamination of this genome. To select a suitable set of lineage-specific marker 

genes for evaluating G, the genomes in the child lineage of G with the fewest genomes were used as 

proxies for G (B). Genomes at different levels of completeness and contamination were simulated 

from these proxy genomes by subsampling and duplicating fixed sized genomic fragments (C). Each 

parental marker set was then used to estimate the completeness and contamination of these simulated 685 

genomes, and the marker set resulting in the best average performance over all simulated genomes 

identified (D). This marker set is used to assess the quality of any genomes subsequently inserted 

along this branch. 
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 690 

 

Figure 4. Error in completeness and contamination estimates on simulated genomes with 50%, 70%, 

80%, or 90% completeness and 5%, 10%, or 15% contamination. Quality estimates were determined 

using i) domain: marker sets inferred across all archaeal or bacterial genomes, ii) selected: marker sets 

inferred from genomes within the lineage selected by CheckM, and iii) best: marker sets inferred from 695 

genomes within the lineage producing the most accurate estimates. Marker genes were organized into 

collocated marker sets in all cases. Simulated genomes were generated under the random contig 

model from 2430 draft genomes spanning 31 classes (18 phyla) with each draft genome being used to 

generate 20 simulated genomes.  
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Figure 5. Lineage-specific completeness and contamination estimates for (A) 262 isolates annotated 

as finished in IMG, (B) 2019 isolates annotated as draft in IMG, (C) 632 genomes recovered using 

single-cell genomics, and (D) 146 population genomes recovered from metagenomic data. Dashed 

lines indicate the criteria required for a genome to be considered a near-complete genome with low 705 

contamination. Insets give a more detailed view of the quality of the isolate genomes. The 2281 

isolate genomes were obtained from IMG and sequenced as part of the GEBA, GEBA-KMG, GEBA-

PCC, GEBA-RNB, or HMP initiatives.  
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Tables 

Table 1. Mean absolute error (± std. dev.) in completeness (comp.) and contamination (cont.) estimates for i) 710 
domain: marker sets inferred across all archaeal or bacterial genomes, ii) selected: marker sets inferred from 

genomes within the lineage selected by CheckM, and iii) best: marker sets inferred from genomes within the 

parental lineage producing the most accurate estimates. 

 Domain Selected Best 

Simulation model Comp. (%) Cont. (%) Comp. (%) Cont. (%) Comp. (%) Cont. (%) 

random fragment, 5 kbp 4.3  ±  4.29 3.8  ±  3.73 2.6  ±  2.75 2.4  ±  2.49 2.3  ±  2.51 2.2  ±  2.37 
random fragment, 20 kbp 5.0  ±  4.89 4.3  ±  4.23 3.0  ±  3.06 2.7  ±  2.73 2.6  ±  2.75 2.4  ±  2.54 

random fragment, 50 kbp 5.7  ±  5.37 4.7  ±  4.65 3.4  ±  3.41 2.9  ±  3.01 2.9  ±  3.04 2.6  ±  2.77 

random contig 5.4  ±  5.85 4.1  ±  4.37 3.0  ±  3.47 3.3  ±  3.43 2.5  ±  2.90 3.1  ±  3.27 
inverse length 6.6  ±  6.54 5.6  ±  5.26 4.2  ±  4.38 5.3  ±  4.92 3.6  ±  3.91 4.9  ±  4.71 

 

 715 

Table 2. Completeness and contamination of genomes from large-scale sequencing projects. 

  Completeness (% of genomes) Contamination (% of genomes) 

Isolates Genomes 100% ≥95% ≥90% <90% 0% ≤5% ≤10% >10% 

GEBA 244 34.0 60.7 4.5 0.8 28.3 70.5 0.4 0.8 

GEBA-KMG 724 35.5 62.8 1.7 0 31.6 67.8 0.3 0.3 

GEBA-PCC 55 20.0 78.2 1.8 0 20.0 78.2 1.8 0 

GEBA-RNB 92 55.4 44.6 0 0 23.9 76.1 0 0 

HMP 1166 26.1 71.6 1.5 0.8 36.3 63.2 0.3 0.2 

 

Single cells 

         

GEBA-MDM 201 0 0 1.5 98.5 51.2 48.3 0.5 0.0 

GEBA-MDM (combined) 21 4.8 0 4.8 90.5 28.6 52.4 9.5 9.5 

IMG single cell 410 0 3.4 1.0 95.6 31.5 53.3 8.0 7.1 

 

Metagenomics 

         

Sludge bioreactor 13 7.7 61.5 0 30.8 30.8 61.5 7.7 0 

Acid mine drainage 5 0 0 20.0 80.0 0 40.0 40.0 20.0 

Infant gut 16 0 43.8 0 56.2 50.0 43.8 0 6.2 

Acetate-amended aquifer 90 0 1.1 2.2 96.7 15.6 44.4 13.3 26.7 

Acetate-amended aquifer* 22 0 0 13.6 86.4 13.6 68.2 9.1 9.1 

 

Mixed 

         

‘Finished’ IMG genomes 2360 26.0 68.4 2.6 3.0 37.4 62.0 0.5 0.1 
* re-binning of select Wrighton et al. (2012) bins by Albertsen et al. (2013) 

References: GEBA (Wu et al. 2009), GEBA-PCC (Shih et al. 2012), HMP (Turnbaugh et al. 2007), GEBA-MDM (Rinke et al. 2013), IMG (Markowitz et al. 

2014), Sludge bioreactor (Albertsen et al. 2013), Acid mine drainage (Tyson et al. 2004), Infant gut (Sharon et al. 2013), Acetate-amended aquifer (Wrighton et 

al. 2012), IMG (Markowitz et al. 2014). GEBA-RNB genomes were produced by the US Department of Energy Joint Genome Institute. 720 

 

Table 3. Controlled vocabulary of draft genome quality based on estimated genome completeness and 

contamination.  

Completeness Classification Contamination Classification 

≥90% near ≤5% low 

≥70% to 90% substantial  5% to ≤10% medium 

≥50% to 70% moderate 10% to ≤15% high 

<50% partial >15% very high 
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