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Abstract 1 

The branch autonomy principle, which states that the growth of individual branches can be 2 

predicted from their morphology and position in the forest canopy irrespective of the 3 

characteristics of the tree, has been used to simplify models of branch growth in trees. However, 4 

observed changes in allocation priority within trees towards branches growing in light-favoured 5 

conditions, referred to as ‘Milton’s Law of resource availability and allocation’, have raised 6 

questions about the applicability of the branch autonomy principle. We present models linking 7 

knot ontogeny to the secondary growth of the main stem in black spruce (Picea mariana (Mill.) 8 

B.S.P.), which were used to assess the patterns of assimilate allocation over time, both within 9 

and between trees. Data describing the annual radial growth of 445 stem rings and the three-10 

dimensional shape of 5377 knots were extracted from optical scans and X-ray computed 11 

tomography images taken along the stems of 10 trees. Total knot to stem area increment ratios 12 

(KSR) were calculated for each year of growth, and statistical models were developed to 13 

describe the annual development of knot diameter and curvature as a function of stem radial 14 

increment, total tree height, stem diameter, and the position of knots along an annual growth 15 

unit. KSR varied as a function of tree age and of the height to diameter ratio of the stem, a 16 

variable indicative of the competitive status of the tree. Simulations of the development of an 17 

individual knot showed that an increase in the stem radial growth rate was associated with an 18 

increase in the initial growth of the knot, but also with a shorter lifespan. Our results provide 19 

support for ‘Milton’s Law’, since they indicate that allocation priority is given to locations where 20 

the potential return is the highest. The developed models provided realistic simulations of knot 21 

morphology within trees, which could be integrated into a functional-structural model of tree 22 

growth and above-ground resource partitioning. 23 
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Introduction 1 

Models of carbon assimilate allocation in trees generally consider branches to be part of either 2 

the woody shoot or the crown (Landsberg and Waring 1997; Mathieu et al. 2009). However, 3 

considering branch xylem as a separate sink can extend the practical applicability of functional-4 

structural tree models (FSTMs; Sievänen et al. 2000) to include wood properties considerations. 5 

Knots are formed when branches are occluded by growing tree stems, and exert a strong 6 

influence on the end-use characteristics of wood products (Buksnowitz et al. 2010). Knots affect 7 

both visual and mechanical properties, and consequently lumber value (Dinwoodie 2000). 8 

Therefore, silviculturists need tools to understand the trade-offs between stem radial growth and 9 

branch size (Weiskittel et al. 2007; Hein et al. 2008), while among wood processors there is 10 

increasing interest in optimizing lumber production by accounting for the location and size of 11 

knots within logs (Lemieux et al. 2002; Moberg and Nordmark 2006).  12 

 13 

Knot formation is driven by complex spatiotemporal interactions between a tree and its 14 

environment. Thus, knowledge of the biological processes that regulate assimilate partitioning in 15 

trees could improve models of branch growth. The branch autonomy principle (Van der Wal 16 

1985; Sprugel and Hinckley 1988) has been used in some FSTMs to simplify the modelling 17 

process (Bosc 2000; Kull and Tulva 2000). The branch autonomy principle states that the growth 18 

of individual branches can be predicted from their morphology and position in the forest canopy, 19 

irrespective of tree characteristics. Models that incorporate this principle can also predict 20 

mortality based on the growing space (Mitchell 1975) or the amount of light (Nikinmaa and Hari 21 

1990) available to individual branches. However, there is an important limitation to this 22 

principle. By comparing the height of the lower limit of the living crown in trees of different 23 
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sizes, Sprugel (2002) showed that branches on supressed trees were more likely to survive and 1 

grow than the equivalent branches on dominant trees. This implied shift in allocation priority 2 

within trees towards branches in light-favoured positions, referred to as ‘Milton’s Law of 3 

resource availability and allocation’ (Sprugel 2002), suggests that assimilates are invested where 4 

the potential return is highest. This is consistent with the results of Nikinmaa et al. (2003), who 5 

obtained improved predictions of crown development when considering both the position and the 6 

light environment of branches. However, experimental confirmation of Milton’s Law is 7 

generally restricted to static assessments of the location of the crown base in even-aged forest 8 

stands (Valentine et al. 2013). 9 

 10 

Branch ontogeny can be studied in long-term experiments (Pretzsch 2005), but repeated 11 

measurements on the same trees are time-consuming and costly. One solution to this problem is 12 

to use empirical branch distribution models to simulate the temporal development of tree and 13 

branch growth using cross-sectional data i.e. observations of the number, location and size of 14 

branches made on trees of different ages (Colin and Houllier 1991; Mäkinen and Mäkelä 2003; 15 

Achim et al. 2006; Weiskittel et al. 2007). However, the simplicity of the approach comes at the 16 

expense of reduced accuracy for some branch measurements (Duchateau et al. 2013a). More 17 

recently, non-destructive techniques for rapidly generating high-resolution data have been 18 

developed, such as infrared imaging, optical scanning, magnetic resonance imaging (MRI), and 19 

computed tomography (CT) using X-rays or gamma rays (Moberg 2001; Longuetaud et al. 2012; 20 

Dutilleul et al. 2014). These innovations allow the use of internal data to simultaneously 21 

reconstruct stem and knot growth over time.  22 

 23 
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In this study we present models linking knot ontogeny to the secondary growth of the main stem 1 

in black spruce (Picea mariana (Mill.) B.S.P.), a dominant species in the North American boreal 2 

forest. We used data from high-resolution CT scans of tree stems to reconstruct the history of 3 

both stem and knot development, with the aim of developing models that would apply in an 4 

FSTM framework. First, we tested the hypothesis that the ratio of branch to stem growth was 5 

dependent on stem characteristics indicative of the competitive status of the tree. We then 6 

developed statistical models for predicting the evolution of individual knot diameter and 7 

curvature using a series of predictors related to the position in the tree, stem radial growth, and 8 

other general stem characteristics. This allowed us to test ‘Milton’s Law’ using longitudinal data 9 

i.e. repeated measurements of branch and stem growth over time. This approach allowed us to 10 

make detailed simulations of knot development while considering the variation in assimilate 11 

partitioning between trees.  12 

 13 

Materials and methods 14 

Tree sampling 15 

Sample trees were collected from seven naturally-regenerated, unmanaged forest stands in the 16 

North-Shore region of Quebec, Canada. All sampling locations were part of a network of sites 17 

established to study the growth of spruce-moss forests after fire (Barrette et al. 2013; Torquato et 18 

al. 2014; Ward et al. 2014). At the time these plots were established, efforts were made to 19 

maintain site characteristics (i.e. surface deposit, topographic position, exposure and soil 20 

drainage) as constant as possible and representative of mesic conditions (Ward et al. 2014).  21 

 22 
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Because CT-Scanning is costly and the associated data processing time-consuming, we worked 1 

with a limited number of sample trees. In each of the seven stands, two trees were randomly 2 

selected for destructive sampling. However, four trees were omitted from the analysis due to 3 

missing discs and the presence of wood decay. Of the ten trees in our final sample, eight came 4 

from even-aged plots that had regenerated after fires dating back to between 66 and 152 years 5 

(Bouchard et al. 2008). Two more trees (T09 and T10) were selected from one uneven-aged plot 6 

where the time since the last stand-replacing fire exceeded 200 years. The sample trees had a 7 

wide range of ages, crown size and stem dimensions (Table 1). 8 

 9 

Annual knot data 10 

After felling, each tree was cut into 2.5-m logs, giving a total of 41 logs that were then 11 

transported to the Institut National de la Recherche Scientifique in Quebec City and scanned 12 

using a Somatom Sensation 64 CT scanner (Siemens Medical Solutions USA, Inc., Malvern, 13 

PA). Each log was scanned at 2-mm intervals along its longitudinal axis with a 2-mm-wide X-14 

ray beam (120 kV–50 mA), so that the scanned segments were contiguous. The pixel size was 15 

0.35 mm × 0.35 mm in the transverse direction.  16 

 17 

Knot geometry was extracted using the ImageJ 1.44 free software (Abramoff et al. 2004), with a 18 

Java plug-in ('Gourmand', version 1.01) developed at INRA, Nancy, France (Longuetaud et al. 19 

2012). On successive images, the edges of each knot were manually delineated with a series of 20 

points (Fig. 1A). A second purpose-built plug-in named ‘BIL3D’ (Colin et al. 2010) was 21 

developed to extract the position and 3D geometry of each knot using the Cartesian coordinates 22 

of each point (Fig. 1B). The cross section of each knot from its point of origin to the bark of the 23 
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stem was represented by fitting successive circles in the longitudinal-tangential plane to the 1 

points located manually at the tangential limits of the knots on successive CT images. In a 2 

database, the diameter (D) of each circle was recorded, as well as the distance from the stem’s 3 

pith (l) and position of its geometrical centre along the longitudinal stem axis (Z, referred to as 4 

the ‘vertical position’). This way, we obtained a representation of the geometric profiles of 5377 5 

knots. A more detailed description of the knot reconstruction method was presented by 6 

Duchateau et al. (2013a). 7 

 8 

Knot development for each successive year of growth (t) was reconstructed using the diameter 9 

(Dt) and vertical position (Zt). To avoid local irregularities associated with the manual extraction 10 

of knot boundaries on the CT images, and to obtain a parametric description of each knot that 11 

was dependent on the radial position within the stem, smoothed knot profiles were obtained by 12 

fitting the same nonlinear model to both series of Dt and Zt measurements. This was based on a 13 

Weibull equation with an additional linear term: 14 

 15 

𝑦𝑡 = 𝛼 (1 − 𝑒
(−𝛽(

𝑙

𝑅𝑚𝑎𝑥−𝑙
))

) +  µ ∙ 𝑙                    (0 ≤  𝑙 ≤  𝑅𝑚𝑎𝑥)                                              (1)                        16 

where yt represents either the Dt or Zt values (mm), l is the position along the x-axis (mm) , Rmax 17 

is the total length (mm) of the knot along the x-axis and α, β and µ are parameters to be 18 

estimated empirically. This model was selected because it can accurately describe a wide variety 19 

of knot shapes (Duchateau et al. 2013a).  20 

 21 

The functions were fitted to each knot independently using the nls function of the nlme library in 22 

the R statistical programming environment (R Core Team, 2014). The models for both Dt and Zt 23 
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converged for 95% of the knots in the database. Visual examination revealed that non-1 

convergent knots were generally small and sinuous. Indeed, convergent knots represented 98% 2 

of the total volume of knots in the entire dataset, which we considered representative of the full 3 

history of knot growth in our sample trees.  4 

 5 

Annual ring data from the main stem 6 

Annual ring data from the main stem were difficult to obtain from the CT images due to factors 7 

such as narrow rings and the higher moisture content of the sapwood. One-cm-thick discs were 8 

hence cut from the ends of each log to reconstruct the growth history of the stems. Discs were 9 

optically scanned and annual ring boundaries were delineated in the four cardinal radial 10 

directions using image analysis software (WinDENDRO
TM

; Régent Instruments, Quebec City, 11 

2005; Guay et al. 1992).  12 

 13 

To link annual changes in knot geometry with stem radial increments, we estimate the latter at 14 

the position of each knot. In each cardinal direction, a linear interpolation was made between the 15 

widths of each matching ring from both ends of each log (Fig. 2A). For rings present near the 16 

pith of the lower disc but absent from the upper disc, we used the mean linear interpolation 17 

coefficient of the first five complete rings. This way, we obtained estimates of annual ring widths 18 

at any height along the stem in the four main cardinal directions.  19 

 20 

To reconstruct stem growth in the azimuthal direction of each knot (Fig. 2B), a second 21 

interpolation was made from the two surrounding cardinal directions for which we had 22 

measurements. In this case we used a weighted average of the two known ring width series 23 
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located on each side of the knot. We defined αr as the azimuth angle between a knot and one of 1 

the two cardinal directions on each side. The weighting factor was calculated as (90-αr)/90, 2 

which approached a value of 1 if the knot orientation was close to one of the cardinal directions.  3 

Due to irregularities in stem shape, the resulting series of stem rings associated with a given knot 4 

did not end in the same exact location as the knot-stem interface was located on the CT images. 5 

Therefore, a small correction constant was added (or subtracted) to each ring in the series to 6 

ensure that both matched exactly.  7 

 8 

In a final step in the knot and stem growth reconstruction process, we traced back the annual 9 

limits of primary growth. Each annual elongation of the shoot was defined as a growth unit 10 

(GU). Like other conifers, black spruce produces several nodal and internodal branches within a 11 

growth unit. Nodal branches are those forming a whorl at the top of a GU (Achim et al. 2006, 12 

Auty et al. 2012). Botanically, the branches of conifers do not technically originate from the 13 

same vertical position, these are referred to as ‘pseudo-whorls’ (Fisher and Honda 1979). 14 

However, this distinction was not apparent at the resolution of our CT-scanning measurements. 15 

Therefore, we summed the basal areas of all branches that originated from the same CT image, 16 

which facilitated the identification of pseudo-whorls of branches that were used as the limits of 17 

annual GUs. To avoid large errors, we ensured that the number of GUs matched the difference in 18 

the number of annual rings measured at both ends of each log. A more detailed description of the 19 

growth unit identification method is presented in Duchateau et al. (2013b).  20 

 21 

Once we had obtained a full description of both the knots and stem shape, a final step was to 22 

obtain the annual increments in knot diameter (ΔDt) and vertical position (ΔZt). These were 23 
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computed using the intersection points between stem rings and knots. The diameter of each knot 1 

was measured perpendicular to its central axis at each intersection point (Fig. 2) 2 

 3 

Model development 4 

Tree-level models 5 

To examine the variation in biomass allocation between the stem and branches over time, the 6 

ratio of knot to stem growth (KSRi,t, dimensionless) was calculated, for each year of growth (t), 7 

as the sum of all knot area increments at the surface of the stem divided by the annual basal area 8 

increment of the stem at 1.3 m. This process was repeated for all years with complete growth 9 

data along the stem. When knots had reached a constant or decreasing diameter they were 10 

considered to be dead.  11 

 12 

To assess the variation of KSRi,t through the life of the tree, we developed a linear mixed-effects 13 

model (Pinheiro and Bates 2009) describing its evolution as a function of tree height-diameter 14 

ratio and tree age. To assess the effect of within stand competition on KSRi,t, the ratio (HDi,t, 15 

m/cm) between tree height (Hi,t) and its diameter at breast height (DBHi,t, measured at 1.3 m) 16 

was used as a surrogate for the competitive status of the subject trees at a given age. This ratio is 17 

useful because inter-tree spacing is known to strongly affect crown development and hence the 18 

radial growth of the stem, whereas it has much less effect on height growth (Weiskittel et al. 19 

2011). Since values of KSRi,t were continuous and non-negative, it was modelled as a gamma 20 

distribution with a log-link:  21 

 22 

𝑙𝑛 (𝐾𝑆𝑅
𝑖,𝑡

) = 𝑎1 + 𝑎2 ∙ 𝐻𝐷𝑖,𝑡 + 𝑎3 ∙ 𝐴𝑔𝑒𝑖,𝑡 + 𝛿𝑖       (2) 23 
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where ln(KSRi,t) is the natural logarithm of the knot to stem ratio in a given year, Agei,t is the age 1 

of the tree (years), a1, a2, a3 are the model parameters and δi is the random effect for each tree (i).  2 

 3 

Next, we examined the effect of KSRit on the number of new branches produced in a given year 4 

by fitting a Poisson regression model, with a log-link, describing the number of new branches 5 

per stem as a function of KSRit, tree age and their interaction: 6 

 7 

𝑙𝑛 (𝑁𝐵𝑅
𝑖𝑡

) = 𝑏1 + 𝑏2 ∙ 𝐾𝑆𝑅𝑖𝑡 + 𝑏3 ∙ 𝐴𝑔𝑒𝑖𝑡 + 𝑏4 ∙ 𝐾𝑆𝑅𝑖𝑡 ∙ 𝐴𝑔𝑒𝑖𝑡 + 𝛿
𝑖
                  (3) 8 

where ln(NBRit) is the natural logarithm of the number of new branches per stem in a given year, 9 

b1, b2, b3, b4 are the model parameters, and all other variables are as previously defined.  10 

 11 

The models presented in equations 2 and 3 were fitted using the glmer function in the lme4 12 

library (Bates et al. 2014) of the R statistical programming environment (R Core Team 2014). 13 

Tree-level random effects were included to account for the hierarchical structure of the data 14 

(Pinheiro and Bates 2009). In model fitting, we began by screening all potential tree-level 15 

explanatory variables and biologically plausible interaction terms. Variables were selected after 16 

calculating the variance inflation factors (VIF), to address any potential multicollinearity issues 17 

(O’brien 2007). Variables that were highly correlated (VIF >4) were excluded from the models. 18 

Variable selection was achieved using a backwards elimination process and model selection was 19 

based on Akaike’s information criterion (AIC) (Akaike 1974). Chi-squared-based likelihood 20 

ratio tests were used to evaluate the significance of terms that were successively dropped from 21 

the model. In the absence of a significant difference (p>0.05), the simplest model was retained. 22 

Parameter estimates were obtained using the maximum likelihood method. 23 
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 1 

Individual knot models 2 

Next, statistical models were developed to describe the temporal evolution of the morphology of 3 

individual knots using annual ring- and tree-level characteristics as independent variables. 4 

Initially, we attempted to fit a single model describing both vertical position (Zi,j,t) and knot 5 

diameter (Di,j,t) simultaneously, thereby reconstructing the entire knot in a single step. However, 6 

this led to an underestimation of knot diameter in the first years of growth that carried over for 7 

the entire knot profile. Therefore, separate models were developed for each separate component. 8 

Also, the models describing each component over time were divided into sections to facilitate the 9 

fitting process. Individual knot diameter and curvature models were fitted to the data from a 10 

random selection of 75% of the total population of knots, while the remaining data were used for 11 

model evaluation. 12 

 13 

Knot diameter model 14 

We observed relatively consistent patterns in the diameter development of the knots. There was a 15 

rapid increase in diameter increment in the first three years of knot growth, followed by a 16 

gradual decline until branch death (Fig. 4A). On average, branch increments reached zero at 17 

around year 25. We hence divided each diameter profile into three sections: 1) the initiation 18 

section (years 0 to 3), 2) the growth section (years 4 to 25) and 3) the stable or declining section 19 

(years > 25). In the initiation section, because ΔDi,j,t values did not follow a Gaussian 20 

distribution, D i,j,t was modelled directly. In the remaining two sections ΔD i,j,t was used as the 21 

response variable.  22 

 23 
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Knot characteristics at time t-1 were used to make predictions at time t. This ensured a smooth 1 

transition between the different sections of the model. After the variable selection process, the 2 

general form of the knot diameter model could be expressed as: 3 

 4 

𝛥𝐷𝑖,𝑗,𝑡 𝑜𝑟 𝐷𝑖,𝑗,𝑡 = 𝑐1 + 𝑐2 ∙ 𝛥𝐷𝑖,𝑗,(𝑡−1) + 𝑐3 ∙ 𝐷𝑖,𝑗,𝑡−1 + 𝑐4 ∙ 𝐺𝑈𝑝𝑜𝑠 𝑖,𝑗 + 𝑐5 ∗ 𝑙𝑖,𝑗,𝑡 + 𝑐6 ∙ 𝑅𝑊𝑖,𝑗,𝑡 + 𝑐7 ∗5 

𝐻𝐷𝑖,𝑡 + 𝑐8 ∙ 𝐴𝑔𝑒𝑖,𝑡 + 𝑐9 ∙ 𝐷𝐵𝐻𝑖,𝑡 + 𝑐10 ∙ 𝐻𝑖,𝑗 + 𝛿𝑖,𝑗 + 𝜀            (4) 6 

where GUpos i,j is the relative position of the knot initiation point  along the GU (varies from 0 at 7 

the base to 1 at the stem apex), RWi,j,t is the ring width of the stem at the location of the knot in 8 

year t, δi,j are the tree- and knot-level random effects and ε is the residual error. All other 9 

variables are as previously defined.  10 

Knot curvature model 11 

The average annual variation of ΔZ i,j,t was typically positive until approximately ring 40. After 12 

this point the vertical position stabilized, before decreasing after ring 60 (Fig 4B). The knot 13 

vertical position profiles were therefore separated into two sections delineated at ring number 50. 14 

Characteristics of the knots in year t-1 were also included in this model, thus ensuring a smooth 15 

transition between the sections. Various combinations of the explanatory variables were used in 16 

each section of the model. The general form of the knot diameter model was expressed as:  17 

  18 

𝛥𝑍𝑖,𝑗,𝑡 = 𝑑1 + 𝑑2 ∙ 𝐷𝑖,𝑗,(𝑡−1) + 𝑑3 ∙ 𝛥𝑍𝑖,𝑗,(𝑡−1) + 𝑑4 ∗∙ 𝑙𝑖,𝑗,𝑡 + 𝑑5 ∙ 𝑅𝑊𝑖,𝑗,𝑡 + 𝑑6 ∙ 𝐺𝑈𝑝𝑜𝑠 𝑖,𝑗 + 𝑑7 ∙ 𝐻𝐷𝑖,𝑡 +19 

𝑑8 ∙ 𝐴𝑔𝑒𝑖,𝑡 + 𝑑9 ∙ 𝐷𝐵𝐻𝑖,𝑡 + 𝛿𝑖,𝑗 + 𝜀               (5) 20 

where all variables are as previously defined. See Table 2 or a full description of all variable 21 

names used in the models. 22 

 23 
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These models were fitted using functions contained in the nlme library of the R statistical 1 

programming environment (R Core Team 2014). A power variance function of annual ring 2 

number from the pith at the level of each knot (RN) was included to account for 3 

heteroscedasticity in the model residuals. In addition, a continuous first-order auto-regressive 4 

term (AR1) was added to account for autocorrelation between successive measurements. The 5 

model fitting process started by including a full set of potential ring-, knot- or tree-level 6 

explanatory variables and model selection was performed using the same backwards elimination 7 

procedure as described in the section on tree-level models.  8 

 9 

Simulations 10 

To analyse the influence of tree growth and competitive status on knot development, we 11 

reconstructed a single knot at 6.1 m using the predictions from equations 3 and 4 and the stem 12 

and growth characteristics of tree T10. Then, while keeping tree height constant, we increased 13 

the annual ring increments by 50%. The diameter and vertical profiles of the original knot were 14 

then recalculated. The process was repeated by decreasing the annual stem increments of the 15 

same tree by 50% of their actual values and again predicting knot morphology.  16 

  17 

In a second simulation, all knots from a 1.5-m section starting at a height of 2.5 m in tree T4 18 

were simulated using equations 3 and 4 and compared to the real knots, as extracted from the CT 19 

images. For this simulation we used the known insertion points along the stem and azimuthal 20 

orientation of each knot. Where appropriate, the year at which a knot was observed to be 21 

completely occluded by the growing stem was used as the end-point of the simulation. 22 

 23 
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Results 1 

Tree-level models 2 

The knot to stem increment ratio (KSRt) varied considerably with tree age. On average, KSRt 3 

was higher when trees were young and decreased rapidly in the first few years, before stabilizing 4 

(Fig. 5). The rate of the initial decrease varied among trees. Values of KSRt greater than 1 5 

indicated that, in a given year, the total knot basal area increment exceeded that of the stem. In 6 

addition to the negative relationship with tree age, KSRt ratio was positively related to HDt, such 7 

that more slender trees allocated relatively more biomass to their branches than to the main stem 8 

(Fig. 6). Furthermore, in a given year, the predicted number of new branches produced was 9 

greater in trees with higher KSRt values, but the effect of KSRt decreased with increasing tree 10 

age (equation 3; Table 3).  11 

 12 

In some trees, KSR values showed large interannual fluctuations from the general trend (Fig. 5). 13 

The 3D reconstructions of the stem and knots for two of these trees showed large deviations of 14 

the pith of the main stem, likely a result of leader loss or stem damage. While one of these trees 15 

retained apical dominance in a single leader (T01), the other produced a fork (T09; Fig. 7). The 16 

model produced a good fit to all trees except tree T03, although visual examination of the 3D 17 

reconstruction of this stem revealed no obvious explanation for the lack of fit. 18 

 19 
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Knot-level models 1 

Table 4 shows the fixed effects parameter estimates and standard errors for each section of the 2 

final knot diameter model (equation 4). To evaluate the model, knot diameter profiles were 3 

predicted and compared to observations in the evaluation dataset. Plots of the raw residuals 4 

(observed minus predicted values) showed that, on average, knot diameter was slightly 5 

underestimated in the middle section of the knot profiles, but overall the model was unbiased 6 

(Fig 8A). The absolute value of 50% of the residuals was less than 2.6 mm along the pith-to-bark 7 

profiles, while the absolute value of 90% of the residuals was less than 9.7 mm. The mean 8 

absolute error was 0.031 and the root mean square error (RMSE) 0.054. 9 

 10 

Table 5 shows the fixed effects parameter estimates and associated standard errors for each 11 

section of the final model of knot vertical position (equation 5). Again, predictions of knot 12 

vertical profiles were compared to observations in the evaluation dataset. On average, the model 13 

was unbiased along the knot profile up to ring 75, with a slight overestimation beyond this point 14 

(Fig. 8B). The absolute value of 50% of the residuals was less than 11.9 mm along the entire 15 

pith-to-bark profiles, while the absolute value of 90% of the residuals was less than 36.7 mm. 16 

The mean absolute error for this model was 0.118 and the root mean square error (RMSE) 0.189. 17 

 18 

Simulations 19 

When we used the dimensions and growth of a real tree (T10) to simulate knot growth, the 20 

diameter increments in the early years of knot development were positively related to the radial 21 

growth of the main stem. However, knot longevity was reduced when the radial growth was 22 
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artificially increased (and thus the HD ratio decreased). Knot growth ceased at ring 19 for the 1 

elevated growth scenario, but it was maintained along its entire profile (47 years) when stem 2 

growth was reduced (Fig. 9). In the real growth scenario, knot diameter increments began to 3 

decline around ring 25. Tree HD ratio also had a significant effect in the first section of the knot 4 

curvature model, although the effect was only apparent in the lower stem (not shown). 5 

 6 

In the second simulation we reconstructed all knots in a 1.5-m section of tree T04. This showed 7 

that although the diameter of larger knots was slightly underestimated, the models generally 8 

produced accurate simulations of the diameter and shape of real knots. However, the models 9 

produced less variation in knot insertion angle than was observed in reality (Fig. 10), which 10 

would likely explain the larger residuals of the vertical position model. 11 

 12 

Discussion 13 

Resource allocation 14 

This study provides further support to the idea that allocation of above-ground carbon assimilates 15 

in trees is directed towards locations where the potential return is the highest (Sprugel 2002). To 16 

maintain a favourable position in the canopy, trees subjected to high levels of competition 17 

prioritize height growth over secondary radial growth (Lanner 1985). Consequently, the HD ratio 18 

is a useful predictor of assimilate partitioning among tree organs (West 1993; King 2005).  19 

Under the assumption that stem or branch area increments are proportional to biomass 20 

accumulation, our results indicate a shift in assimilate allocation towards branches when tree 21 

growth is constrained by competition. Likewise, Vincent (2006) found that lower light levels 22 
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were associated with an increase in leaf life span, while King (1997) showed that the percentage 1 

of biomass allocated to branches was higher in understory seedlings than in those growing in 2 

large gaps. A similar concept of functional balance has also been used to explain the decrease in 3 

shoot : root ratio when soil nutrients are a limiting factor (Génard et al. 2007). Under the 4 

principles of teleonomy, these may be seen as adaptive responses of trees to environmental 5 

factors, which would optimize their growth and survival probability (Lacointe 2000). 6 

 7 

Despite large variation in annual knot growth, even among similar sized trees, the ratio of knot to 8 

stem area increment (KSR) was shown to decrease systematically with tree age. Similar 9 

ontogenetic effects have been highlighted by Wilson (1988) to describe changes in shoot : root 10 

ratio as a plant grows. In this study, annual reconstructions of stem and branch development 11 

suggested that high KSR values were also positively related to the number of new branches 12 

initiated in a growth unit. While this is in agreement with the principles highlighted above, it 13 

appears to contradict a common result of empirical branch distribution models, which is that 14 

vigorous trees tend to initiate more branches in a given year (Maguire 1994; Mäkinen and Colin 15 

1999; Hein et al. 2007). However, these studies typically presented models for the number of 16 

nodal branches i.e. those forming a pseudo-whorl (Fisher and Honda 1979). Furthermore, in 17 

models that consider both nodal and internodal branches, smaller branches (<5mm) are usually 18 

ignored (Colin and Houllier 1991; Auty et al. 2012). An advantage of using CT scanning 19 

technology is that all the knots were identifiable, including those that were occluded within the 20 

stems. Furthermore, the identification of annual growth units along the stem was made easier 21 

because it was possible to locate, with some certainty, the initiation point of branches at the 22 

stem’s pith (Duchateau et al. 2013b). 23 
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 1 

The relationship of knot growth to HD ratio could be clearly seen in the simulations of individual 2 

knot growth. An increase in HD ratio led to smaller but longer-lived knots, while the converse 3 

was also true. Throughout the simulation, each knot was first located at the top of the stem but its 4 

position relative to the stem’s apex shifted as the tree grew in height. Therefore, in the slower 5 

growth scenario, the fact that the knot was still growing at the end of the simulation implies a 6 

slower rate of crown recession. A lower crown base in trees subject to high competition is 7 

consistent with previous results (Sprugel 2002; Valentine et al. 2013) and offers further support 8 

for Milton’s Law of resource availability and allocation. Sprugel’s (2002) choice of name for this 9 

principle made reference to poet John Milton’s (1667) phrase, “Better to reign in hell than serve 10 

in heaven”. He used this analogy to highlight the fact that although branches in light-favored 11 

conditions will tend to grow faster, a shaded branch on a shaded tree is more likely to survive 12 

and grow than a similarly-shaded branch on a dominant tree. Our model provides a time-series 13 

illustration of this principle. The vigorous growth of the knot in the first 10 to 15 years of the 14 

accelerated growth scenario suggests that the carbon budget of the branch was more positive than 15 

branches simulated in slow growth scenarios. Despite this, branch growth ceased earlier in the 16 

accelerated growth scenario. Clearly, such behaviour could not be predicted based on individual 17 

branch carbon budgets, which leads us to question the applicability of the branch autonomy 18 

principle when modelling branch growth.  19 

 20 

Modelling knot development 21 

Previous studies have represented the dead portion of knots as a cylinder to reflect the cessation 22 

of growth (Björklund 1997; Lemieux et al. 2001; Moberg 2001). However, around 40% of knots 23 

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.553v1 | CC-BY 4.0 Open Access | rec: 23 Oct 2014, publ: 23 Oct 2014

P
re
P
rin

ts



20 
 

in our sample data had declining diameter profiles in the outer stem, presumably as a result of 1 

branch deterioration after death. We accounted for this trend in the knot diameter model by 2 

allowing negative growth predictions (Fig. 9). The inclusion of the diameter and vertical position 3 

increments of the previous year as predictor variables allowed for smooth transitions between the 4 

knot sections, which provided realistic knot shapes. Furthermore, analysis of the model residuals 5 

showed that the models were relatively unbiased and generally accurate.  6 

 7 

In the second simulation, annual predictions of knot diameter and vertical position produced 8 

realistic reconstructions of the real knot profiles using the known insertion point, orientation and 9 

year of occlusion of each knot. Models that can predict the vertical and azimuthal distribution of 10 

branches within a growth unit, as well as the initial insertion angle of each branch in the main 11 

stem, will provide even more realistic stem profiles. Even further improvements could be gained 12 

from the addition of a self-pruning sub-model (Mäkelä and Mäkinen 2003). 13 

 14 

Since the stem’s annual rings were only partially visible on the CT images (Fig. 1), it was 15 

necessary to interpolate tree growth from sample discs. Despite this, our results indicate that knot 16 

development is most strongly related to stem growth during the first 25 years of growth, by 17 

which time knots have typically reached their maximum diameter. The use of annual rings close 18 

to the pith of the main stem (i.e. those most likely to be detected on CT images) might therefore 19 

provide enough information to accurately predict knot growth along the entire radial profile. In 20 

this portion of the stem, algorithms can be used for automatically detecting annual growth rings 21 

(Jaeger et al. 1999; Longuetaud et al. 2005), which could decrease the time required for data 22 

analysis in future studies.  23 
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 1 

The linear interpolation of annual ring width variation between two sample discs was a 2 

simplification, since in reality growth rings deviate around knots (Pellicane and Franco 1994). 3 

For this reason, the demarcation between stem and knot xylem cannot be considered as perfectly 4 

discrete. Knot profiles were therefore extracted from the CT images by manually delineating 5 

high density wood corresponding to a knot and the surrounding lower density stem wood. 6 

Although the transition was generally clear enough to ensure accuracy (Fig. 1), the knot 7 

reconstruction process produced some localized irregularities that did not reflect the true shape 8 

of the knots. For this reason, we chose to smooth the radial profiles of each knot using a 9 

combination of two Weibull equations, which can reproduce a wide variety of knot profiles 10 

(Duchateau et al. 2013a). It is possible, however, that abrupt variations in knot shape were 11 

missed due to the smoothing process. The interpretation of our results on knot and stem 12 

allocation should therefore focus on general, long-term trends rather than on inter-annual 13 

variation. In fact, the long-term trends presented at the stem level should be more robust, since 14 

they aggregate information from a large number of individual knot profiles.  15 

 16 

Conclusion 17 

This study has provided an improved representation of the internal structure of tree stems by 18 

linking knot development with stem growth. The use of CT scanning data allowed us to 19 

reconstruct knot and stem ontogeny with unprecedented detail over a substantial time period. We 20 

have found evidence for increased allocation to branches under conditions that limit the 21 

secondary growth of the stem, which indicates that branches are non-autonomous entities. We 22 

have also produced a model of individual knot morphology that could provide greater precision 23 

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.553v1 | CC-BY 4.0 Open Access | rec: 23 Oct 2014, publ: 23 Oct 2014

P
re
P
rin

ts



22 
 

in the representation of knots in FSTMs, thus expanding their applicability to the wood 1 

processing sector.  2 

 3 

Acknowledgements 4 

The authors are grateful to the Natural Sciences and Engineering Research Council of Canada 5 

(NSERC) for the financial support for this project through the ForValueNet strategic research 6 

network on forest management for value-added products. We are also grateful to Amélie 7 

Denoncourt, Louis Gauthier, Fabien Lanteigne, Vanessa Joly, Alice Bernier Banville, Eugénie 8 

Arsenault, and Caroline Hamelin for their assistance in collecting the samples. Two anonymous 9 

reviewers provided helpful comments on an earlier version of the manuscript. The UMR 1092 10 

LERFoB is supported by the French National Research Agency through the Laboratory of 11 

Excellence ARBRE (ANR-12- LABXARBRE-01). 12 

 13 

Literature cited 14 

Abramoff MD, Magalhaes PJ, Ram SJ. 2004. Image processing with ImageJ. Biophotonics International 11: 36–43. 15 

Achim A, Gardiner B, Leban J, Daquitaine R. 2006. Predicting the branching properties of Sitka spruce grown in 16 
Great Britain. New Zealand Journal of Forestry Science 36: 246–264. 17 

Akaike H. 1974. A new look at the statistical model identification. IEEE Trans Autom Control 19: 716–723. 18 

Auty D, Weiskittel AR, Achim A, Moore JR, Gardiner BA. 2012. Influence of early re-spacing on Sitka spruce 19 
branch structure. Annals of Forest Science 69: 1–12. 20 

Barrette J, Pothier D, Ward C. 2013. Temporal changes in stem decay and dead and sound wood volumes in the 21 
northeastern Canadian boreal forest. Canadian Journal of Forest Research 43: 234–244. 22 

Bates D, Maechler M, Bolker BM and Walker S. 2014. “lme4: Linear mixed-effects models using Eigen and S4.” 23 
ArXiv e-print; submitted to Journal of Statistical Software, <URL:http://arxiv.org/abs/1406.5823>. 24 

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.553v1 | CC-BY 4.0 Open Access | rec: 23 Oct 2014, publ: 23 Oct 2014

P
re
P
rin

ts



23 
 

Björklund L. 1997. The interior knot structure of Pinus sylvestris stems. Scandinavian Journal of Forest Research 1 
12: 403–412. 2 

Bosc A. 2000. EMILION, a tree functional-structural model: Presentation and first application to the analysis of 3 
branch carbon balance. Annals of Forest Science 57: 555–569. 4 

Bouchard M, Pothier D, Gauthier S. 2008. Fire return intervals and tree species succession in the North Shore 5 
region of eastern Quebec. Canadian Journal of Forest Research 38: 1621–1633. 6 

Buksnowitz C, Hackspiel C, Hofstetter K, Muller U, Gindl W, Teischinger A, Konnerth J. 2010. Knots in trees: 7 
strain distribution in a naturally optimised structure. Wood Science and Technology 44: 389–398. 8 

Colin F, Houllier F. 1991. Branchiness of Norway spruce in north-eastern France - Modeling vertical trends in 9 
maximum nodal branch size. Annales Des Sciences Forestieres 48: 679–693. 10 

Colin F, Mothe F, Freyburger C, Morisset J-B, Leban J-M, Fontaine F. 2010. Tracking rameal traces in sessile 11 

oak trunks with X-ray computer tomography: biological bases, preliminary results and perspectives. Trees 24: 953–12 

967.  13 

Dinwoodie JM. 2000. Timber: Its nature and behaviour. Taylor & Francis. 14 

Duchateau E, Longuetaud F, Mothe F, Ung C-H, Auty D, Achim A. 2013a. Modelling knot morphology as a 15 
function of external tree and branch attributes. Can. J. For. Res. 43: 266–277. 16 

Duchateau E, Auty D, Mothe F, Achim A. 2013b. Improving branch distribution models in trees using X-ray 17 
computed tomography. 7th International Conference on Functional-Structural Plant Models, Saariselkä, Finland. 18 
Saariselkä, Finland. http://www.metal.fi/fspm2013/proceedings. ISBN 978-951-651-408-9 19 

Dutilleul P, Han LW, Beaulieu J. 2014. How do trees grow? Response from the graphical and quantitative analyses 20 
of computed tomography scanning data collected on stem sections. Comptes rendus biologies 337: 391–8. 21 

Fisher JB, Honda H. 1979. Branch geometry and effective leaf area: a study of Terminalia-branching pattern. 1. 22 
Theoretical trees. American Journal of Botany 66: 633–644. 23 

Génard M, Dauzat J, Franck N, Lescourret F, Moitrier N, Vaast P, Vercambre G. 2007. Carbon allocation in fruit 24 
trees: from theory to modelling. Trees 22: 269–282. 25 

Guay R, Gagnon R, Morin H. 1992. A new automatic and interactive tree ring measurement system based on a line 26 
scan camera. The Forestry Chronicle 68: 138–141. 27 

Hein S, Mäkinen H, Yue CF, Kohnle U. 2007. Modelling branch characteristics of Norway spruce from wide 28 
spacings in Germany. Forest Ecology and Management 242: 155–164. 29 

Hein S, Weiskittel AR, Kohnle U. 2008. Effect of wide spacing on tree growth, branch and sapwood properties of 30 
young Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco] in south-western Germany. European Journal of Forest 31 
Research 127: 481–493. 32 

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.553v1 | CC-BY 4.0 Open Access | rec: 23 Oct 2014, publ: 23 Oct 2014

P
re
P
rin

ts



24 
 

Jaeger M, Leban JM, Borianne P, Chemouny S, Saint-André L. 1999. 3D stem reconstruction from CT scan 1 
exams. From log external shape to internal structures. In: 01 IWS, ed. Connection between Silviculture and wood 2 
quality through modelling approaches and simulation software. 3 

King D a. 1997. Branch growth and biomass allocation in Abies amabilis saplings in contrasting light environments. 4 
Tree physiology 17: 251–258. 5 

King D a. 2005. Linking tree form, allocation and growth with an allometrically explicit model. Ecological Modelling 6 
185: 77–91. 7 

Kull O, Tulva I. 2000. Modelling canopy growth and steady-state leaf area index in an aspen stand. Annals of Forest 8 
Science 57: 611–621. 9 

Lacointe A. 2000. Carbon allocation among tree organs: A review of basic processes and representation in 10 
functional-structural tree models. Annals of Forest Science 57: 521–533. 11 

Landsberg JJ, Waring RH. 1997. A generalised model of forest productivity using simplified concepts of radiation-12 
use efficiency, carbon balance and partitioning. Forest Ecology and Management 95: 209–228. 13 

Lanner RM. 1985. On the insensitivity of height growth to spacing. Forest Ecology and Management 13: 143–148. 14 

Lemieux H, Beaudoin M, Zhang SY. 2001. Characterization and modeling of knots in black spruce (Picea mariana) 15 
logs. Wood and Fiber Science 33: 465–475. 16 

Lemieux H, Beaudoin M, Zhang SY, Grondin F. 2002. Improving structural lumber quality in a sample of Picea 17 
mariana logs sawn according to the knots. Wood and Fiber Science 34: 266–275. 18 

Longuetaud F, Mothe F, Kerautret B, Krähenbühl A, Hory L, Leban JM, Debled-Rennesson I. 2012. Automatic 19 
knot detection and measurements from X-ray CT images of wood: A review and validation of an improved algorithm 20 
on softwood samples. Computers and Electronics in Agriculture 85: 77–89. 21 

Longuetaud F, Saint-Andre L, Leban JM. 2005. Automatic detection of annual growth units on Picea abies logs 22 
using optical and x-ray techniques. Journal of Nondestructive Evaluation 24: 29–43. 23 

Maguire DA. 1994. Branch mortality and potential litterfall from Douglas-Fir trees in stands of varying density. Forest 24 
Ecology and Management 70: 41–53. 25 

Mäkelä A, Mäkinen H. 2003. Generating 3D sawlogs with a process-based growth model. Forest Ecology and 26 
Management 184: 337–354. 27 

Mäkinen H, Colin F. 1999. Predicting the number, death, and self-pruning of branches in Scots pine. Canadian 28 
Journal of Forest Research 29: 1225–1236. 29 

Mäkinen H, Mäkelä A. 2003. Predicting basal area of Scots pine branches. Forest Ecology and Management 179: 30 
351–362. 31 

Mathieu A, Cournede PH, Letort V, Barthelemy D, de Reffye P. 2009. A dynamic model of plant growth with 32 
interactions between development and functional mechanisms to study plant structural plasticity related to trophic 33 
competition. Annals of Botany 103: 1173–1186. 34 

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.553v1 | CC-BY 4.0 Open Access | rec: 23 Oct 2014, publ: 23 Oct 2014

P
re
P
rin

ts



25 
 

Milton J. 1667. Paradise Lost. Peter Parker, London, 368 p. 1 

Mitchell KJ. 1975. Dynamics and Simulated Yieldof Douglas-fir. Forest Science: a0001–z0001. 2 

Moberg L. 2001. Models of internal knot properties for Picea abies. Forest Ecology and Management 147: 123–138. 3 

Moberg L, Nordmark U. 2006. Predicting lumber volume and grade recovery for Scots pine stems using tree models 4 
and sawmill conversion simulation. Forest Products Journal 56: 68–74. 5 

Mothe F. 2014. http://www6.nancy.inra.fr/foret-bois-lerfob/Zoom-sur/Outils-pour-le-traitement-d-6 
images/Tomographie-X/Encodage 7 

Nikinmaa E, Hari P. 1990. A simplified carbon partitioning model for Scots pine to address the effects of altered 8 
needle longevity and nutrient uptake on stand development. In: Dixon R, Meldahl R, RUARK G, Warren W, eds. 9 
Process modeling of forest growth responses of environmental stress. Portland, USA: Timber Press Inc, 263–270. 10 

Nikinmaa E, Messier C, Sievänen R, Perttunen J, Lehtonen M. 2003. Shoot growth and crown development: 11 
effect of crown position in three-dimensional simulations. Tree physiology 23: 129–36. 12 

O’brien RM. 2007. A Caution Regarding Rules of Thumb for Variance Inflation Factors. Quality & Quantity 41: 673–13 
690. 14 

Pellicane PJ, Franco N. 1994. Modeling wood pole failure. Wood Science and Technology 28: 261–274. 15 

Pinheiro JC, Bates DM. 2009. Mixed-effects models in S and S-PLUS. Springer. 16 

Pretzsch H. 2005. Diversity and productivity in forests: evidence from long-term experimental plots. Forest diversity 17 
and function. Springer, 41–64. 18 

R Core Team 2014. R: A language and environment for statistical computing. R Foundation for Statistical 19 
Computing, Vienna, Austria. URL http://www.R-project.org/. 20 

Sievänen, R., Nikinmaa, E., Nygren, P., Ozier-Lafontaine, H., Perttunen, J., Hakula, H., 2000. Components of 21 
functional-structural tree models. Ann. For. Sci. 57, 399–412. 22 

Sprugel DG. 2002. When branch autonomy fails: Milton’s Law of resource availability and allocation. Tree 23 
Physiology 22: 1119–1124. 24 

Sprugel DG, Hinckley TM. 1988. The branch autonomy concept. Response of trees to air pollution: The Role of 25 
Branch Studies. In: Winner W.E. & Phelps L.G. E, ed. Proc. Workshop National Forest Response Program.7–23. 26 

Torquato LP, Auty D, Hernández RE, Duchesne I, Pothier D, Achim A. 2014. Black spruce trees from fire-origin 27 
stands have higher wood mechanical properties than those from older , irregular stands 1. 10: 1–10. 28 

Valentine HT, Amateis RL, Gove JH, Mäkelä A. 2013. Crown-rise and crown-length dynamics: application to 29 
loblolly pine. Forestry 86: 371–375. 30 

Vincent G. 2006. Leaf life span plasticity in tropical seedlings grown under contrasting light regimes. Annals of 31 
Botany 97: 245–55. 32 

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.553v1 | CC-BY 4.0 Open Access | rec: 23 Oct 2014, publ: 23 Oct 2014

P
re
P
rin

ts

http://www6.nancy.inra.fr/foret-bois-lerfob/Zoom-sur/Outils-pour-le-traitement-d-images/Tomographie-X/Encodage
http://www6.nancy.inra.fr/foret-bois-lerfob/Zoom-sur/Outils-pour-le-traitement-d-images/Tomographie-X/Encodage


26 
 

Van der Wal DW. 1985. A proposed concept of branch autonomy and non-ring production in branches of Douglas-fir 1 
and grand fir. (Doctoral dissertation, University of Washington). 2 

Ward C, Pothier D, Paré D. 2014. Do Boreal Forests Need Fire Disturbance to Maintain Productivity? Ecosystems 3 
17: 1053–1067. 4 

Weiskittel AR, Hann DW, Kershaw Jr JA., Vanclay JK. 2011. Forest Growth and Yield Modeling. Chichester, UK: 5 
John Wiley & Sons, Ltd. 6 

Weiskittel AR, Maguire DA, Monserud RA. 2007. Response of branch growth and mortality to silvicultural 7 
treatments in coastal Douglas-fir plantations: Implications for predicting tree growth. Forest Ecology and 8 
Management 251: 182–194. 9 

West PW. 1993. Model of above-ground assimilate partitioning and growth of individual trees in even-aged forest 10 
monoculture. Journal of Thoeretical Biology 161: 369–394. 11 

Wilson JB. 1988. A review of evidence on the control of shoot : root ratio, in relation to models. Annals of Botany 61: 12 
433–449.  13 

 14 

  15 

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.553v1 | CC-BY 4.0 Open Access | rec: 23 Oct 2014, publ: 23 Oct 2014

P
re
P
rin

ts



27 
 

Table 1 Characteristics of the 10 sample trees in the dataset. 1 

  

Age Number of 
complete rings 

used on the 
analysis 

Total Height 
(m) 

Diameter at 
breast height 

(cm) 

Length of 
the crown 

(m) 

Number of 
measured 

knots 

T01 82 14 14.02 15.4 5.04 726 

T02 85 19 14.15 14.1 4.3 620 

T03 86 27 15.27 15.6 4.8 819 

T04 93 32 11.81 14.3 2.09 568 

T05 104 45 14.22 16.3 5.32 1066 

T06 106 47 20.52 22.2 8.77 1198 

T07 113 48 18.2 21.4 5.82 514 

T08 118 51 16.92 21.8 8.32 1121 

T09 139 78 16.28 17.8 5.42 993 

T10 152 84 20.8 22.4 5.25 1518 

              

mean 107.8 68.5 16.219 18.13 5.513 914.3 

sd 23.47 24.36 2.93 3.45 1.90 321.14 

 2 

  3 
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Table 2 Definitions and abbreviations of the variables used in this paper 1 

    Description 

Tree-level variables   

DBHt   Diameter of the tree at 1.3 m at time t (mm) 

Aget   Age of the tree at time t 

GUlen   Length of the annual growth unit (m) 

HDt   Ratio of total tree height to DBH calculated for each year of growth at time t 

 KSRt   Ratio of total knot area increment to the stem basal area increment at time t 

 

Ring-level variables 
  

RN   Annual ring number from the  pith of the main stem at the level of each knot 

RWt   Annual ring width at time t (mm) 

l,t   Distance from the from the pith of the stem at time t (mm) 

GUpos   Relative position of the knot initiation point  along the annual growth unit (varies from 0 to 1) 

Hk   Position of the initiation point of the knot along the stem (ground level = 0) (m) 

   

Knot-level variables   

ΔDt   Annual increment of the knot diameter from time t-1 to t (mm) 

Dt   Predicted knot diameter at time t  (mm) 

ΔZt   Annual increment of the vertical position of the knot from time t-1 to t (mm) 

      

 2 

  3 
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Table 3 Fixed effects parameter estimates and standard errors of the KSR model given by 1 

equation (2) and the model for the number of new branches given by equation (3).  2 

 3 

Model Parameter Estimate S.E. P-value 

equation (2) 

a1 -0.3956 0.11947 <0.0001 

a2 4.1717 0.23896 <0.0001 

a3 -0.0114 0.00169 <0.0001 

equation (3) 

b1 1.7864 0.15040 <0.0001 

b2 0.0354 0.00934 <0.0001 

b3 0.0153 0.00105 <0.0001 

b4 -0.0006 0.00024 <0.0001 

 4 
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Table 4 Fixed effects parameter estimates and standard errors for each section of the knot 1 

diameter model given by equation (4). Section 1: knot initiation (1 to 3 years), Section 2: growth 2 

phase (4 to 25 years), Section 3: stabilisation and death (>25 years). 3 

  4 

    Section 1   Section 2   Section 3 

Parameter Estimate S.E P-value   Estimate S.E P-value   Estimate S.E P-value 

c1           -0.0338 0.01127 0.0026   0.0139 0.00198 <0.0001 

c2           0.5166 0.00219 <0.0001   0.9699 0.00150 <0.0001 

c3   1.0144 0.00671 <0.0001   -0.0302 0.00047 <0.0001   -0.0020 0.00006 <0.0001 

c4   0.3661 0.01665 <0.0001   0.1285 0.00508 <0.0001   0.0068 0.00058 <0.0001 

c5                   0.0002 0.00002 <0.0001 

c6   0.2653 0.01055 <0.0001   0.1031 0.00094 <0.0001   0.0057 0.00053 <0.0001 

c7           0.0549 0.00628 <0.0001         

c8           -0.0004 0.00011 0.0003   -0.0001 0.00002 <0.0001 

c9   -0.0011 0.00029 <0.0001   -0.0004 0.00008 <0.0001   -0.0002 0.00001 <0.0001 

c10       

 

          0.0006 0.00017 <0.0001 
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Table 5 Fixed effects parameter estimates and standard errors for each section of the knot 1 

vertical position model given by equation (5). Section 1: typically increasing vertical position 2 

(years 0 to 50), Section 2: typically decreasing vertical position (years > 50).  3 

 4 

    Section 1   Section 2 

Parameter Estimate S.E P-value 
 

Estimate S.E P-value 

d1   -0.2753 0.03019 <0.0001   0.0188 0.00447 <0.0001 

d2   -0.0027 0.00025 <0.0001   -0.0003 0.00014 0.0328 

d3   0.1864 0.00236 <0.0001   0.9719 0.00391 <0.0001 

d4   -0.0039 0.00012 <0.0001   0.0002 0.00004 <0.0001 

d5   0.1294 0.00097 <0.0001   -0.0357 0.00255 <0.0001 

d6   0.2498 0.00927 <0.0001   -0.0033 0.00149 0.0252 

d7   0.0064 0.00211 0.0024         

d8   0.0036 0.00015 <0.0001         

d9   0.0009 0.00009 <0.0001   0.0001 0.00004 0.0074 
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Captions for figures 1 

 2 

Fig. 1 The knot extraction process. A) Extraction of the position and diameter of each knot 3 

profile on CT scanning images using the ImageJ Java plug-in 'Gourmand' and B) reconstruction 4 

of the 3D geometry of each knot using the Java plug-in “Bil3D” 5 

  6 

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.553v1 | CC-BY 4.0 Open Access | rec: 23 Oct 2014, publ: 23 Oct 2014

P
re
P
rin

ts



33 
 

Fig. 2 Inferring ring width at the location of a knot A) interpolation of the rings between the two 1 

discs to reconstruct the log and B) selection of the two cardinal directions bordering the knot to 2 

reconstruct the ring widths along the knot profile. 3 

 4 
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Fig. 3 Inferring knot annual increments A) Example of ring width deformations around a knot; 1 

B) extraction of the annual knot data. 2 

 3 
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Fig. 4 Distributions of annual increments in diameter (ΔDt) and vertical position (ΔZt) of the 1 

knot against annual ring number from the stem’s pith. The grey line indicates the median of all 2 

observations for a given ring number. Contours provide the distribution quantiles around the 3 

median 4 
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Fig. 5 Scatterplots showing the evolution of KSR (total annual knot area increment/stem 1 

increment at 1.3 m) with tree age. Time series do not start at age 0 because HDt assessments start 2 

when the stem has reached a height of 1.3 m. Points = observed values; red lines = model 3 

predictions (Equation 1; Table 3) 4 

 5 

  6 

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.553v1 | CC-BY 4.0 Open Access | rec: 23 Oct 2014, publ: 23 Oct 2014

P
re
P
rin

ts



37 
 

Fig. 6. Scatterplots of observed KSRt vs. HDt in each sample tree for cambial ages 5, 15, 25 and 1 

35 at breast height. The linear regressions fitted though the points show a positive correlation 2 

between the two variables for all ages. The shaded areas represent the standard errors. 3 
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Fig. 7. 3D reconstruction of sections of two stems showing deviation of the pith related to 1 

possible stem breakage 2 

 3 

  4 

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.553v1 | CC-BY 4.0 Open Access | rec: 23 Oct 2014, publ: 23 Oct 2014

P
re
P
rin

ts



39 
 

Fig. 8 Distribution of the model residuals (sorted by quantiles) against ring number A) knot 1 

diameter (Equation 4, Table 4) and B) knot vertical position (Equation 5, Table 5). The grey line 2 

indicates the median of all observations for a given ring number. Contours provide the 3 

distribution around the median. 4 
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Fig. 9 Simulations of a single knot from equations (4) and (5) at 6.1 m of the main stem. Stem 1 

increments of tree T10 were used as the reference level for input parameters. A) Radial growth 2 

decreased by 50%; B) Reference level and C) Radial growth increased by 50%. Real height 3 

growth from tree T10 was used for all simulations. The knot was assumed to have died when 4 

diameter increments reached zero. Red: live section; Blue: dead section.  5 

 6 

  7 

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.553v1 | CC-BY 4.0 Open Access | rec: 23 Oct 2014, publ: 23 Oct 2014

P
re
P
rin

ts



41 
 

Fig. 10 Reconstruction of a 1.5-m section from the base of the second log of tree T04 (i.e. at 2.5 1 

m from the tree base). A) Real knots extracted using the CT scanning data. B) Simulated knots 2 

using the known insertion point, azimuthal orientation around the stem, and year of occlusion. 3 
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