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Abstract

The branch autonomy principle, which states that the growth of individual branches can be
predicted from their morphology and position in the forest canopy irrespective of the
characteristics of the tree, has been used to simplify models of branch growth in trees. However,
observed changes in allocation priority within trees towards branches growing in light-favoured
conditions, referred to as ‘Milton’s Law of resource availability and allocation’, have raised
questions about the applicability of the branch autonomy principle. We present models linking
knot ontogeny to the secondary growth of the main stem in black spruce (Picea mariana (Mill.)
B.S.P.), which were used to assess the patterns of assimilate allocation over time, both within
and between trees. Data describing the annual radial growth of 445 stem rings and the three-
dimensional shape of 5377 knots were extracted from optical scans and X-ray computed
tomography images taken along the stems of 10 trees. Total knot to stem area increment ratios
(KSR) were calculated for each year of growth, and statistical models were developed to
describe the annual development of knot diameter and curvature as a function of stem radial
increment, total tree height, stem diameter, and the position of knots along an annual growth
unit. KSR varied as a function of tree age and of the height to diameter ratio of the stem, a
variable indicative of the competitive status of the tree. Simulations of the development of an
individual knot showed that an increase in the stem radial growth rate was associated with an
increase in the initial growth of the knot, but also with a shorter lifespan. Our results provide
support for ‘Milton’s Law’, since they indicate that allocation priority is given to locations where
the potential return is the highest. The developed models provided realistic simulations of knot
morphology within trees, which could be integrated into a functional-structural model of tree

growth and above-ground resource partitioning.
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Introduction

Models of carbon assimilate allocation in trees generally consider branches to be part of either
the woody shoot or the crown (Landsberg and Waring 1997; Mathieu et al. 2009). However,
considering branch xylem as a separate sink can extend the practical applicability of functional-
structural tree models (FSTMs; Sievénen et al. 2000) to include wood properties considerations.
Knots are formed when branches are occluded by growing tree stems, and exert a strong
influence on the end-use characteristics of wood products (Buksnowitz et al. 2010). Knots affect
both visual and mechanical properties, and consequently lumber value (Dinwoodie 2000).
Therefore, silviculturists need tools to understand the trade-offs between stem radial growth and
branch size (Weiskittel et al. 2007; Hein et al. 2008), while among wood processors there is
increasing interest in optimizing lumber production by accounting for the location and size of

knots within logs (Lemieux et al. 2002; Moberg and Nordmark 2006).

Knot formation is driven by complex spatiotemporal interactions between a tree and its
environment. Thus, knowledge of the biological processes that regulate assimilate partitioning in
trees could improve models of branch growth. The branch autonomy principle (Van der Wal
1985; Sprugel and Hinckley 1988) has been used in some FSTMs to simplify the modelling
process (Bosc 2000; Kull and Tulva 2000). The branch autonomy principle states that the growth
of individual branches can be predicted from their morphology and position in the forest canopy,
irrespective of tree characteristics. Models that incorporate this principle can also predict
mortality based on the growing space (Mitchell 1975) or the amount of light (Nikinmaa and Hari
1990) available to individual branches. However, there is an important limitation to this

principle. By comparing the height of the lower limit of the living crown in trees of different
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sizes, Sprugel (2002) showed that branches on supressed trees were more likely to survive and
grow than the equivalent branches on dominant trees. This implied shift in allocation priority
within trees towards branches in light-favoured positions, referred to as ‘Milton’s Law of
resource availability and allocation’ (Sprugel 2002), suggests that assimilates are invested where
the potential return is highest. This is consistent with the results of Nikinmaa et al. (2003), who
obtained improved predictions of crown development when considering both the position and the
light environment of branches. However, experimental confirmation of Milton’s Law is
generally restricted to static assessments of the location of the crown base in even-aged forest

stands (Valentine et al. 2013).

Branch ontogeny can be studied in long-term experiments (Pretzsch 2005), but repeated
measurements on the same trees are time-consuming and costly. One solution to this problem is
to use empirical branch distribution models to simulate the temporal development of tree and
branch growth using cross-sectional data i.e. observations of the number, location and size of
branches made on trees of different ages (Colin and Houllier 1991; Mékinen and Mékel& 2003;
Achim et al. 2006; Weiskittel et al. 2007). However, the simplicity of the approach comes at the
expense of reduced accuracy for some branch measurements (Duchateau et al. 2013a). More
recently, non-destructive techniques for rapidly generating high-resolution data have been
developed, such as infrared imaging, optical scanning, magnetic resonance imaging (MRI), and
computed tomography (CT) using X-rays or gamma rays (Moberg 2001; Longuetaud et al. 2012;
Dutilleul et al. 2014). These innovations allow the use of internal data to simultaneously

reconstruct stem and knot growth over time.
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In this study we present models linking knot ontogeny to the secondary growth of the main stem
in black spruce (Picea mariana (Mill.) B.S.P.), a dominant species in the North American boreal
forest. We used data from high-resolution CT scans of tree stems to reconstruct the history of
both stem and knot development, with the aim of developing models that would apply in an
FSTM framework. First, we tested the hypothesis that the ratio of branch to stem growth was
dependent on stem characteristics indicative of the competitive status of the tree. We then
developed statistical models for predicting the evolution of individual knot diameter and
curvature using a series of predictors related to the position in the tree, stem radial growth, and
other general stem characteristics. This allowed us to test ‘Milton’s Law’ using longitudinal data
i.e. repeated measurements of branch and stem growth over time. This approach allowed us to
make detailed simulations of knot development while considering the variation in assimilate

partitioning between trees.

Materials and methods

Tree sampling

Sample trees were collected from seven naturally-regenerated, unmanaged forest stands in the
North-Shore region of Quebec, Canada. All sampling locations were part of a network of sites
established to study the growth of spruce-moss forests after fire (Barrette et al. 2013; Torquato et
al. 2014; Ward et al. 2014). At the time these plots were established, efforts were made to
maintain site characteristics (i.e. surface deposit, topographic position, exposure and soil

drainage) as constant as possible and representative of mesic conditions (Ward et al. 2014).
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Because CT-Scanning is costly and the associated data processing time-consuming, we worked
with a limited number of sample trees. In each of the seven stands, two trees were randomly
selected for destructive sampling. However, four trees were omitted from the analysis due to
missing discs and the presence of wood decay. Of the ten trees in our final sample, eight came
from even-aged plots that had regenerated after fires dating back to between 66 and 152 years
(Bouchard et al. 2008). Two more trees (T09 and T10) were selected from one uneven-aged plot
where the time since the last stand-replacing fire exceeded 200 years. The sample trees had a

wide range of ages, crown size and stem dimensions (Table 1).

Annual knot data

After felling, each tree was cut into 2.5-m logs, giving a total of 41 logs that were then
transported to the Institut National de la Recherche Scientifique in Quebec City and scanned
using a Somatom Sensation 64 CT scanner (Siemens Medical Solutions USA, Inc., Malvern,
PA). Each log was scanned at 2-mm intervals along its longitudinal axis with a 2-mm-wide X-
ray beam (120 kV-50 mA), so that the scanned segments were contiguous. The pixel size was

0.35 mm x 0.35 mm in the transverse direction.

Knot geometry was extracted using the ImageJ 1.44 free software (Abramoff et al. 2004), with a
Java plug-in (‘'Gourmand', version 1.01) developed at INRA, Nancy, France (Longuetaud et al.
2012). On successive images, the edges of each knot were manually delineated with a series of
points (Fig. 1A). A second purpose-built plug-in named ‘BIL3D’ (Colin et al. 2010) was
developed to extract the position and 3D geometry of each knot using the Cartesian coordinates

of each point (Fig. 1B). The cross section of each knot from its point of origin to the bark of the
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stem was represented by fitting successive circles in the longitudinal-tangential plane to the
points located manually at the tangential limits of the knots on successive CT images. In a
database, the diameter (D) of each circle was recorded, as well as the distance from the stem’s
pith (1) and position of its geometrical centre along the longitudinal stem axis (Z, referred to as
the ‘vertical position”). This way, we obtained a representation of the geometric profiles of 5377
knots. A more detailed description of the knot reconstruction method was presented by

Duchateau et al. (2013a).

Knot development for each successive year of growth (t) was reconstructed using the diameter
(Dy) and vertical position (Z;). To avoid local irregularities associated with the manual extraction
of knot boundaries on the CT images, and to obtain a parametric description of each knot that
was dependent on the radial position within the stem, smoothed knot profiles were obtained by
fitting the same nonlinear model to both series of D; and Z; measurements. This was based on a

Weibull equation with an additional linear term:

_ l
ye = a(l - e( ﬁ(Rmax—l)>> +ou-l (0< 1< Rogy) &)

where y; represents either the Dy or Z; values (mm), | is the position along the x-axis (mm) , Rmax
is the total length (mm) of the knot along the x-axis and a, B and p are parameters to be
estimated empirically. This model was selected because it can accurately describe a wide variety

of knot shapes (Duchateau et al. 2013a).

The functions were fitted to each knot independently using the nls function of the nime library in

the R statistical programming environment (R Core Team, 2014). The models for both D; and Z;

7
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converged for 95% of the knots in the database. Visual examination revealed that non-
convergent knots were generally small and sinuous. Indeed, convergent knots represented 98%
of the total volume of knots in the entire dataset, which we considered representative of the full

history of knot growth in our sample trees.

Annual ring data from the main stem

Annual ring data from the main stem were difficult to obtain from the CT images due to factors
such as narrow rings and the higher moisture content of the sapwood. One-cm-thick discs were
hence cut from the ends of each log to reconstruct the growth history of the stems. Discs were
optically scanned and annual ring boundaries were delineated in the four cardinal radial
directions using image analysis software (WinDENDRO™; Régent Instruments, Quebec City,

2005; Guay et al. 1992).

To link annual changes in knot geometry with stem radial increments, we estimate the latter at
the position of each knot. In each cardinal direction, a linear interpolation was made between the
widths of each matching ring from both ends of each log (Fig. 2A). For rings present near the
pith of the lower disc but absent from the upper disc, we used the mean linear interpolation
coefficient of the first five complete rings. This way, we obtained estimates of annual ring widths

at any height along the stem in the four main cardinal directions.

To reconstruct stem growth in the azimuthal direction of each knot (Fig. 2B), a second

interpolation was made from the two surrounding cardinal directions for which we had

measurements. In this case we used a weighted average of the two known ring width series
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located on each side of the knot. We defined o, as the azimuth angle between a knot and one of
the two cardinal directions on each side. The weighting factor was calculated as (90-a,)/90,
which approached a value of 1 if the knot orientation was close to one of the cardinal directions.
Due to irregularities in stem shape, the resulting series of stem rings associated with a given knot
did not end in the same exact location as the knot-stem interface was located on the CT images.
Therefore, a small correction constant was added (or subtracted) to each ring in the series to

ensure that both matched exactly.

In a final step in the knot and stem growth reconstruction process, we traced back the annual
limits of primary growth. Each annual elongation of the shoot was defined as a growth unit
(GU). Like other conifers, black spruce produces several nodal and internodal branches within a
growth unit. Nodal branches are those forming a whorl at the top of a GU (Achim et al. 2006,
Auty et al. 2012). Botanically, the branches of conifers do not technically originate from the
same vertical position, these are referred to as ‘pseudo-whorls’ (Fisher and Honda 1979).
However, this distinction was not apparent at the resolution of our CT-scanning measurements.
Therefore, we summed the basal areas of all branches that originated from the same CT image,
which facilitated the identification of pseudo-whorls of branches that were used as the limits of
annual GUs. To avoid large errors, we ensured that the number of GUs matched the difference in
the number of annual rings measured at both ends of each log. A more detailed description of the

growth unit identification method is presented in Duchateau et al. (2013b).

Once we had obtained a full description of both the knots and stem shape, a final step was to

obtain the annual increments in knot diameter (ADy) and vertical position (AZ;). These were
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computed using the intersection points between stem rings and knots. The diameter of each knot

was measured perpendicular to its central axis at each intersection point (Fig. 2)

Model development

Tree-level models

To examine the variation in biomass allocation between the stem and branches over time, the
ratio of knot to stem growth (KSR;, dimensionless) was calculated, for each year of growth (t),
as the sum of all knot area increments at the surface of the stem divided by the annual basal area
increment of the stem at 1.3 m. This process was repeated for all years with complete growth
data along the stem. When knots had reached a constant or decreasing diameter they were

considered to be dead.

To assess the variation of KSR; through the life of the tree, we developed a linear mixed-effects
model (Pinheiro and Bates 2009) describing its evolution as a function of tree height-diameter
ratio and tree age. To assess the effect of within stand competition on KSR;, the ratio (HD;,
m/cm) between tree height (H;,) and its diameter at breast height (DBH;, measured at 1.3 m)
was used as a surrogate for the competitive status of the subject trees at a given age. This ratio is
useful because inter-tree spacing is known to strongly affect crown development and hence the
radial growth of the stem, whereas it has much less effect on height growth (Weiskittel et al.
2011). Since values of KSR;; were continuous and non-negative, it was modelled as a gamma

distribution with a log-link:

ln(KSRl.’t) =a1+ ay- HDi,t +as -Agel.’t + 51’ (2)
10
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where In(KSR;;) is the natural logarithm of the knot to stem ratio in a given year, Age; is the age

of the tree (years), aj, a,, a are the model parameters and g; is the random effect for each tree (i).

Next, we examined the effect of KSR;; on the number of new branches produced in a given year
by fitting a Poisson regression model, with a log-link, describing the number of new branches

per stem as a function of KSRj;, tree age and their interaction:

ln(NBth) = bl + bz ' KSRl't + b3 ' Agel.t + b4 ' KSRit ' Agel.t + 61’ (3)
where In(NBRj;) is the natural logarithm of the number of new branches per stem in a given year,

bi1, by, bs, by are the model parameters, and all other variables are as previously defined.

The models presented in equations 2 and 3 were fitted using the glmer function in the Ime4
library (Bates et al. 2014) of the R statistical programming environment (R Core Team 2014).
Tree-level random effects were included to account for the hierarchical structure of the data
(Pinheiro and Bates 2009). In model fitting, we began by screening all potential tree-level
explanatory variables and biologically plausible interaction terms. Variables were selected after
calculating the variance inflation factors (VIF), to address any potential multicollinearity issues
(O’brien 2007). Variables that were highly correlated (VIF >4) were excluded from the models.
Variable selection was achieved using a backwards elimination process and model selection was
based on Akaike’s information criterion (AIC) (Akaike 1974). Chi-squared-based likelihood
ratio tests were used to evaluate the significance of terms that were successively dropped from
the model. In the absence of a significant difference (p>0.05), the simplest model was retained.

Parameter estimates were obtained using the maximum likelihood method.

11
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Individual knot models

Next, statistical models were developed to describe the temporal evolution of the morphology of
individual knots using annual ring- and tree-level characteristics as independent variables.
Initially, we attempted to fit a single model describing both vertical position (Z;;) and knot
diameter (D;;) simultaneously, thereby reconstructing the entire knot in a single step. However,
this led to an underestimation of knot diameter in the first years of growth that carried over for
the entire knot profile. Therefore, separate models were developed for each separate component.
Also, the models describing each component over time were divided into sections to facilitate the
fitting process. Individual knot diameter and curvature models were fitted to the data from a
random selection of 75% of the total population of knots, while the remaining data were used for

model evaluation.

Knot diameter model

We observed relatively consistent patterns in the diameter development of the knots. There was a
rapid increase in diameter increment in the first three years of knot growth, followed by a
gradual decline until branch death (Fig. 4A). On average, branch increments reached zero at
around year 25. We hence divided each diameter profile into three sections: 1) the initiation
section (years 0 to 3), 2) the growth section (years 4 to 25) and 3) the stable or declining section
(years > 25). In the initiation section, because AD; j; values did not follow a Gaussian
distribution, D was modelled directly. In the remaining two sections AD ;j; was used as the

response variable.

12
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Knot characteristics at time t-1 were used to make predictions at time t. This ensured a smooth
transition between the different sections of the model. After the variable selection process, the

general form of the knot diameter model could be expressed as:

ADi,j,t or Di,j,t =C + Cy- ADi,j,(t—l) + C3- Di,j,t—l + Cy: GUpOS ij + Cg * li,j,t + Co" RWi,j,t + C7 *

HDi,t + Cg -Agel.‘t + Cg- DBHi’t + Cio0" Hi,j + 61',]' +¢€ (4)

where GUpqs i is the relative position of the knot initiation point along the GU (varies from 0 at
the base to 1 at the stem apex), RWi; is the ring width of the stem at the location of the knot in
year t, d;;are the tree- and knot-level random effects and ¢ is the residual error. All other

variables are as previously defined.

Knot curvature model

The average annual variation of AZ;; was typically positive until approximately ring 40. After
this point the vertical position stabilized, before decreasing after ring 60 (Fig 4B). The knot
vertical position profiles were therefore separated into two sections delineated at ring number 50.
Characteristics of the knots in year t-1 were also included in this model, thus ensuring a smooth
transition between the sections. Various combinations of the explanatory variables were used in

each section of the model. The general form of the knot diameter model was expressed as:

AZi,j,t == d1 + d2 - Di,j,(t—l) + d3 " AZi,j,(t—l) + d4, * li,j,t + ds " RWi,j,t + d6 - GU + d7 * HDi,t +

posi,j

dS-Agei‘t+d9-DBHi,t+ 6i,j+€ (5)

where all variables are as previously defined. See Table 2 or a full description of all variable

names used in the models.

13
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These models were fitted using functions contained in the nlme library of the R statistical
programming environment (R Core Team 2014). A power variance function of annual ring
number from the pith at the level of each knot (RN) was included to account for
heteroscedasticity in the model residuals. In addition, a continuous first-order auto-regressive
term (AR1) was added to account for autocorrelation between successive measurements. The
model fitting process started by including a full set of potential ring-, knot- or tree-level
explanatory variables and model selection was performed using the same backwards elimination

procedure as described in the section on tree-level models.

Simulations

To analyse the influence of tree growth and competitive status on knot development, we
reconstructed a single knot at 6.1 m using the predictions from equations 3 and 4 and the stem
and growth characteristics of tree T10. Then, while keeping tree height constant, we increased
the annual ring increments by 50%. The diameter and vertical profiles of the original knot were
then recalculated. The process was repeated by decreasing the annual stem increments of the

same tree by 50% of their actual values and again predicting knot morphology.

In a second simulation, all knots from a 1.5-m section starting at a height of 2.5 m in tree T4
were simulated using equations 3 and 4 and compared to the real knots, as extracted from the CT
images. For this simulation we used the known insertion points along the stem and azimuthal
orientation of each knot. Where appropriate, the year at which a knot was observed to be

completely occluded by the growing stem was used as the end-point of the simulation.

14
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Results

Tree-level models

The knot to stem increment ratio (KSR;) varied considerably with tree age. On average, KSR
was higher when trees were young and decreased rapidly in the first few years, before stabilizing
(Fig. 5). The rate of the initial decrease varied among trees. Values of KSR; greater than 1
indicated that, in a given year, the total knot basal area increment exceeded that of the stem. In
addition to the negative relationship with tree age, KSR; ratio was positively related to HDy, such
that more slender trees allocated relatively more biomass to their branches than to the main stem
(Fig. 6). Furthermore, in a given year, the predicted number of new branches produced was
greater in trees with higher KSR; values, but the effect of KSR, decreased with increasing tree

age (equation 3; Table 3).

In some trees, KSR values showed large interannual fluctuations from the general trend (Fig. 5).
The 3D reconstructions of the stem and knots for two of these trees showed large deviations of
the pith of the main stem, likely a result of leader loss or stem damage. While one of these trees
retained apical dominance in a single leader (T01), the other produced a fork (T09; Fig. 7). The
model produced a good fit to all trees except tree T03, although visual examination of the 3D

reconstruction of this stem revealed no obvious explanation for the lack of fit.

15
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Knot-level models

Table 4 shows the fixed effects parameter estimates and standard errors for each section of the
final knot diameter model (equation 4). To evaluate the model, knot diameter profiles were
predicted and compared to observations in the evaluation dataset. Plots of the raw residuals
(observed minus predicted values) showed that, on average, knot diameter was slightly
underestimated in the middle section of the knot profiles, but overall the model was unbiased
(Fig 8A). The absolute value of 50% of the residuals was less than 2.6 mm along the pith-to-bark
profiles, while the absolute value of 90% of the residuals was less than 9.7 mm. The mean

absolute error was 0.031 and the root mean square error (RMSE) 0.054.

Table 5 shows the fixed effects parameter estimates and associated standard errors for each
section of the final model of knot vertical position (equation 5). Again, predictions of knot
vertical profiles were compared to observations in the evaluation dataset. On average, the model
was unbiased along the knot profile up to ring 75, with a slight overestimation beyond this point
(Fig. 8B). The absolute value of 50% of the residuals was less than 11.9 mm along the entire
pith-to-bark profiles, while the absolute value of 90% of the residuals was less than 36.7 mm.

The mean absolute error for this model was 0.118 and the root mean square error (RMSE) 0.189.

Simulations

When we used the dimensions and growth of a real tree (T10) to simulate knot growth, the
diameter increments in the early years of knot development were positively related to the radial

growth of the main stem. However, knot longevity was reduced when the radial growth was

16
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artificially increased (and thus the HD ratio decreased). Knot growth ceased at ring 19 for the
elevated growth scenario, but it was maintained along its entire profile (47 years) when stem
growth was reduced (Fig. 9). In the real growth scenario, knot diameter increments began to
decline around ring 25. Tree HD ratio also had a significant effect in the first section of the knot

curvature model, although the effect was only apparent in the lower stem (not shown).

In the second simulation we reconstructed all knots in a 1.5-m section of tree T04. This showed
that although the diameter of larger knots was slightly underestimated, the models generally
produced accurate simulations of the diameter and shape of real knots. However, the models
produced less variation in knot insertion angle than was observed in reality (Fig. 10), which

would likely explain the larger residuals of the vertical position model.

Discussion

Resource allocation

This study provides further support to the idea that allocation of above-ground carbon assimilates
in trees is directed towards locations where the potential return is the highest (Sprugel 2002). To
maintain a favourable position in the canopy, trees subjected to high levels of competition
prioritize height growth over secondary radial growth (Lanner 1985). Consequently, the HD ratio
is a useful predictor of assimilate partitioning among tree organs (West 1993; King 2005).

Under the assumption that stem or branch area increments are proportional to biomass
accumulation, our results indicate a shift in assimilate allocation towards branches when tree

growth is constrained by competition. Likewise, Vincent (2006) found that lower light levels
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were associated with an increase in leaf life span, while King (1997) showed that the percentage
of biomass allocated to branches was higher in understory seedlings than in those growing in
large gaps. A similar concept of functional balance has also been used to explain the decrease in
shoot : root ratio when soil nutrients are a limiting factor (Génard et al. 2007). Under the
principles of teleonomy, these may be seen as adaptive responses of trees to environmental

factors, which would optimize their growth and survival probability (Lacointe 2000).

Despite large variation in annual knot growth, even among similar sized trees, the ratio of knot to
stem area increment (KSR) was shown to decrease systematically with tree age. Similar
ontogenetic effects have been highlighted by Wilson (1988) to describe changes in shoot : root
ratio as a plant grows. In this study, annual reconstructions of stem and branch development
suggested that high KSR values were also positively related to the number of new branches
initiated in a growth unit. While this is in agreement with the principles highlighted above, it
appears to contradict a common result of empirical branch distribution models, which is that
vigorous trees tend to initiate more branches in a given year (Maguire 1994; Makinen and Colin
1999; Hein et al. 2007). However, these studies typically presented models for the number of
nodal branches i.e. those forming a pseudo-whorl (Fisher and Honda 1979). Furthermore, in
models that consider both nodal and internodal branches, smaller branches (<5mm) are usually
ignored (Colin and Houllier 1991; Auty et al. 2012). An advantage of using CT scanning
technology is that all the knots were identifiable, including those that were occluded within the
stems. Furthermore, the identification of annual growth units along the stem was made easier
because it was possible to locate, with some certainty, the initiation point of branches at the

stem’s pith (Duchateau et al. 2013Db).
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The relationship of knot growth to HD ratio could be clearly seen in the simulations of individual
knot growth. An increase in HD ratio led to smaller but longer-lived knots, while the converse
was also true. Throughout the simulation, each knot was first located at the top of the stem but its
position relative to the stem’s apex shifted as the tree grew in height. Therefore, in the slower
growth scenario, the fact that the knot was still growing at the end of the simulation implies a
slower rate of crown recession. A lower crown base in trees subject to high competition is
consistent with previous results (Sprugel 2002; Valentine et al. 2013) and offers further support
for Milton’s Law of resource availability and allocation. Sprugel’s (2002) choice of name for this
principle made reference to poet John Milton’s (1667) phrase, “Better to reign in hell than serve
in heaven”. He used this analogy to highlight the fact that although branches in light-favored
conditions will tend to grow faster, a shaded branch on a shaded tree is more likely to survive
and grow than a similarly-shaded branch on a dominant tree. Our model provides a time-series
illustration of this principle. The vigorous growth of the knot in the first 10 to 15 years of the
accelerated growth scenario suggests that the carbon budget of the branch was more positive than
branches simulated in slow growth scenarios. Despite this, branch growth ceased earlier in the
accelerated growth scenario. Clearly, such behaviour could not be predicted based on individual
branch carbon budgets, which leads us to question the applicability of the branch autonomy

principle when modelling branch growth.

Modelling knot development

Previous studies have represented the dead portion of knots as a cylinder to reflect the cessation
of growth (Bjorklund 1997; Lemieux et al. 2001; Moberg 2001). However, around 40% of knots
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in our sample data had declining diameter profiles in the outer stem, presumably as a result of
branch deterioration after death. We accounted for this trend in the knot diameter model by
allowing negative growth predictions (Fig. 9). The inclusion of the diameter and vertical position
increments of the previous year as predictor variables allowed for smooth transitions between the
knot sections, which provided realistic knot shapes. Furthermore, analysis of the model residuals

showed that the models were relatively unbiased and generally accurate.

In the second simulation, annual predictions of knot diameter and vertical position produced
realistic reconstructions of the real knot profiles using the known insertion point, orientation and
year of occlusion of each knot. Models that can predict the vertical and azimuthal distribution of
branches within a growth unit, as well as the initial insertion angle of each branch in the main
stem, will provide even more realistic stem profiles. Even further improvements could be gained

from the addition of a self-pruning sub-model (Mé&kel& and Mé&kinen 2003).

Since the stem’s annual rings were only partially visible on the CT images (Fig. 1), it was
necessary to interpolate tree growth from sample discs. Despite this, our results indicate that knot
development is most strongly related to stem growth during the first 25 years of growth, by
which time knots have typically reached their maximum diameter. The use of annual rings close
to the pith of the main stem (i.e. those most likely to be detected on CT images) might therefore
provide enough information to accurately predict knot growth along the entire radial profile. In
this portion of the stem, algorithms can be used for automatically detecting annual growth rings
(Jaeger et al. 1999; Longuetaud et al. 2005), which could decrease the time required for data

analysis in future studies.
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The linear interpolation of annual ring width variation between two sample discs was a
simplification, since in reality growth rings deviate around knots (Pellicane and Franco 1994).
For this reason, the demarcation between stem and knot xylem cannot be considered as perfectly
discrete. Knot profiles were therefore extracted from the CT images by manually delineating
high density wood corresponding to a knot and the surrounding lower density stem wood.
Although the transition was generally clear enough to ensure accuracy (Fig. 1), the knot
reconstruction process produced some localized irregularities that did not reflect the true shape
of the knots. For this reason, we chose to smooth the radial profiles of each knot using a
combination of two Weibull equations, which can reproduce a wide variety of knot profiles
(Duchateau et al. 2013a). It is possible, however, that abrupt variations in knot shape were
missed due to the smoothing process. The interpretation of our results on knot and stem
allocation should therefore focus on general, long-term trends rather than on inter-annual
variation. In fact, the long-term trends presented at the stem level should be more robust, since

they aggregate information from a large number of individual knot profiles.

Conclusion

This study has provided an improved representation of the internal structure of tree stems by
linking knot development with stem growth. The use of CT scanning data allowed us to
reconstruct knot and stem ontogeny with unprecedented detail over a substantial time period. We
have found evidence for increased allocation to branches under conditions that limit the
secondary growth of the stem, which indicates that branches are non-autonomous entities. We
have also produced a model of individual knot morphology that could provide greater precision

21

Peer] PrePrints | http://dx.doi.org/10.7287/peerj.preprints.553v1 | CC-BY 4.0 Open Access | rec: 23 Oct 2014, publ: 23 Oct 2014




10

11

12

13

14

15

16
17

18

19
20

21
22

23
24

in the representation of knots in FSTMSs, thus expanding their applicability to the wood

processing sector.
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1 Table 1 Characteristics of the 10 sample trees in the dataset.

Age Number of Total Height Diameter at Length of Number of
complete rings (m) breast height thecrown measured
used on the (cm) (m) knots
analysis
TO1 82 14 14.02 154 5.04 726
T02 85 19 14.15 14.1 4.3 620
To3 86 27 15.27 15.6 4.8 819
To4 93 32 11.81 14.3 2.09 568
TO5 104 45 14.22 16.3 5.32 1066
TO6 106 47 20.52 22.2 8.77 1198
TO7 113 48 18.2 21.4 5.82 514
TO8 118 51 16.92 21.8 8.32 1121
T09 139 78 16.28 17.8 5.42 993
T10 152 84 20.8 22.4 5.25 1518
mean 107.8 68.5 16.219 18.13 5.513 914.3
sd 23.47 24.36 2.93 3.45 1.90 321.14
2
3
27
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Table 2 Definitions and abbreviations of the variables used in this paper

Description

Tree-level variables

DBH,
Age
GUpen
HD,
KSR,

Ring-level variables

Diameter of the tree at 1.3 m at time t (mm)

Age of the tree at time t

Length of the annual growth unit (m)

Ratio of total tree height to DBH calculated for each year of growth at time t
Ratio of total knot area increment to the stem basal area increment at time t

RN
RW,
I,
GUpos
Hy

Knot-level variables

Annual ring number from the pith of the main stem at the level of each knot

Annual ring width at time t (mm)

Distance from the from the pith of the stem at time t (mm)

Relative position of the knot initiation point along the annual growth unit (varies from 0 to 1)
Position of the initiation point of the knot along the stem (ground level = 0) (m)

AD,
D
AZ,

Annual increment of the knot diameter from time t-1 to t (mm)
Predicted knot diameter at time t (mm)
Annual increment of the vertical position of the knot from time t-1 to t (mm)
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N

Table 3 Fixed effects parameter estimates and standard errors of the KSR model given by

equation (2) and the model for the number of new branches given by equation (3).

Model Parameter Estimate S.E. P-value

al -0.3956 0.11947 <0.0001

equation (2) a2 4.1717 0.23896 <0.0001
a3 -0.0114 0.00169 <0.0001

bl 1.7864 0.15040 <0.0001

equation (3] b2 0.0354 0.00934 <0.0001
b3 0.0153 0.00105 <0.0001

b4 -0.0006 0.00024 <0.0001
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Table 4 Fixed effects parameter estimates and standard errors for each section of the knot
diameter model given by equation (4). Section 1: knot initiation (1 to 3 years), Section 2: growth

phase (4 to 25 years), Section 3: stabilisation and death (>25 years).

Section 1 Section 2 Section 3

Parameter  Estimate S.E P-value Estimate S.E P-value Estimate S.E P-value
cl -0.0338 0.01127 0.0026 0.0139 0.00198 <0.0001
c2 0.5166 0.00219 <0.0001 0.9699 0.00150 <0.0001
c3 1.0144 0.00671 <0.0001 -0.0302 0.00047 <0.0001 -0.0020 0.00006 <0.0001
ca 0.3661 0.01665 <0.0001 0.1285 0.00508 <0.0001 0.0068 0.00058 <0.0001
c5 0.0002 0.00002 <0.0001
c6 0.2653 0.01055 <0.0001 0.1031 0.00094 <0.0001 0.0057 0.00053 <0.0001
c7 0.0549 0.00628 <0.0001

c8 -0.0004 0.00011 0.0003 -0.0001 0.00002 <0.0001
c9 -0.0011 0.00029 <0.0001 -0.0004 0.00008 <0.0001 -0.0002 0.00001 <0.0001
cl0 0.0006 0.00017 <0.0001
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Table 5 Fixed effects parameter estimates and standard errors for each section of the knot
vertical position model given by equation (5). Section 1: typically increasing vertical position

(years 0 to 50), Section 2: typically decreasing vertical position (years > 50).

Section 1 Section 2
Parameter Estimate SE P-value Estimate SE P-value

d; -0.2753 0.03019 <0.0001 0.0188 0.00447 <0.0001
d, -0.0027 0.00025 <0.0001 -0.0003 0.00014 0.0328
ds; 0.1864 0.00236 <0.0001 0.9719 0.00391 <0.0001
ds -0.0039 0.00012 <0.0001 0.0002 0.00004 <0.0001
ds 0.1294 0.00097 <0.0001 -0.0357 0.00255 <0.0001
de 0.2498 0.00927 <0.0001 -0.0033 0.00149 0.0252
d; 0.0064 0.00211 0.0024

dg 0.0036 0.00015 <0.0001

do 0.0009 0.00009 <0.0001 0.0001 0.00004 0.0074
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Captions for figures

Fig. 1 The knot extraction process. A) Extraction of the position and diameter of each knot
profile on CT scanning images using the ImageJ Java plug-in ‘Gourmand’ and B) reconstruction

of the 3D geometry of each knot using the Java plug-in “Bil3D”
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Fig. 2 Inferring ring width at the location of a knot A) interpolation of the rings between the two
discs to reconstruct the log and B) selection of the two cardinal directions bordering the knot to

reconstruct the ring widths along the knot profile.
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1 Fig. 3 Inferring knot annual increments A) Example of ring width deformations around a knot;

2 B) extraction of the annual knot data.
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Fig. 4 Distributions of annual increments in diameter (ADy) and vertical position (AZ;) of the
knot against annual ring number from the stem’s pith. The grey line indicates the median of all
observations for a given ring number. Contours provide the distribution quantiles around the

median
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1 Fig. 5 Scatterplots showing the evolution of KSR (total annual knot area increment/stem
2 increment at 1.3 m) with tree age. Time series do not start at age 0 because HD; assessments start
3 when the stem has reached a height of 1.3 m. Points = observed values; red lines = model

4  predictions (Equation 1; Table 3)
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1 Fig. 6. Scatterplots of observed KSR; vs. HD; in each sample tree for cambial ages 5, 15, 25 and
2 35 at breast height. The linear regressions fitted though the points show a positive correlation

3 between the two variables for all ages. The shaded areas represent the standard errors.
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1 Fig. 7. 3D reconstruction of sections of two stems showing deviation of the pith related to

2 possible stem breakage

Peerd prePrints
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Fig. 8 Distribution of the model residuals (sorted by quantiles) against ring number A) knot
diameter (Equation 4, Table 4) and B) knot vertical position (Equation 5, Table 5). The grey line
indicates the median of all observations for a given ring number. Contours provide the

distribution around the median.
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Fig. 9 Simulations of a single knot from equations (4) and (5) at 6.1 m of the main stem. Stem
increments of tree T10 were used as the reference level for input parameters. A) Radial growth
decreased by 50%; B) Reference level and C) Radial growth increased by 50%. Real height
growth from tree T10 was used for all simulations. The knot was assumed to have died when

diameter increments reached zero. Red: live section; Blue: dead section.
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1 Fig. 10 Reconstruction of a 1.5-m section from the base of the second log of tree T04 (i.e. at 2.5
2 m from the tree base). A) Real knots extracted using the CT scanning data. B) Simulated knots

3 using the known insertion point, azimuthal orientation around the stem, and year of occlusion.

B R N R ARl K -

41

Peer] PrePrints | http://dx.doi.org/10.7287/peerj.preprints.553v1 | CC-BY 4.0 Open Access | rec: 23 Oct 2014, publ: 23 Oct 2014



