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Nucleotide variation and balancing selection at the Ckma

gene in Atlantic cod: Analysis with multiple merger coalescent

models

A high-fecundity organisms, such as Atlantic cod, can withstand substantial natural

selection and can at any time simultaneously replace alleles at a number of loci due to

their excess reproductive capacity. High-fecundity organisms may reproduce by

sweepstakes leading to highly skewed heavy-tailed offspring distribution. Under such

reproduction the Kingman coalescent of binary mergers breaks down and models of

multiple merger coalescent are more appropriate. Here we study nucleotide variation at

the Ckma (Creatine Kinase Muscle type A) gene in Atlantic cod. The gene shows extreme

differentiation between the North (Canada, Greenland, Iceland, Norway, Barents Sea) and

the South (Faroe Islands, North-, Baltic-, Celtic-, and Irish Seas) with a between regions F
ST

> 0.8 whereas neutral loci show no differentiation. This is evidence for natural selection.

The protein sequence is conserved by purifying selection whereas silent and non-coding

sites show extreme differentiation. Relative to outgroup the site-frequency spectrum has

three modes, a mode at singleton sites and two high frequency modes at opposite

frequencies representing divergent branches of the gene genealogy that is evidence for

balancing selection. Analysis with multiple-merger coalescent models can account for the

high frequency of singleton sites and indicate reproductive sweepstakes. Coalescent time

scales with population size and with the inverse of variance in offspring number.

Parameter estimates using multiple-merger coalescent models show fast time-scales.

Time-scales of mitochondrial DNA are about square root of the effective population size

and time-scales of nuclear genes are much faster.
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Einar Árnason1 and Katrı́n Halldórsdóttir2
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ABSTRACT8

A high-fecundity organisms, such as Atlantic cod, can withstand substantial natural
selection and can at any time simultaneously replace alleles at a number of loci due
to their excess reproductive capacity. High-fecundity organisms may reproduce by
sweepstakes leading to highly skewed heavy-tailed offspring distribution. Under such
reproduction the Kingman coalescent of binary mergers breaks down and models of
multiple merger coalescent are more appropriate. Here we study nucleotide variation
at the Ckma (Creatine Kinase Muscle type A) gene in Atlantic cod. The gene shows
extreme differentiation between the North (Canada, Greenland, Iceland, Norway,
Barents Sea) and the South (Faroe Islands, North-, Baltic-, Celtic-, and Irish Seas)
with a between regions FST > 0.8 whereas neutral loci show no differentiation. This
is evidence for natural selection. The protein sequence is conserved by purifying
selection whereas silent and non-coding sites show extreme differentiation. Relative to
outgroup the site-frequency spectrum has three modes, a mode at singleton sites and
two high frequency modes at opposite frequencies representing divergent branches of
the gene genealogy that is evidence for balancing selection. Analysis with multiple-
merger coalescent models can account for the high frequency of singleton sites and
indicate reproductive sweepstakes. Coalescent time scales with population size and
with the inverse of variance in offspring number. Parameter estimates using multiple-
merger coalescent models show fast time-scales. Time-scales of mitochondrial DNA
are about square root of the effective population size and time-scales of nuclear genes
are much faster.
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INTRODUCTION11

High fecundity translates into large excess reproductive capacity that would allow12

organisms to withstand substantial natural selection enabling them to bear the entailing13

high genetic load. Based on the concept of the cost of natural selection (Haldane,14

1957) high-fecundity organisms relative to low-fecundity organisms should at any time15

be able to adapt a larger proportion of their genome to meet various environmental16

challenges. Trying to explain the paradox of sexual reproduction Williams (1975) in his17
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Sex and Evolution book argues that high-fecundity coupled with type III survivorship18

of heavy mortality of young may be able to pay the 50% fitness cost of meiosis. He19

developed several models, such as the Elm/Oyster and the Cod/Starfish models, which20

emphasize the importance of high-fecundity for selection. Williams also discussed21

the concept of reproductive sweepstakes. There is no heritability of fitness and sexual22

reproduction continuously assembles Sisyphean genotypes. The distribution of offspring23

numbers is highly skewed, heavy-tailed and with high variance (lognormal). That24

is Williams’s fitness distribution. The environment factors are envisioned to act in a25

sequence of selective filters. With only a few factors (e.g. temperature, salinity, etc)26

there nevertheless can be an enormous number of different sequences of selective filters27

(environments) that do not recur. Hence a winning genotype is not permanent and28

must be continuously reassembled. Natural selection increases the variance in offspring29

number and thereby reduces effective population size genome-wide. Neutral variation30

will therefore drift faster under pervasive natural selection.31

Coalescent theory (Kingman, 1982a,b) traces the genealogy of a sample and is very32

useful for making inference of molecular data. However, in an extreme case under a33

winner-take-all sweepstakes reproduction all samples would coalesce immediately in34

the previous generation (Árnason, 2004) and there would be no variation. The Kingman35

coalescent, which is derived from (Wrigth/Fisher) models of low fecundity non-skewed36

offspring distributions, assumes a bifurcating genealogy and is not appropriate for repro-37

duction of this kind (Eldon and Wakeley, 2006; Schweinsberg, 2003; Wakeley, 2013).38

Some organisms may exhibit both high fecundity and highly skewed offspring distri-39

butions. For these organisms the Λ coalescent allowing multiple mergers of ancestral40

lineages (Pitman, 1999; Sagitov, 1999; Donnelly and Kurtz, 1999; Eldon and Wakeley,41

2006; Schweinsberg, 2003; Sargsyan and Wakeley, 2008) or Ξ coalescent allowing42

simultaneous multiple mergers of ancestral lineages (Schweinsberg, 2000; Möhle and43

Sagitov, 2001) may be more appropriate. Wakeley (2013) gives an overview of the44

development of coalescent theory in new directions. There is also active development of45

statistical inference methods associated with multiple merger coalescents (e.g. Birkner46

et al., 2013b, 2014). Studies on the high fecundity organisms Pacific oyster Crassostrea47

gigas (Hedgecock and Pudovkin, 2011) and Atlantic cod Gadus morhua (Árnason and48

Pálsson, 1996; Árnason et al., 1998, 2000; Carr and Marshall, 1991a; Carr et al., 1995;49

Pepin and Carr, 1993; Árnason, 2004) have provided data for a number of tests of50

some of the new coalescent models (Eldon and Wakeley, 2006; Eldon, 2011; Eldon51

and Degnan, 2012; Steinrücken et al., 2013; Birkner et al., 2013b). Atlantic cod thus52

provides a model for studies of multiple merger coalescent. In this paper we apply53

some of these new methods for Λ coalescents in a study of balancing selection at a gene54

showing extreme spatial differentiation in Atlantic cod.55

A dense genomic map of genetic variation in humans (and in model organisms)56

allows scanning the genome for signatures of natural selection (Voight et al., 2006;57

Sabeti et al., 2007; Storz, 2005). Asking what percentage of the human genome shows58

footprints of selection depends on the density of the maps and sensitivity of the various59

methods used (Voight et al., 2006; Sabeti et al., 2007; Storz, 2005). It is safe to say that60

only a small percentage of single nucleotide polymorphisms (SNPs) show footprints61

of selection in the low fecundity humans (Akey, 2009; Pickrell1 et al., 2009). For62

microsatellite loci 2% (13/624) were detected as outliers when African and non-African63
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human populations were compared (Storz et al., 2004). In contrast, comparable genome64

level studies in Atlantic cod find that 11% (26 out of 235) of independent SNPs (Moen65

et al., 2008) are FST outliers (by method of Beaumont and Nichols, 1996) and 4% SNPs66

(70 out of 1641 Bradbury et al., 2010) are Bayscan outliers (by method of Foll and67

Gaggiotti, 2008) likely undergoing selection. Similarly one fourth of microsatellite loci68

in Atlantic cod (Nielsen et al., 2006) are FST outliers. This supports our thesis that a69

considerable fraction of the Atlantic cod genome may be simultaneously under selection70

for different adaptations.71

More than half of the 70 outliers in Bradbury et al. (2010) study of Atlantic cod72

show adaptive parallel clines related to temperature on both the western and eastern73

side of the Atlantic Ocean. They show that multiple genes, located in three independent74

linkage groups, are involved. There are single genes as well as blocks of genes in75

“genomic islands” (Bradbury et al., 2013; Hemmer-Hansen et al., 2013). Some of the76

genes or blocks of genes show clear spatial patterns while other genes show complex77

spatio-temporal patterns in contrast to no differentiation of non-outlier (neutral) loci78

(Poulsen et al., 2011; Therkildsen et al., 2013). For example a locality in West Greenland79

shows great similarity to coastal areas in Iceland, implying either parallel adaptation on80

a fine scale or patterns of gene flow that are hard to reconcile with geographic distance.81

Another study (Hemmer-Hansen et al., 2014) adds even more complexity of population82

structure at outlier loci with little or no difference at non-outlier neutral loci.83

The Moen et al. (2008) study of differentiation among four Atlantic cod populations84

along the coast of Norway showed no differentiation among presumably neutral non-85

outliers loci with an average F̄ST = 0.0012. In contrast, the outlier loci, presumably86

under selection, the average F̄ST = 0.27 ranging from 0.08 to an extreme differention of87

0.83, representing almost fixation of alternative alleles. We analyze nucleotide variation88

at a large fragment of the gene showing extreme spatial differention to understand the89

nature of selection. It is the Ckma gene encoding a muscle isoform A of creatine kinase.90

Creatine kinases (CK) are crucially important in bioenergetic processes in cells and91

tissues (Wallimann et al., 1992, 2011). The creatine kinase/phosphocreatine system92

(CK/PCr) is an intracellular energy shuttle. CK generates Phosphocreatine (PCr) at the93

sites of ATP production in glycolysis and oxidative phosphorilation in mitochondria and94

regenerates ATP from PCr at subcellular sites of ATP use by ATPases. The physiological95

advantage is to provide a spatial and temporal energy buffer storing and releasing energy96

in and from PCr. Importantly the rate of intracellular diffusion of both Creatine (Cr)97

and PCr is one and three orders of magnitude faster than diffusion of ATP and ADP98

respectively.99

Here we thus have a gene with a well defined and well understood function. The100

gene shows extreme spatial differentiation most likely due to selection considering the101

behavior of neutral non-outliers. We ask what a detailed analysis of nucleotide variation102

using methods of multiple merger Λ coalescents at the scale of the gene itself can tell us103

about the nature of selection.104
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MATERIALS AND METHODS105

Population sampling106

We randomly sampled 122 individual cod from various localities from the distributional107

range of Atlantic cod (Figure S1). The samples come from our large sample database.108

The localities are the waters around Newfoundland (New), Greenland (Gre), Iceland109

(Ice), Faroe Islands (Far), Norway (Nor), and the Barents Sea, North Sea (Nse), Celtic110

Sea (Cel), Irish Sea (Iri), Baltic Sea (Bal), and the White Sea (Whi).111

For outgroup comparison we included samples of the sister taxa Arctic cod Bore-112

ogadus saida (Bsa) and Greenland cod G. ogac (Gog) both sampled in Greenland113

waters as well as Pacific cod G. macrocephalus (Gma) and Walleye pollock Theragra114

chalcogramma (Gch) sampled from the Pacific ocean. Carr et al. (1999) and Pogson115

and Mesa (2004) discuss the relationship and biogeography of these taxa. Coulson116

et al. (2006) provide the most comprehensive account based on mitochondrial genomics.117

They consider Arctic cod to be an outgroup for all these taxa. Atlantic cod and Walley118

pollock are sister taxa and Pacific cod slightly more distant. Pacific cod and Walleye119

pollock represent two separate but nearly simultaneous invasions of the Pacific with120

the Atlantic cod vs. Pacific cod split dated at 4 mya and the Atlantic cod vs. Walleye121

pollock split at 3.8 mya using conventional rates of mtDNA evolution (see time scales122

below). They suggest a nomenclature revision from Theragra chalcogramma to Gadus123

chalcogrammus for Walleye pollock. Greenland cod is a recent reinvasion of Pacific cod124

into the Arctic and Coulson et al. (2006) consider it to be a subspecies of Pacific cod.125

The Icelandic Committee for Welfare of Experimental Animals, Chief Veterinary126

Office at the Ministry of Agriculture, Reykjavik, Iceland has determined that the research127

conducted here is not subject to the laws concerning the Welfare of Experimental128

Animals (The Icelandic Law on Animal Protection, Law 15/1994, last updated with129

Law 157/2012). DNA was isolated from tissue taken from dead fish on board research130

vessels. Fish were collected during the yearly surveys of the Icelandic Marine Research131

Institute. All research plans and sampling of fish, including the ones for the current132

project, have been evaluated and approved by the Marine Research Institute Board of133

Directors. The Board comprises the Director General, Deputy Directors for Science and134

Finance and heads of the Marine Environment Section, the Marine Resources Section,135

and the Fisheries Advisory Section. Samples were also obtained from dead fish from136

marine research institutes in Norway, the Netherlands, Canada and the US that were137

similarly approved by the respective ethics boards. The samples from the US used in this138

study have been described in Cunningham et al. (2009) and the samples from Norway139

in Árnason and Pálsson (1996). The samples from Canada consisted of DNA isolated140

from the samples described in Pogson (2001). The samples from the Netherlands were141

obtained from the Beam-Trawl-Survey142

(http://www.wageningenur.nl/en/Expertise-Services/143

Research-Institutes/imares/Weblogs/Beam-Trawl-Survey.htm)144

of the Institute for Marine Resources & Ecosystem Studies (IMARES), Wageningen145

University, the Netherlands, which is approved by the IMARES Animal Care Committee146

and IMARES Board of Directors.147
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Molecular analysis148

We used sequences associated with the Moen et al. (2008) high FST SNP’s (Gm366-149

0514 with an FST = 0.83, Gm366-1022 with an FST = 0.82, and Gm366-1073 with an150

FST = 0.82) to make probes to search an Atlantic cod BAC library. We had positive151

clones 454 sequenced (Microsynth) and obtained a 34223 bp scaffold containing the gene152

of interest. From this sequence we generated primers (Table S1) for PCR amplifying a153

4000 bp fragment for population studies. Our scaffold largely but not entirely aligned154

to GeneScaffold 4232 of the Atlantic cod genome sequence (Star et al., 2011) (www.155

ensemble.org).156

We Topo-TA cloned fragments into pCR XL-TOPO vector (Invitrogen). We se-157

quenced clones with M13 primers and sequencing primers (Table S1) using BigDye158

Terminator kit (Applied Biosystems) and performed sequencing on ABI 3100 and159

ABI3500XL (Applied Biosystems) automated sequencers.160

For neutral locus comparisons we applied the same methods and sequenced 711 bp161

of the Hemoglobin α 2 (HbA2) locus (Halldórsdóttir and Árnason, 2009a,b; Borza et al.,162

2009) and 1021 bp of the myoglobin (Myg) locus (Lurman et al., 2007). The HbA2 data163

were of 114 Atlantic cod individuals and 13 individuals of various sister taxa. The Myg164

data were from 45 Atlantic cod individuals and two individuals of Pacific cod. Other165

sister taxa did not amplify for Myg. The HbA2 and Myg individuals covered much the166

same geographic localities as Ckma.167

All sequences have been deposited in Genbank with Ckma accession numbers168

KM624178 – KM624309, HbA2 accession numbers KM624310 – KM624436, and Myg169

accession numbers KM624437 – KM624483.170

Statistical analysis171

We base called, assembled and edited sequence reads using phred, phrap and172

consed (Ewing et al., 1998; Ewing and Green, 1998; Gordon et al., 1998). We173

aligned sequences using muscle (Edgar, 2004), inspected alignments using seaview174

(version 4) (Gouy et al., 2009) and generated maximum likelihood trees with phyml175

(Guindon and Gascuel, 2003) under seaview. We used R (R Core Team, 2013) and176

the ape, pegas, seqinr, ade4, adegenet, and LDheatmap packages (Paradis177

et al., 2004; Paradis, 2010; Charif and Lobry, 2007; Dray and Dufour, 2007; Jombart and178

Ahmed, 2011; Shin et al., 2006) and various function written by us for managing, ana-179

lyzing, and plotting the data. We used the MLHKA program (Wright and Charlesworth,180

2004) for a maximum likelihood HKA test (Hudson et al., 1987) based on the Kingman181

coalescent.182

By PCR amplifying and cloning of fragments polymerase copy errors in the PCR183

reaction inevitably will be found in clones. The coalescent methods are especially184

sensitive to singleton variants and errors that would enter into the data as singleton185

variants should be removed. To remove PCR errors and ensure authenticity of natural186

variation among individuals we sequenced three clones from each individual. We187

claim that taking three clones is sufficient to eliminate PCR errors among clones of an188

individual and yield a consensus sequence of one allele from that individual. Two of189

the three clones will be of the same allele (the same chromosome). The third clone is190

expected to be of that same allele in one half cases and of the alternative allele from the191

other chromosome in one half cases. In the first case a consensus sequence will be a192

5/16

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.528v1 | CC-BY 4.0 Open Access | rec: 9 Oct 2014, publ: 9 Oct 2014

P
re
P
ri
n
ts



true consensus of that allele. In the second case a consensus sequence will be a true193

consensus except at sites where the third clone (alternative allele) matches one of the194

other clones. That is when a naturally occurring site variant or a PCR error in the third195

clone matches a PCR error in one of the other two clones. This scenario is expected to196

be a rare event. The effect of such a rare event would be to generate variation that would197

look like recombination thus, if anything, reducing measures of linkage disequilibrium.198

We thus got consensus sequences for a number of individuals. We visually inspected199

all variant sites using the above mentioned tools. To maximize the number of individ-200

uals and the size of the sequenced fragment we struck a balance between number of201

individuals and quality of sequence. We removed individuals with a short sequences and202

eliminated regions with a phred quality less than 30. We thus ended up with consensus203

sequences of three clones from each of 122 Atlantic cod and 10 individuals of sister taxa204

covering three fragments of the gene (Figure S2) concatenated to give a total sequence205

of 2500 bp.206

We analyzed sequence variation for statistics of neutrality and selection using DNAsp207

(Rozas et al., 2003) and R functions. Site frequency spectra are a most important208

summary statistics for coalescent analysis of nucleotide data (Wakeley, 2009). We209

analyzed site frequency spectra using the Kingman coalescent (Kingman, 1982a) and210

statistical methods developed for multiple merger Λ coalescents (Birkner et al., 2013b).211

RESULTS212

Gene and protein213

The gene is Ckma encoding creatin kinase muscle isoform a (CKMA). The locus214

is 3604 base pairs (bp) in GeneScaffold 4232 (coordinates 332764 to 336367, gene215

name ENSGMOG00000008778 in the cod genome, www.ensemble.org Star et al.216

(2011)). The gene has seven exons (Figure S2). Ensemble reports 382 amino acids217

(aa). However, both genescan (http://genes.mit.edu/GENSCAN.html)218

and fgenesh (www.softberry.com) predicted 381 aa and our analysis of our own219

data confirmed that. The www.ensemble.org sequence adds a Glycine (G) residue220

in position 323 apparently due to incorrect splicing at the junction of the last two exons.221

For mapping the gene the SNP locus cgpGmo-S497 at position 19.5 in linkage222

group CGP16 is found in a partial cDNA mRNA sequence (Genbank accession number223

EX184243) (Hubert et al., 2010; Borza et al., 2010) matching the Ckma gene. We take224

that as the location of the gene.225

There are seven paralogous genes found in the Atlantic cod genome (www.ensemble.226

org) encoding mitochondrial, brain and muscle isoforms. The protein sequence of the227

two alleles A and B in Atlantic cod and of all the sister taxa studied were of the CKMA228

isoform (Figure S3). The variation reported is thus from orthologous genes.229

Nucleotide variation and divergence230

The variants of Ckma in Atlantic cod fell into two distinct and divergent groups which231

we refer to as A and B alleles (Figures 1 and S4). They were fixed for a C vs T at site232

1732 in the concatenated sequence (Table S2). There also were nearly fixed differences233

between the alleles at 19 additional sites (Figure 2 and Table S2).234

The divergence of the A and B alleles has arisen after the speciation between Gadus235
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morhua and its Pacific sister species G. macrocephalus or G. chalcogrammus. The gross236

and net nucleotide divergence between the A and B alleles was about one half that of the237

divergence between the sister taxa (Table S3). The Ckma and HbA2 divergences between238

the sister taxa are very similar but the Myg divergence is about twice that (Figure S5 and239

Table S3). Contra Coulson et al. (2006) the maximum likelihood tree for Ckma (Figure 1)240

and divergence estimates (Table S3) imply that separation of G. chalcogrammus predates241

the separation of G. macrocephalus and G. morhua. Similarly, the HbA2 locus showed242

the same pattern that G. chalcogrammus is outside of G. macrocephalus and G. morhua243

(Figure S6). Unfortunately the Myg locus did not yield sequences for G. chalcogrammus.244

All summary statistics showed high variation for Ckma (Table 1). In particular245

nucleotide diversity π̂ was high relative to the scaled population size θ̂S resulting in a246

non-significant Tajima’s D̂. This was due to the great number of high heterozygosity247

sites nearly fixed between the two alleles (Figure 2 and Table S2). Considering the North248

and South population and the A and B alleles separately there was much less variation.249

Although there were several polymorphic sites within both A and B alleles (Figure 2250

and Table S2) nucleotide diversity was lower than for the entire sample and the relative251

difference of π̂ and θ̂S for each allele was greater resulting in negative and significant252

Tajima’s D̂. The HbA2 gene had a very low haplotype and nucleotide diversity but253

disparity with θ̂S gave overall a negative and significant Tajima’s D̂. In congruence with254

divergence measures the Myg locus had high haplotype and nucleotide diversity, albeit255

lower than Cmka, but overall a negative and significant Tajima’s D̂.256

There were five non-synonymous changes segregating as singleton sites within257

Atlantic cod (Tables S4 and S2). Two of these were also segregating as singletons258

within B. saida and G. macrocephalus and one other singleton was also found in G.259

macrocephalus. B. saida was fixed for a Glycine (GGT codon) for which the other260

taxa have a Glutamine (CAG codon) with changes in all three sites of the respective261

codon (aa number 242). Assuming independent mutations and depending on the path of262

evolution of that particular codon all three changes may have been non-synonymous.263

There was considerable linkage disequilibrium (LD) throughout the gene (Figure S7).264

The high heterozygosity sites nearly fixed between the alleles were influential in gener-265

ating LD between sites throughout the gene.266

The results of a maximum likelihood HKA test of selection that is based on the267

Kingman coalescent (Wright and Charlesworth, 2004) gave a selection parameter k =268

2.12 in the direction of balancing selection (Table S5). However, the results were not269

statistically significant possibly because of too high variation among the presumed270

neutral loci (HbA2 and Myg) used for comparison in the test.271

Spatial differentiation272

The variation was spatially patterned. The A allele was nearly fixed in an area that273

we call South (Faroe Islands, North Sea, Baltic Sea, Celtic Sea and Irish Sea) at a274

frequency of 97% (Table S6). Conversely the B allele was at a high frequency of275

92% in an area that we call North ranging from the Northwest (Nova Scotia and276

Newfoundland in Canada) through Greenland, Iceland, Norway, Barents Sea and the277

White Sea. The differentiation was evident in interlocality FST values (Table S7).278

There was no significant differentiation among localities within either the North or the279

South but very high and significant differentiation between North and South localities.280
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Similarly, there was great differentiation between the A and B alleles (Table S8). This281

was in stark contrast to the lack of differentiation at the HbA2 and Myg loci (Table S9).282

The high differentiation was mostly due to the great number of fixed or nearly fixed283

sites between the two alleles (Figure 2 and Table S2). Three of the sites were the SNPs284

already found by Moen et al. (2008) with an FST = 0.82. The high frequency sites285

showed indications of recombination between the A and B alleles (see for example286

patterns of segregating sites for individuals 105698, 124401, 105657, 200500, 118129,287

119535, 118147, and 106620 in Table S2).288

There were also several high heterozygosity polymorphic sites within both the A289

and B alleles (Figure 2). This variation, however, did not show geographical patterns290

(Table S2). For example sites 1050 and 1428 mutated relative to outgroup within the A291

alleles were found among individuals from Iceland, White Sea, Celtic Sea, Faroe Islands292

and the Baltic. Similarly within the B alleles high heterozygosity sites 656, 691, 1340,293

and 1444, which were mutated relative to the outgroup, were all widespread among294

North localities ranging from the Northwest to the Northeast Atlantic (Figure S1).295

Site frequency spectra296

The unfolded site frequency spectrum for the Ckma gene was trimodal (Figure 3), with297

a mode at singleton sites, a mode at 43, and a mode at 79. The latter modes were at298

opposite frequencies out of a total of 122 and represented the A and B lineages of the299

genealogy. The Kingman coalescent did not fit the data well. Both the Beta(2−α,α)300

and point-mass coalescent models gave a much better fit (Table S10) in particular by301

capturing the singleton class. None of the coalescent models captured the modes at 43302

and 79.303

In contrast the site frequency spectra for the HbA2 and Myg genes were L shaped304

with a high peak at singleton sites (Figures S8 and S9). Again the Kingman coalescent305

did not fit well but both multiple merger coalescent models captured the high frequency306

of singleton sites.307

The site frequency spectra of the A and B alleles alone were bimodal with a high308

singleton class and peaks around 40 and 78 respectively (Figure S10). The 40 and309

78 modes came about because most of the high frequency and high heterozygosity310

sites that separate the two alleles were not fixed within each allele presumably due to311

recombination (Table S2).312

Coalescent parameter estimates313

Following Birkner et al. (2013b) we used the 32 distance, the sum of the squared314

differences between the observed and expected site frequency spectrum (scaled with the315

number of segregating sites), for estimating parameters of two Λ coalescent models, α̂316

for the Beta(2−α,α) and ψ̂ for the point-mass coalescent (Table 2 and Figures S11317

and S12). The Kingman coalescent, a null model for which α = 2.0, had the highest 32
318

indicating worst fit among the models. The HbA2 and Myg loci had an α̂ = 1.00 and a319

ψ̂ = 0.23. The Ckma locus had overall a considerably higher α and lower ψ . The two320

alleles separately were in the direction of the presumed neutral loci HbA2 and Myg.321

For comparison we also estimated the parameters for the entire dataset of mtDNA322

variation in the North Atlantic (Árnason, 2004) and the various subsamples making up323

that total sample using the unfolded site frequency spectrum with G. macrocephalus324
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as outgroup (Table 2 and Figure S12). Previously these have been analysed using the325

folded site frequency spectrum (see for example Birkner et al., 2013b; Steinrücken et al.,326

2013). For the total sample, spanning a similar geographic range as the nuclear genes,327

the parameter estimates differed from the nuclear loci with α̂ = 1.53 and ψ̂ = 0.01. The328

large samples from Newfoundland and Iceland and the sample from the Faroe Islands329

gave similar values. The values for Greenland, Norway, White Sea, and Baltic Sea were330

much closer to the results for the Kingman coalescent (α = 2.0). For these localities331

homoplasies were relatively somewhat more frequent in the data than for the total and332

the large samples. Homoplasies will reduce the number of singletons and move such333

sites towards the right tail of the site frequency distribution. This explains the higher334

values for these localities.335

DISCUSSION336

Genes and proteins337

The CKMA protein is highly conserved among the taxa. The single aa difference338

between B. saida and the other species presumably is adaptive with all sites of the codon339

having changed. The few aa variants were all singletons in the sample. In fact most of340

the variation is in non-coding regions and all the high heterozygosity sites in coding341

regions are synonymous changes. Given the high conservation of the protein and the342

high variation among silent and non-coding sites that are indicative of the mutational343

pressure the singleton non-synonymous changes are likely slightly deleterious and will344

be removed by purifying selection. Some or even all of the silent and non-coding345

differences between the A and B alleles may be functional control elements important in346

expression in different tissues or under different environments. The potential functional347

differences remain to be studied.348

The HbA2 and Myg genes have well defined functions. They are likely under349

purifying selection. They were taken as independent genes in separate linkage groups350

for comparison. A caveat is that genetic variation at unlinked sites may be correlated351

and not independent in high fecundity populations with skewed distribution of offspring352

(Eldon and Wakeley, 2008; Birkner et al., 2013a). The question remains, however,353

whether and to what extent such dependence impacts inference.354

Allele divergence and spatial differentiation355

Three possible scenarios and explanations for the great divergence of the A alleles and B356

alleles, their spatial differentiation, and the trimodal site-frequency spectrum will now357

be considered.358

First, there is the possibility of recent admixture of anciently separated and divergent359

gene pools that have come together in a hybrid zone of secondary contact (Bowcock360

et al., 1991; Bernardi et al., 1993; Guinand et al., 2004). The spatial patterns of genetic361

separation between the South (Faroe Islands, North Sea, Baltic Sea, Celtic Sea and362

Irish Sea) and the North (Nova Scotia and Newfoundland, Greenland, Iceland, Norway,363

Barents Sea, and White Sea) could be taken as evidence for this. The South is a shallow364

water environment whereas the the North has more diversity of depth ranging from365

shallow to deep waters. Differences in temperature, salinty and other environmental366

factors is correlated with the North South difference. The great nucleotide divergence367
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between the North and the South would imply either that this is an ancient divergence368

or even a not-so-ancient divergence driven by strong selection over a shorter time. If369

the time of separation of G. morhua and G. macrocephalus and G. chalcogrammus is370

taken at 3.8–4.0 Mya (Coulson et al., 2006) the time of separation of the A and B clades371

would then be 2 Mya based on the nucleotide divergence of the A and B clades which372

we show is one half that of the sister taxa. An even lower divergence time of 2.1 Mya373

has been suggested (Pogson and Mesa, 2004) that would still leave the divergence of the374

A and B clade at 1 Mya. These divergence times, however, are all based on the Kingman375

coalescent and time scales of the multiple merger coalescent are discussed below.376

A counter argument is that isolation and admixture are part of the breeding structure377

of a population leaving genome-wide impacts (Wright, 1931). Under this scenario378

different genes should be concordant in their behavior (Bernardi et al., 1993). The379

HbA2 and the Myg show no differentiation between the North and the South. Also the380

non-outlier SNPs in Moen et al. (2008) show no differentiation whereas three SNPs of381

the Ckma gene show high and extreme FST . Similarly, Bradbury et al. (2010) find that382

non-outlier SNPs show no differentiation although other SNPs show differentiation from383

parallel adaptation to temperature on the eastern and western side of the Atlantic Ocean.384

Nielsen et al. (2003) describe a pattern of microsatellite variation in a transition area385

between the Baltic and Danish Belt Sea which they interpret as a hybrid zone. There is386

no evidence for a hybrid zone at that location in the Ckma data. In fact, specific variants387

within the A allele are widely distributed among localities in the South including the388

Baltic Sea. This implies gene flow among localities in the South. Similar patterns within389

B alleles imply gene flow among localities in the North. If indeed there is a hybrid zone390

for the Ckma gene it would lie between the Faroe Islands on one hand and Iceland and391

north and middle Norway on the other hand. It is not a parsimonious explanation to392

consider there to be multiple hybrid zones of secondary contact within distribution of393

the species.394

For comparison one can consider the Pan I locus (Fevolden and Pogson, 1995, 1997)395

that clearly is under selection (Pogson, 2001; Pogson and Mesa, 2004) related to depth396

and fisheries (Sarvas and Fevolden, 2005; Case et al., 2005; Árnason et al., 2009). At397

face value the locus shows similar differentiation between north and south (Sarvas and398

Fevolden, 2005) as the Ckma locus. However, the details differ. The Pan I B allele399

which is adapted to the deep (Pampoulie et al., 2007; Árnason et al., 2009) is largely400

absent from the South. However, there is no particular Pan I A allele that characterizes401

the South (Hernandez and Árnason, 2014). The Pan I B allele, which is found in the402

North and in deep water, is much less variable than the Pan I A alleles (Pogson, 2001;403

Hernandez and Árnason, 2014). This is opposite to what we find for the Ckma A alleles404

(the South allele) which has less variation than the Ckma B allele (Figure 1) although405

this is not seen in the summary statistics (Table 1) because of greater recombinational406

variation at the base of the A clade (Table S2). Also the Pan I locus variation is more407

related to depth than to geography (Árnason et al., 2009). Under the admixture scenario408

these two loci (and all loci showing genome wide effects) are expected to show the same409

pattern.410

Overall, therefore, we find that the Ckma gene does not fit the scenario of ancient411

divergence of gene pools and admixture in secondary contact.412
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Site frequency spectra413

The trimodal site frequency spectrum is not predicted by any of the coalescent mod-414

els considered here, the Kingman coalescent and the two Λ coalescent models, the415

Beta(2−α,α) (Schweinsberg, 2003) and the point-mass coalescent (Eldon and Wake-416

ley, 2006). Under the Λ coalescent at most a single multiple merger event occurs at any417

one time. The distribution of family size is of interest and the parameter α influences418

the probability of getting large families. Under the Beta(2−α,α) coalescent model the419

probability of a family size of k or more viable offspring decays like k−α (Schweinsberg,420

2003) in the limit of a large k. The pool of viable offspring is then resampled to form the421

next generation under the same conditions. For the Kingman coalescent α ≥ 2 and there422

is little chance of seeing large families. For the Beta(2−α,α) coalescent 1 ≤ α < 2 and423

the lower α the greater is the chance of seeing a large family (Schweinsberg, 2003). The424

ψ parameter of the point-mass coalescent (Eldon and Wakeley, 2006) similarly measures425

the proportion of the population that is the offspring of a single individual and is thus an426

indicator of reproductive sweepstakes. Our estimates of ψ indicate reproductive sweep-427

stakes at the neutral loci and within the A and B alleles of Ckma. Balancing selection428

at Ckma lessens the effects of sweepstakes reproduction. Sweepstakes reproduction429

has been detected in other high fecundity organisms (Hedgecock and Pudovkin, 2011;430

Harrang et al., 2013).431

Under the more general Ξ coalescent 0 < α < 1 (Schweinsberg, 2000) there can432

be many large families independently in each generation. It would seem that this433

process could generate multimodal site frequency spectra. Indeed in simulations of Ξ434

coalescence site frequency spectra can display multiple modes (Bjarki Eldon personal435

communication). This question needs further theoretical work. In terms of the concept436

of sweepstakes reproduction multiple local sweepstakes could have this effect on the437

site frequency spectrum. Under local sweepstakes genetic structure may be ephemeral438

(Johnson and Wernham, 1999). Whether this affects the location of the modes and the439

exact shape of the site frequency spectrum under Ξ coalescent is not known. However,440

one would not expect build-up of sites around a specific mode of the site frequency441

spectrum or of two modes at opposite frequencies as at Ckma. Also there should be442

no particular or regular geographical pattern. We, therefore, think that bumps in the443

site frequency spectrum under Ξ coalescent is not a good explanation for the Ckma444

spectrum.445

Balancing selection446

Balancing selection generates long branches in the genealogy and neutral variation447

accumulates on the branches. The balanced functional types (the Ckma A and B alleles448

in this case) act as they were separate and isolated populations accumulating neutral449

variation. Recombination can bring variation from one branch to another acting like450

migration that brings alleles from one population to another (Charlesworth et al., 1997,451

2003; Charlesworth, 2006). However, the molecular signatures of balancing selection452

depend on many factors. Is it a long standing, even trans-species, polymorphism such as453

MHC in human and chimpanzee (Fan et al., 1989; Nei and Hughes, 1991) or Cathelicidin454

in gadids (Halldórsdóttir and Árnason, 2014)) or is it very recent? Examples of the455

latter are human glucose 6 phosphate dehydrogenase (G6PD) (Verrelli et al., 2002), and456

hemoglobin β S (Currat et al., 2002) and hemoglobin β E (Ohashi et al., 2004) and457
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spatially divergent selection of lactase persistence (Tishkoff et al., 2007; Ranciaro et al.,458

2014) in which a particular allele sweeps a chromosomal segment to an intermediate459

equilibrium frequency. In these instances recombination has not had time to break up460

LD which can extend over large regions. There is very little variation among the new461

alleles while the alternative chromosomes show much more variation in this region462

representing the standing variation in the population at the start of the partial sweep.463

The effects of a long standing single locus balancing selection will extend only short464

distances with free recombination and will be difficult to detect (Wiuf and Hein, 1999).465

If, however, there are obvious signs of a long standing balanced polymorphism it is likely466

due to a build-up of co-adapted complexes of epistatic interactions among multiple sites467

and/or suppression of recombination (Wiuf and Hein, 1999). The concept of a supergene468

of multiple co-adapted sites possibly locked together by structural variation (Thompson469

and Jiggins, 2014) such as found in butterfly mimicry (Joron et al., 2011) is relevant.470

There also can be both partial and complete selective sweeps of new types within each471

allele of a supergene. Such intra-allelic selective sweeps would reduce variation within472

and increase variation between alleles. Such reduction of variation could look similar473

to that for a recent balanced polymorphism except that it would not be limited to one474

functional type. Thus Pogson (2001) argues that he has detected on-going partial sweeps475

within each of the two Pan I alleles of Atlantic cod.476

Pogson and Mesa (2004) further argue that the Pan I polymorphism is older than477

speciation of Atlantic cod and Walleye pollock, the closest relatives. The Pan I locus is478

in a “genomic island” (Bradbury et al., 2013; Hemmer-Hansen et al., 2013) a potential479

supergene of co-adapted complexes possibly locked together by structural variation.480

Looking in detail at variation at 12.5 kb region Hernandez and Árnason (2014) find large481

number of differences between the two functional Pan I types that are too extensive to be482

a partial sweep of a new allele. Such variation is likely to be built up over some time by483

selection (see time scales below). This is in face of considerable gene flow implied by484

lack of differentiation of neutral loci (Moen et al., 2009; Bradbury et al., 2010; Eiríksson485

and Árnason, 2013; Hemmer-Hansen et al., 2014). Similarly, the wide distribution of486

variants within both the A and B alleles of Ckma implies gene flow among localities487

within South and within North areas. The recombinant haplotypes between the A and B488

alleles of Ckma imply gene flow between the South and the North localities.489

The coalescent used here are models of neutrality. One could argue that it is not490

appropriate to apply such neutral models to the Ckma locus that is already suspected to491

be under selection. However, understanding how the locus deviates from neutrality is492

important for understanding the pattern of selection. Under the neutral theory (Kimura,493

1983) polymorphism within species is the transient phase of molecular evolution that494

leads to divergence between species. This is the rational for the HKA test of selection or495

neutrality (Hudson et al., 1987) that neutrally evolving genomic regions should have496

the same proportion of polymorphism to divergence, Balancing selection would tend to497

increase the level of polymorphism within species relative to divergence between them.498

The results of HKA test are in the direction of balancing selection. The HKA test shows499

a relative slowing down of divergence to rate of polymorphism at the Ckma locus.500

Similarly we consider the peaks in the site frequency spectrum of the Ckma gene501

to be evidence for balancing selection. The trimodal site frequency spectrum with502

two high frequency peaks at opposite frequencies that fold into one peak in a folded503
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site frequency spectrum points to the build-up of variation over time. Under a recent504

balanced polymorphism scenario, such as G6PD and β globins in humans, there would505

be one peak at a particular frequency in the site frequency spectrum representing all506

sites at which the new allele differs from the ancient alleles. There could be multiple507

peaks representing high frequency polymorphisms among the ancient alleles. However,508

they are not expected to be at opposite frequencies to the frequency of the new allele.509

We, therefore, argue that the pattern at Ckma represents a balanced polymorphism that510

has been built up over time.511

Coalescent parameter estimates and time scales512

The question of coalescent time scale, however, must be considered. Under the Kingman513

coalescent time is measured in terms of N/σ2, population size scaled by the variance of514

family size (Sagitov, 1999; Árnason, 2004; Tavaré, 2004). With a Poisson distribution515

of family size σ2 = 1 for a constant size haploid population so times scales with N. In516

an extreme winner-take-all sweepstakes σ2 = N and a sample would coalesce in the517

previous generation and there would be no variation (Árnason, 2004). In more realistic518

multiple merger coalescent models the time scale is the quantity cN = E(ν1−1)2

N−1 where519

cN is the probability of two lineages coalescing in the previous generation in a haploid520

population of fixed size N and ν1 is the random number of offspring of individual 1521

(Sagitov, 1999). In general the time scale of multiple merger coalescent models can be522

much shorter than for Kingman coalescent. Under the Beta(2−α,α) coalescent model523

time scales with Nα−1 (Schweinsberg, 2003; Birkner et al., 2014). For this model our524

estimates of α for the nuclear genes are quite low which implies very short time scales.525

The neutral genes would seem to coalesce in the very recent past. The A and B alleles526

of Ckma run on very similar time scales to the neutral genes and the locus itself at a527

slower rate due to the balancing selection with a time scale approximately the cube root528

of the effective population size Ne. The mitochondrial DNA runs at yet another and529

slower time scale. For mtDNA time scales with approximately the square root of N.530

Predicted turnover of alleles is faster and ages of alleles shorter under multiple merger531

coalescent (Eldon, 2912). Different populations and species may run on different time532

scales (Eldon and Degnan, 2012) complicating divergence time estimates. Estimates533

based on Kingman coalescent of divergence times of Atlantic cod populations (Bigg534

et al., 2008) or divergence of gadid taxa (Coulson et al., 2006) may therefore be too high535

and may need revision.536

Conclusion537

The Ckma protein coding sequence is conserved between all but the most distantly538

related Arctic cod. The amino acid variants are all singletons in the sample. Based on539

these facts we conclude that the protein coding sequence is under purifying selection.540

At the same time silent and non-coding variation at the locus shows extreme spatial541

differentiation with an FST greater than 0.8 between the North and the South regions.542

The regulatory function of this variation is unclear. We argue that the high and locus-543

specific FST , the highest seen so far for any locus and any spatial comparison in Atlantic544

cod, indicates that selection and not admixture of anciently divergent gene pools is545

responsible. Selection is likely to be very strong. It follows that Ckma (or an extremely546

tightly linked locus) is the focus of selection because the highest FST indicates the site547
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of action of selection (Nielsen, 2005). Some of the variation may be neutral having548

risen in frequency within the balanced functional allele where it arose (Charlesworth,549

2006). Alternatively some of the variation may be due to selection building co-adapted550

complexes (Thompson and Jiggins, 2014). In addition to a peak at singleton sites,551

characteristic of multiple-merger coalescent, the site frequency spectrum has two high-552

frequency modes at opposite but matching frequencies representing the two branches of553

the genealogy. This pattern is further support for balancing selection. Finally time scales554

faster under multiple-merger than the Kingman coalescent. Our estimates of parameters555

of multiple-merger Λ coalescent show that time-scales are fast.556
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Figure 1. Maximum likelihood tree of Ckma variation among 122 individual Atlantic
cod and 10 individuals of sister taxa. Localities and color codes as in Figure S1.
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Figure 2. Heterozygosity per nucleotide site of Ckma locus among A alleles (red top
panel, n = 43), B alleles (blue middle panel, n = 79), and all individuals combined
(magenta bottom panel, n = 122). Boxes represent exons, start (red), internal (magenta)
and terminal (blue). Green boxes represent sequenced fragments trimmed to Phred
score of at least 30. The black circles mark the three SNPs of Moen et al. (2008),
Gm366-0514 locus with an FST = 0.83, Gm366-1022 locus with an FST = 0.82, and
Gm366-1073 with an FST = 0.82 from left to right respectively. Crosses mark mutant
sites relative to outgroup that were fixed or nearly fixed among A alleles. Triangles mark
mutant sites relative to outgroup that have were fixed or nearly fixed among B alleles.
Gadus macrocephalus individual 152047 was outgroup.
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Figure 3. Unfolded site frequency spectrum of Atlantic cod Ckma gene. Gadus

macrocephalus is outgroup. Number of individuals n = 122. Theroretical expectation
under Kingman coalescent (red dots), Beta(2−α,α) coalescent (magenta squares), and
point-mass coalescent (blue stars).
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Table 1. Summary statistics of polymorphism of 2500 bp fragment of the Ckma

gene, 711 bp fragment of the HbA2 gene and 1021 bp fragment of the Myg gene in
Atlantic cod.

Group n S H ĥ K̂ θ̂S π̂ D̂

Ckma all 122 87 72 0.959 10.62 0.0067 0.0043 −1.13ns

Ckma North 86 65 51 0.941 5.12 0.0054 0.0015 −1.97ns

Ckma South 36 45 23 0.891 3.61 0.0045 0.0015 −2.43∗∗

Ckma A allele 43 49 28 0.907 4.37 0.0047 0.0018 −2.20∗∗

Ckma B allele 79 53 44 0.930 3.10 0.0044 0.0013 −2.33∗∗

HbA2 all 114 11 11 0.338 0.37 0.0030 0.0005 −2.09∗

HbA2 North 95 9 9 0.347 0.39 0.0025 0.0005 −1.95∗

HbA2 South 19 3 4 0.298 0.32 0.0016 0.0005 −0.95ns

Myg all 45 30 24 0.901 2.74 0.0071 0.0028 −2.03∗

Myg North 36 28 20 0.894 2.65 0.0069 0.0027 −2.12∗

Myg South 9 10 7 0.944 3.22 0.0037 0.0033 −0.58ns

Sample size n, number of segregating sites S, number of haplotypes H, haplo-
type diversity ĥ, average number of pairwise differences K̂, scaled population
size from S θS, nucleotide diversity π̂, and Tajima’s D̂. ns is not significant, *
represents P < 0.05, and ** represents P < 0.01.

Table 2. Parameter values minimizing the 32 distance (sum of squares) between observed and
expected unfolded site frequency spectra for nuclear genes and for mtDNA variation of various
localities.

Source α̂ ψ̂ 32(α̂) 32(ψ̂) 32(0) n Reference
Nuclear locus
Hba2 1.000 0.230 0.035 0.016 0.431 113 This study
Myg 1.000 0.225 0.010 0.018 0.230 45 This study
Ckma 1.280 0.070 0.006 0.007 0.141 122 This study
CkmaA 1.100 0.170 0.017 0.012 0.161 43 This study
CkmaB 1.140 0.120 0.006 0.015 0.189 79 This study
Locality for mtDNA
Newfoundland 1.550 0.015 0.014 0.028 0.084 378 Carr et al.

Greenland 1.945 0.005 0.072 0.071 0.072 78 Árnason et al. (2000)
Iceland 1.550 0.010 0.006 0.050 0.078 519 Árnason et al. (2000)
Norway 1.895 0.015 0.093 0.089 0.095 100 AP 1996
White Sea 2.000 0.005 0.551 0.554 0.551 109 Árnason et al. (1998)
Faroe Islands 1.555 0.050 0.059 0.055 0.093 74 SA 2003
Baltic Sea 2.000 0.005 0.105 0.109 0.105 109 Árnason et al. (1998)
Atlantic 1.530 0.010 0.006 0.055 0.249 1278 Árnason (2004)

Based on method of Birkner et al. (2013b). Parameters α of the Beta(2−α,α), and ψ of the
point-mass coalescent and their respective 32. The 32(0) is based on the Kingman coalescent
for which α = 2. For the mtDNA Carr et al. refers to Carr and Marshall (1991a,b); Carr et al.
(1995); Pepin and Carr (1993), AP 1996 refers to Árnason and Pálsson (1996), and SA 2003
refers to Sigurgíslason and Árnason (2003).
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