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MRA-wa¥ let subspace architecture for logic, probability, and
symbolic sequence processing

DANIEL J. GREENHOE

Abstract: The linear subspaces of a multiresolution analysis (MRA) and the linear sub-
spaces of the wavelet analysis induced by the MRA, together with the set inclusion re-
lation C, form a very special lattice of subspaces which herein is called a primorial lat-
tice. This paper introduces an operator R that extracts a set of 2V~! element Boolean
lattices from a 2" element Boolean lattice. Used recursively, a sequence of Boolean lat-
tices with decreasing order is generated—a structure that is similar to an MRA. A second
operator, which is a special case of a “difference operator”, is introduced that operates on
consecutive Boolean lattices L} and L3~' to produce a sequence of orthocomplemented
lattices. These two sequences, together with the subset ordering relation C, form a pri-
morial lattice P. A logic or probability constructed on a Boolean lattice L) likewise
induces a primorial lattice P. Such a logic or probability can then be rendered at N
different “resolutions” by selecting any one of the N Boolean lattices in PP and at N dif-
ferent “frequencies” by selecting any of the N different orthocomplemented lattices in
P. Furthermore, P can be used for symbolic sequence analysis by projecting sequences
of symbols onto the sublattices in P using one of three lattice projectors introduced. P
can be used for symbolic sequence processing by judicious rejection and selection of pro-
jected sequences. Examples of symbolic sequences include sequences of logic values,
sequences of probabilistic events, and genomic sequences (as used in “genomic signal
processing”).
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1 Background: lattices
1.1 Order

1.1.1 Order relations

Definition 1.1 1 Let X be aset.Let 2XX be the set of all relations on X . A relation < is an
order relation in 2%¥ if

1. x<x vxex (reflexive) and preorder
2. x<Yy and y<z = x<2z Vx,y,z€X (transitive) and
3. x<yandy<x = x=y Vx,yeX (anti-symmetric)

An ordered set is the pair (X, <). The set X is called the base set of (X,<). If x < y or
y < x, then elements x and y are said to be comparable, denoted x ~ y. Otherwise they
are incomparable, denoted x||y. The relation < is the relation <\ = (“less than but not
equal to”), where \ is the set difference operator, and = is the equality relation.

Definition 1.2 2 Let (X, <) be an ordered set (Definition 1.1 page 3). Let 2XX be the set of all
relations on X. The relations >, <, > 2XX are defined as follows:

1® [110], page 470, ® [12], page 1, [103], page 156, (I, 1I, (1)), & [38], page 373, (I-11I). An
order relation is also called a partial order relation. An ordered set is also called a partially ordered
set or poset.

2 [135], page 2
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def

x>y < y<x Vx,yeX
def

x<y < x<y and x#y vxyex
def

x>y < x>y and x#y vxyex
The relation > is called the dual of <.

Example 1.3
order relation \ dual order relation
< (integer less than or equal to) | > (integer greater than or equal to)
C (subset) o) (super set)
| (divides) (divided by)
= (implies) <= (implied by)

Definition 1.4 3 Arelation < is a linear order relation on X if
1. <isan orderrelation (Definition1.1 page3) and

2. x<yorys<x VxyeX (comparable).
A linearly ordered set is the pair (X, <).
Alinearly ordered set is also called a totally ordered set, a fully ordered set, and a chain.

1.1.2 Representation

Definition 1.5 4 y covers x in the ordered set (X, <) if
1. xZy (y is greater than x) and

2. x<Lz<LYy == (z=x0rz=1y) (thereisno elementbetween x and y).
The case in which y covers x is denoted x < y.

An ordered set can be represented in any of three ways:
Facd Hasse diagram (Definition 1.6 page 4)
2 aset of ordered pairs of order relations (Definition 1.1 page 3)
2 aset of ordered pairs of cover relations (Definition 1.5 page 4)

Definition 1.6 Let (X, <) be an ordered pair. A diagram is a Hasse diagram of (X, <) if it
satisfies the following criteria:

2 Each elementin X is represented by a dot or small circle.
% Foreach x,y € X, if x < y, then y appears at a higher position than x and a line
connects x and y.

3® [110], page 470, & [129], page 410
1@ [14], page 445
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Example 1.7 Here are three ways of representing the ordered set (2{x’y ), c);

of the two is drawn lower on the page than the other with a line {y}

(1) Hassediagrams: If two elements are comparable, then the lesser {x, y}
{x}
connecting them. @3

(2) Sets of ordered pairs specifying order relations (Definition 1.1 page 3):

c:{ @.2), (x}{x), {yh i), CERINENTE }
- @.{x}), @.{y). @.A{xy). {x}{xyh.{y}{x.yD)

(3) Sets of ordered pairs specifying covering relations:

<={ @.{x}), @ {y), Ux}{xy), {y}{xy) }

1.1.3 Decomposition

Definition 1.8 5 The tupple (Y, ®) is a subposet of the ordered set (X, <) if

1. ' Y Cc X (Y is a subset of X) and
2. @ = (L ﬂYz) (@ is the relation < restricted to Y x Y)
Example 1.9

Subposets of include O é} ‘?)

Example 1.10 Let

X. 92 ((0.abepl), {00, @a. b, €0, @), (1), A
0,a), (0,5), 0,¢), (0, p), (O, 1), b »
(@,b), (a,¢), (@ 1), (o, 1), a
(b.0), 5.1 @1, () }) 0
.2 ((0acpl)  {0.0.@a, o, @n, 01D, A
0,a), 0,¢), (0,p), O, 1), a ’

(a,¢), (a, 1), (p, 1), (¢, 1), (p, 1) })
Then (Y, Q) is a subposet of (X, <) because Y C X and @ = (< nY?).

58 [70], page 2
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A chain is an ordered set in which every pair of elements is comparable (Definition 1.4 page 4).
An antichain is just the opposite—it is an ordered set in which no pair of elements is com-
parable (next definition).

antijhain

Definition 1.11 ¢ The subposet (A, ®) in the ordered set (X, <) s S R :
is an antichain if all elements in A are incomparable (Definition 1.1 ’ ’
page 3), such that . .

x||y Vx,y € A e N (I et ;

antichain antichain
Definition 1.12 7 The length #(L) of a chain (Definition 1.4 page 4) L with N elementsis N — 1.
The length of an ordered set (Definition 1.1 page 3) is the length of the longest chain in the ordered
set. The width of an ordered set is the number of elements in the largest antichain in the
ordered set.

Theorem 1.13 (Dilworth's theorem) 8 Let (X, <) be an ordered set.

: ' ti X,<)i j
WIDTH N of (X, <) 1. thereexistsa par'tztzon of ( ,‘__) into N chains and
is FINITE => { 2. theredoes not exist any partition
of (X, <) into less than N chains

Definition 1.14 °Let X and Y be disjointsets. Let P £ (X, ®) and Q £ (Y, <) be ordered
setson X and Y. The direct sum of P and Q is defined as
P+Q=2(XUY,X)
where x < y if
. x,y€X and x®y or
2. x,y€Y and x<y
The direct sum operation is also called the disjoint union. The notation »nP is defined as

nP2 P+P+--+P.
—_—

“,»

n—1“+” operations

Definition1.15 1°Let X and Y be disjointsets. Let P 2 (X, @) and Q £ (Y, <) be ordered
setson X and Y. The direct product of P and Q is defined as

PxQ2(XxY,<)
where (x,y,) < (x5.3,) if x, @x, and y, @ y,.

6% [70], page 2

7® [70], page 2, ® [18], page 5

8E [46], page 161,F [47], & [55], page4
*® [151], page 100

10w [151], pages 100-101, ® [150], page 43
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The direct product operation is also called the cartesian product. The order relation < is
called a coordinate wise order relation. The notation P" is defined as
P"2 PXPX-XP.
—— —

n—1 “x” operations

Definition1.16 1!Let X and Y bedisjointsets. Let P 2 (X, @) and Q £ (Y, <) be ordered
setson X and Y. The ordinal sum of P and Q is defined as
POPQA(XUY, <
where x < y if
. x,ye€X and x®y or
2. x,y€Y and x<y or
3. xe€X and yevY.

Definition1.17 12Let X and Y be disjointsets. Let P 2 (X, @) and Q £ (Y, <) be ordered
setson X and Y. The ordinal product of P and Q is defined as
P®QE(XXY,S)
1. x;#x, and x,; ®x, or
2. x;=x, and y, <y }
The order relation < is called a lexicographical order relation, dictionary order relation,
or alphabetic order relation.

where (x,,y;) < (x5, ;) if

Definition 1.18 13 Let P £ ( X, <) be an ordered set. Let > be the dual order relation of <.
The dual of P is defined as P* £ (X, >)

Definition1.19 !4Let X and Y bedisjointsets. Let P 2 ( X, ®) and Q £ (Y, <) be ordered
setson X andY. Q" £ ({f e YX|f is order preserving } , <)

where f < gif f(x) < g(x) Vx € X. The order relation < is called a pointwise order
relation.

Theorem 1.20 (cardinal arithmetic) 5 Let P 2 ( X, <) be an ordered set.

. P+Q = Q+P (COMMUTATIVE)
2. Px Q = Q X P (COMMUTATIVE)
3 (P+Q+R = P+(Q+R (ASSOCIATIVE)
4. (PXQ)XR = PxX(QxR (ASSOCIATIVE)
5. PX(Q+R) = (PXQ)+(PXR) (pISTRIBUTIVE)
6. RPQ = RPxR@

7. (PQ)R = PR

uwa [151], page 100
12® [151], page 101, ® [150], page 44, ® [79], page 58, ® [80], page 54
13® [151], page 101
14® [151], page 101
158 [151], page 102
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- A
A\

7

VAN

Figure 1: Operations on ordered sets (Example 1.23 page 8)

o | o | oo o

(0]

Definition 1.21 The ordered set L, is defined as ({x}, <), for some value

x. o
It is illustrated by the Hasse diagram to the right.
Definition 1.22 The ordered set L, is defined as L, £ L}. i
It is illustrated by the Hasse diagram to the right.

1.1.4 Decomposition examples

Example 1.23 Figure 1 (page 8) illustrates the four ordered set operations +, X, @, and ®.

Example 1.24 15The ordered set nL, is the anti-chain with n elements.

The ordered set 4L, is illustrated to the right. ©o0oo

Example 1.25 The ordered set L] is the chain with n elements.
The ordered set L‘l1 is illustrated to the right.

Examples of the Boolean lattices (Definition 1.69 page 18) L}, L2, L3, L3 and L] are illustrated in
Example 1.74 (page 21).

16® [151], page 100
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{0,a}, {b,p}, {c.q}, {r.1}
{0,a,p}, (b}, {c.q}, {r.1}
{0,a,p, 1}, (b}, {c.q}, {r}
{0,b,p,1}, {a}, {c.q}, {r}
{0,c,r, 1}, {a,p}, {b}, {q}
{0,c,q,1}, {a,p}, {b}, {r}

~
examples of partitions of chains

partition 1:
partition 2:
partition 3:
partition 4:

partition 5:

partition 6:

I e eVt Vel Ve

[ Ny N Ny Ny )

Figure 2: Lattice of width 4 and examples of minimal order partitions of chains (see Example 1.26
page 9)

Example 1.26 7 Thelongest antichain (Definition 1.11 page 6) in the lattice illustrated in Figure 2
(page 9) has 4 elements giving this ordered set a width (Definition 1.12 page 6) of 4. The longest
chain also has 4 elements, giving the ordered set a length (Definition 1.12 page 6) of 3. By Dil-
worth's theorem (Theorem 1.13 page 6), the smallest partition consists of four chains (Definition 1.4
page 4). Examples of such minimal order partitions those listed in Figure 2.

Definition 1.27 Let (X, <) be an ordered set and 2* the power set of X. For any set
A € 2%, ¢ is an upper bound of 4 in (X, <) if

1. x<c VxeA.
An element b is the least upper bound, or LUB, of 4 in (X, <) if

2. band c are upper boundsof A = b<c.

The least upper bound of the set A is denoted \/ A. It is also called the supremum of A,
which is denoted sup A. The join x v y of x and y is defined as x v y £ \/ {x, y}.

Definition 1.28 Let (X, <) be an ordered set and 2* the power set of X. For any set
A € 2%, pis alower bound of 4 in (X, <) if

1. p<x VxeA.
An element « is the greatest lower bound, or GLB, of A in (X, <) if

2. aand p are lower boundsof A — p<a.

The greatest lower bound of the set A is denoted A A. It is also called the infimum of
A, which is denoted inf A. The meet x A y of x and y is defined as x Ay 2 A {x,y}.

Proposition 1.29 Let (X, Vv, A; <) be an ORDERED SET (Definition 1.1 page 3).

{ 1. XAy = X and }
x < y — Vx,yeX
2. xVy =Yy

17g [55], page 4
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Proposition 1.30 Ler 2% be the POWER SET of a set X .

1. \/A < \/B and
C X
A_B=>{2' A4 < AB } VA,BE2

1.2 Lattices
1.2.1 Definition

The structure available in an ordered set (Definition 1.1 page 3) tends to be insufficient to en-
sure “well-behaved” mathematical systems. This situation is greatly remedied if every pair
of elements in the ordered set has both a least upper bound and a greatest lower bound
(Definition 1.28 page 9) in the set; in this case, that ordered set is a lattice (next definition). Gian-
Carlo Rota (1932-1999) has illustrated the advantage of lattices over simple ordered sets
by pointing out that the ordered set of partitions of an integer “is fraught with pathologi-
cal properties”, while the lattice of partitions of a set “remains to this day rich in pleasant
surprises”.18

Definition 1.31 !° An algebraic structure L £ (X, V, A; <) is a lattice if

1. (X,<)isan ordered set ((x,<)is a partially or totally ordered set) and

2. Axvye X Vx,y€ X  (everypairof elementsin X has a least upper bound in X) and

3. AxAyeX Vx,ye X (every pair of elements in X has a greatest lower boundin X).
The algebraic structure L* £ (X, @, ®; >) is the dual lattice of L, where © and @ are
determined by >. The lattice L is linear if (X, <) is a chain (Definition 1.4 page 4).

Theorem 1.32 20 (X, v, A; <) is a LATTICE =
XxXVx = X XAX = X VxeX (IDEMPOTENT) and
XVy = yVXx XAy = YAX Vx,yeX (COMMUTATIVE) and
(xvy)yvz = xvVVz)| &AYAzZ = xA(AZ)|VxyzeEX (ASSOCIATIVE)  and

xV(xAy = x xA(xVYy) X Vx,yeX (ABSORPTIVE).

Lemma1.33 2! Let L2 (X, V, A; <) be LATTICE (Definition 1.31 page 10).
xZy — X=XAYy Vx,yeL

DNPROOF:

18 [144], page 1440, ((illustration) ), & [143], page 498, (partitions of a set)

19 [110], page 473, ® [17], page 16, [129], [14], page 442, ® [113], page 1

20® [110], pages 473-475, (LEMMA 1, THEOREM 4), ® [23], pages 4-7, ® [16], pages 795-796,
[129], page 409, ((@)), E [14], page 442, & [38], pages 371-372, ((1)-(4))

21 [86]
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(1) Prooffor = case: by left hypothesis and definition of A (Definition 1.28 page 9).
(2) Prooffor <= case: by right hypothesis and definition of A (Definition 1.28 page 9).

Proposition 1.34 (Monotony laws) 22 Let (X, v, A; <) be a lattice.

a < b and anx < bAy and
——3
x <y avx < bvy

Theorem 1.35 (Minimax inequality) 23 Let (X, Vv, A; <) be a lattice.
m n n m
\//\xij < /\\/xij Vx,-jeX
i=1 j=1 j=1i=1

—_—— N —

maxmini: largest of the smallest minimax: smallest of the largest

Special cases of the minimax inequality include three distributive inequalities (next the-
orem). If for some lattice any one of these inequalities is an equality, then all three are
equalities (Theorem 1.54 page 15); and in this case, the lattice is a called a distributive lattice (Defi-
nition 1.53 page 15).

Theorem 1.36 (distributive inequalities) 2¢ (X, v, A; <) isa lattice =

xA(yVvz) =2 (xAYV((XAZ) Vx,y,z€EX  (JOIN SUPER-DISTRIBUTIVE) and
xVyAz) < (xVYAKXV2) Vx,y,zEX  (MEET SUB-DISTRIBUTIVE)  and
xXAYVEAZDIVIAZ) < (XVYAMKXVZIIAYVZ) VxypzeX (MEDIAN INEQUALITY).

Besides the distributive property, another consequence of the minimax inequality is the
modularity inequality (next theorem). A lattice in which this inequality becomes equality
is said to be modular (Definition 1.47 page 14).

Theorem 1.37 (Modular inequality) 25 Let (X, Vv, A; <) be a LATTICE (Definition 1.31 page 10).
x<y = xVAzZ) SYyA(xV2z)

Theorem 1.32 (page 10) gives 4 necessary and sufficient pairs of properties for a structure
(X, V, A; <) to be a lattice. However, these 4 pairs are actually overly sufficient (they are
not independent), as demonstrated next.

2® [66], page 39, B [49], pages 97-99, ® [76], (§4.2)

2% [17], pages 19-20

24 ® [36], page 85, ® [70], page 38, [14], page 444, [103], page 157, ® [122], page 13,
(terminology)

3% [17], page 19, ® [23], page 11, [38], page 374
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Theorem 1.38 26

(X, V, A; L) isalattice =
xXVy = yVx XAy = YAX Vx,yeX (COMMUTATIVE) and
(xvy)yvz = xv@Vvz)|&xAYAzZ = XxXA(AZ)|VxpzEX (ASSOCIATIVE)  and
xV(xAy = x xA(xVy = x Vx,yEX  (ABSORPTIVE)

1.2.2 Bounded lattices

Let L £ (X, v, A; <) be alattice. By the definition of a lattice (Definition 1.31 page 10), the upper
bound (x v y) and lower bound (x A y) of any two elements in X is also in X. But what
about the upper and lower bounds of the entire set X (\/ X and /\ X) (Definition 1.27 page 9,
Definition 1.28 page 9)2 If both of these are in X, then the lattice L is said to be bounded (next
definition). All finite lattices are bounded (next proposition). However, not all lattices are
bounded—for example, the lattice (Z, <) (the lattice of integers with the standard integer
ordering relation) is unbounded.

Definition 1.39 Let L £ (X, V, A; <) be alattice. Let \/ X be the least upper bound of
(X, <) and let A\ X be the greatest lower bound of (X, <).

Lis upper bounded if (\/ X) € X.

Lislower bounded if (A X) € X.

L is bounded if L is both upper and lower bounded.
A bounded lattice is optionally denoted (X, V, A, 0, 1; <), where 02 A X and 1 £\/ X.

Proposition 1.40 Let L 2 (X, v, A; <) be a lattice.
{ L is FINITE} = {L is BOUNDED}

Proposition 1.41 27 Let L2 (X, V, A; <) be a lattice with \/ X £ 1 and )\ X £ 0.

xV1l = 1 vwvxex (upper bounded) and

{ L is BOUNDED} — xAO = 0 vxex (owerbounded) and
xV0 = x vxex (join-identity) and
xAl = x vxex (meet-identity)

Definition 1.42 28 Let L 2 (X, v, A, 0, 1; <) be a bounded lattice (Definition 1.39 page 12). The
height h(x) of a point x € L is the least upper bound of the lengths (Definition 1.12 page 6) Of
all the chains that have 0 and in which x is the least upper bound. The height h(L) of the
lattice L is defined as
h(L) £ h(1) .
26® [132], pages 7-8, ® [12], page5,& [117], page 24, & [75], (Theorem 1.22), ® [76], (§4.4)

27@, [75], (§1.2.2),® [76], (§4.5)
28® [18], page 5

e
MonpAy 29™ SepTEMBER, 2014 % MRA—WUV Ie’r subspace architecture for logic, probability, and symbolic sequence processing 4;5 VERSION BB4A

Peer] PrePrints | http://dx.doi.org/10.7287/peerj.preprints.520v1 | CC-BY 4.0 Open Access | rec: 2 Oct 2014, publ: 2 Oct 2014



http://books.google.com/books?vid=ISBN9812834540&pg=PA7
http://books.google.com/books?vid=ISBN902771715X&pg=PA5
http://books.google.com/books?vid=ISBN0983801118
http://books.google.com/books?vid=ISBN0983801118
http://books.google.com/books?vid=ISBN0821810251&pg=PA5

1 BACKGROUND: LATTICES Daniel J. Greenhoe page 13

atomic lattices anti-atomic atomic and anti-atomic

Figure 3: Selected atomic, anti-atomic, and neither atomic nor anti-atomic lattices (see Exam-
ple 1.45 page 13)

Example 1.43 The height of the lattice illustrated in Figure 2 (page 9) is 3 because

h(L) £ h(1)
& \/ {¢(C)|Cisa chainin L containing both 0 and 1 }
= \/{f({O,a,p,l},S), Z({0,b,p,1},<), 2({0,¢,p,1},5), £({0,¢,4,1},5),
£({0,¢,r,1},<), }
=\/4-14-14-14-14-1)
=\/{3.3.3.3.3)
=3

)

Wees

|

1.2.3 Atomic lattices

Definition 1.44 2° Let L2 (X, Vv, A, 0, 1; <) be a bounded lattice (Definition 1.39 page 12).
x is an atom of L if x covers (Definition 1.5 page 4) 0.
x is an anti-atom of L if x is covered by 1.
L is atomic if every x € X \0 can be represented as joins of atoms of L.
L is anti-atomic if every x € X'\ 1 can be represented as meets of anti-atoms of L.

Example 1.45 Figure 3 (page 13) illustrates some examples oflattices that are atomic, anti-
atomic, both, and neither.

29 [105], page 178, & [16], page 800, (see footnote ¥)
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1.2.4 Modular Lattices

Definition 1.46 30 Let (X, v, A; <) be a lattice. Let 2XX be the set of all relations in X?.
The modularity relation ® € 2*X and the dual modularity relation ® € 2*X are defined

as
def
Xy = {(x,y)eleaSy = yAKXVa=QAXx)Va Van}

def
x®'y < {(x,y)eleaZy = yVExAa)=QVXx)Aa VaEX}.

A pair (x,y) € @ is alternatively denoted as (x, y) ®, and is called a modular pair. A pair
(x,y) € ®" is alternatively denoted as (x, y)®", and is called a dual modular pair. A pair
(x, y) that is not a modular pair ((x,y) ¢ ®) is denoted x@®y. A pair (x, y) that is not a dual
modular pair is denoted x®*y.

Modular lattices are a generalization of distributive lattices (Definition 1.53 page 15) in that all
distributive lattices are modular, but not all modular lattices are distributive (Example 1.61
page 16, Example 1.62 page 17).

Definition 1.47 3! Alattice (X, V, A; <) ismodular if x®y Vx,y € X.

Theorem 1.48 32 Let L £ (X, v, A; <) be a lattice.

L is MODULAR = {x<y = xVZAY)=((xV2IZ)AY} vxyzex
= xVI[xVyyAzl = (xVY)AKXV2) Vx,y,z€X
= XA[(xAYVZ] = (xXAYV(XAZ) Vx,y.z€X

Definition 1.49 (N5 lattice/pentagon) 32 The N5 lattice is the or-
dered set ({0, a, b, p, 1}, <) with cover relation

<={(0,a), (a,b), (b, 1), (p. 1), (0, p)}. p
The N5 lattice is also called the pentagon. The N5 lattice is illustrated
by the Hasse diagram to the right.

Theorem 1.50 34 Let L be a LATTICE (Definition 1.31 page 10).
L is MODULAR (Definition 1.47 page 14) < L does NOT contain the N5 LATTICE (Definition 1.49

page 14).

Theorem 1.51 35 Let A2 (X, V, A; <) be an algebraic structure.
{ XAVVXAZ) = [ZAX)VYIAX VxyzeX and } — { Aisa }

[xV(yV2IAz = z Vx,y.zE€X modular lattice

30® [152], page 11, ® [113], page 1, (Definition (1.1)), ® [114], page 248

31® [18], page 82, ® [113], page 3, (Definition (1.7))

32® [132], page 39, ® [129], page 413, ((2)), ® [76], (Theorem 5.1)

3@ [12], pages 12-13, & [38], pages 391-392, ((44) and (45))

34 ® [23], page 11, ® [69], page 70, [38], (cf Stern 1999 page 10), ® [76], (Theorem 5.1)
33 [132], pages 42-43, & [141]
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1 BACKGROUND: LATTICES Daniel J. Greenhoe page 15

Examples of modular lattices are provided in Example 1.61 (page 16) and Example 1.62
(page 17).

1.2.5 Distributive Lattices

Definition 1.52 36 Let (X, V, A; <) be a lattice (Definition 1.31 page 10). Let 2XXX be the set of
all relations in X°. The distributivity relation ® € 2X*X and the dual distributivity rela-
tion ®* € 2XXX are defined as
© {(x, y,2) € X3 IxA(yVZ)=(xXAY)V(XAZ) } (each (x, y, z) is disjunctive distributive) and
@ {(x, y,Z) € X3 IxV(yAZ)=(xXVY)AKXV2Z) } (each (x, y, z) is conjunctive distributive).
Atriple (x, y, z) € © is alternatively denoted as (x, y, z) ®, and is a distributive triple. A triple
(x,y,z) € ©" is alternatively denoted as (x, y, z) @*, and is a dual distributive triple.

> 1>

Definition 1.53 37 Alattice (X, v, A; <) is distributiveif (x,y,z2)€® Vx,y,z€e X

Not all lattices are distributive. But if a lattice L does happen to be distributive (Definition 1.53
page 15)—that is all triples in L satisfy the distributive property (Definition 1.53 page 15—then all
triplesin L also satisfy the dual distributive property, as well as another property called the
median property. The converses also hold (next theorem).

Theorem 1.54 38 Let L2 (X, V, A; <) be a LATTICE (Definition 1.31 page 10).

L is DISTRIBUTIVE (Definition 1.53 page 15)
= xAQVZ=EAYV(XAZ Vx,y,2€X  (DISJUNCTIVE DISTRIBUTIVE)
= xVOAZ)=xVYYAKXVZ2I Vx,y,26€X  (CONJUNCTIVE DISTRIBUTIVE)
= XVYWAXVIOAPVZD=XAYVXAZ)V(YAZ) VxypzeX (MEDIAN PROPERTY)

Definition 1.55 (M3 lattice/diamond) 3° The M3 lattice is the ordered
set ({0, p, g, r, 1}, <) with covering relation

<={( D, @D, 1),0,p), 0,9, 0,r}
The M3 lattice is also called the diamond, and isillustrated by the Hasse
diagram to the right.

36® [113], page 15, (Definition4.1), & [61], page 67, ® [126], page 32, (Definition5.1),& [37],
page 314, (disjunctive distributive and conjunctive distributive functions)

37® [23], page 10, ® [17], page 133, @ [129], page 414, { arithmetic axiom), g [14], page 453,
® [9], page 48, (Definition I1.5.1)

38 [48], page 237, ® [23], page 10, [129], page 416, ((7),(8), Theorem 3), & [130], ( cf Gratzer
2003 page 159), ® [149], page 286, (cf Birkhoff(1948)p.133), [103], (cf Birkhoff(1948)p.133),
® [76], ({Theorem 6.1)

3% [12], pages 12-13, ® [103], page 157, (p, =x,p, =y, )3=2,8=1,0=0)
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Lemma 1.56 4°
Lisan } { 1. L is NOT distributive (efiniion .53 page 15 and }

MS3 lattice 2. L1s modular (Definition 1.47 page 14)
Theorem 1.57 (Birkhoff distributivity criterion) 4! Let L £ (X, Vv, A; <) be a LATTICE.

L does not contain N5 as a sublattice <> and
L does not contain M3 as a sublattice @

L is DISTRIBUTIVE —

Distributive lattices are a special case of modular lattices. That is, all distributive lattices
are modular, but not all modular lattices are distributive (next theorem). An example is the
M3 lattice—it is modular, but yet it is not distributive.

Theorem 1.58 42 Let (X, v, A; <) bea lattice.
{(X,V, A; <) is DISTRIBUTIVE} q:; {(X,V, A; L) iSsMODULAR}

Theorem 1.59 43 Let L £ (X, Vv, A; <) be a LATTICE (Definition 1.31 page 10).
1. L is DISTRIBUTIVE and
2 xVa=xVb and = {a = b} Vx,a,b € X
3 xXAa=XxAb

Proposition 1.60 *4 Let X, be a finite set with order n = | X,,|. Let I, be the number of
unlabeled lattices on X,, m, the number of unlabeled modular lattices on X,, and d, the
number of unlabeled distributive lattices on X,,.

n 0(1/2|3(4|5]6]|7]| 8 9 10 11 12 13 14

L, (1] 1|11 ]25|15]53]222 1078 | 5994 | 37622 | 262776 | 2018305 | 16873364
m,||1]1|1]1|2]4| 8 |16| 34 | 72 | 157 | 343 766 1718 3899
d, |1|1|1]1(2]3]5]| 8] 15| 26 47 82 151 269 494

Example 1.61 45 There are a total of 5 unlabeled lattices on a five element set. Of these,
3 are distributive (Proposition 1.60 page 16, and thus also modular), one is modular but non-

0% [17], page 6, ® [23], page 11, ® [103], page 157, (cf Saliil988 p. 37)

a1® [23], page 12, ® [17], page 134, & [19]® [76], (Theorem 6.2)

2% [17], page 134, ® [23], page 11 & [75], (Theorem 1.37), ® [76], (§6.2.3)

3% [110], pages 484-485

44 2 [2] (http://oceis.org/A006966), = [2] (http://oeis.org/A006982), =2 [2] (http://
oeis.org/A006981),& [82], (/,), & [53], page 17, (d,),E [155]

45E [53], pages 4-5, ® [76], (Example 6.2)
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distributive, and one is non-distributive (and non-modular).
distributive (and modular) modular \ non-distributive

Example 1.62 46 There are a total of 15 unlabeled lattices on a six element set. Of these, 5
are distributive (Proposition 1.60 page 16, and modular), 3 are modular but non-distributive, and

7 are non-distributive (and non-modular).
distributive (and modular) \ modular but non-distributive \

1.2.6 Complemented lattices

Definition 1.63 47 Let L 2 (X, v, A, 0, 1; <) be a bounded lattice (Definition 1.39 page 12). An
element x’ € X is a complement of an element x in L if

. xAX =0 (non-contradiction) and

2. xvx =1 (excluded middle).
An element x’" in L is the unique complement of x in L if x’ is a complement of x and
y' is a complement of x = x’ = y’. L is complemented if every element in X has
a complement in X. L is uniquely complemented if every element in X has a unique
complementin X. Acomplemented lattice that is not uniquely complemented is multiply

complemented.

Example 1.64 Here are some examples:

1 ® [76], (Example 5.6)
78 [152], page 9, ® [17], page 23
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1 BACKGROUND: LATTICES Daniel J. Greenhoe page 18

Example 1.65 Of the 53 unlabeled lattices on a 7 element set, 0 are uniquely comple-
mented, 17 are multiply complemented, and 36 are non-complemented.

Theorem 1.66 (next) is a landmark theorem in mathematics.

Theorem 1.66 48 For every lattice L, there exists a lattice U such that
1. LC U (Lisasublattice of U) and
2. U is UNIQUELY COMPLEMENTED.

Corollary 1.67 4° Let L £ (X, V, A; <) bea lattice.

1. L is DISTRIBUTIVE and = .
. @ {L is UNIQUELY COMPLEMENTED }
2. L is COMPLEMENTED

Theorem 1.68 (Huntington properties) 5° Let L be a lattice.

L is MODULAR or
Lis L is ATOMIC or Lis
UNIQUELY and<{ L is ORTHOCOMPLEMENTED or
DISTRIBUTIVE
COMPLEMENTED L has FINITE WIDTH or
L is DE MORGAN
. 7

~~
HUNTINGTON PROPERTIES

1.2.7 Boolean lattices

Definition 1.69 5! A lattice (Definition 1.31 page 10) L is Boolean if
1. Lis bounded (Definition 1.39 page 12)  and

2. Lis distributive (Definition 1.53 page 15)  and
3. Lis complemented (Definition 1.63 page 17).

18 g [45], page 123, ® [147], page 51, ® [70], page 378, (Corollary 3.8)

9% [110], page 488, ® [147], page 30, (Theorem 10)

s5o® [142], page 103, ® [3], page 79, ® [147], page 40, g [45], page 123, ® [71], page 698
51® [110], page 488, ® [95]
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In this case, L is a Boolean algebra or a Boolean lattice.
In this paper, a Boolean lattice with 2" elements is sometimes denoted LQ’ .

The next theorem presents the classic properties of any Boolean algebra. The first 4 pairs
of properties are true for any lattice (Theorem 1.32 page 10). The bounded, distributive, and com-
plemented properties are true by definition of a Boolean lattice (Definition 1.69 page 18).

Theorem 1.70 (classic 10 Boolean properties) 52 Let A £ (X, V, A, 0, 1; <) be an alge-
braic structure. In the event that A is a BOUNDED LATTICE (Definition 1.39 page 12), let x' represent
a COMPLEMENT (Definition 1.63 page 17) Of an element x in A.

A isa Boolean algebra << Vx,y,z€ X

XV Xx = X XAX = X (IDEMPOTENT) and
XVy = YyVx XAy = YAX (COMMUTATIVE) and
xV((yvz) = (xVy)Vvz xANYAzZ) = (xXAYAzZ (ASSOCIATIVE) and
XV(xAy) = x xA(xVy = x (ABSORPTIVE) and
xVvl1 = 1 xAQ = 0 (BOUNDED) and
xVvO0 = X xAl = X (IDENTITY) and
xV(yAz) = (xVY)YAKXVZ)|xA(QVzZ) = (XxXAY)V(XAZ)| (DISTRIBUTIVE) and
xVx' = 1 xAx' = 0 (COMPLEMENTED) and
(xVvy) = x'AYy xAY) = x'vy (DE MORGAN) and
(x') =X (INVOLUTORY)
disjunctive properties ‘ conjunctive properties property name

Proposition 1.71 (Huntington's fourth set) 53 Let A £ (X, V, A; <) be an ALGEBRAIC
STRUCTURE. A isa Boolean algebra <~

1. XVX = X VxeX (IDEMPOTENT) and
2. xXVYy = YyVXx Vx,yeX (COMMUTATIVE) and
3. xvyVvz = xV({Vz Vx,y,2€X (ASSOCIATIVE) and
4. (x’ \Y y’)/ \Y (x' \% y)' = X Vx,yeX. (HUNTINGTON'S AXIOM)

1.3 Orthocomplemented Lattices

Orthocomplemented lattices (Definition 1.72 page 20) are a kind of generalization of Boolean al-
gebras. The relationship between lattices of several types, including orthocomplemented
and Boolean lattices, is stated in Theorem 1.86 (page 26) and illustrated in Figure 4 (page 20).

52 [87], pages 292-293, (“Istset”), B [88], page 280, ( “4th set”), ® [110], page 488, ® [66],
page 10, ® [121], pages 20-21, ® [149], ® [162], pages 35-37
53E [88], page 280, (“4th set”)
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bounded
(Definition 1.39 page 12)

A

complemented
(Definition 1.63 page 17)

A

modular I orthocomplemented ]
14)

(Definition 1.47 page (Definition 1.72 page 20)

A A

distributive orthomodular
(Definition 1.53 page 15) (Definition 1.83 page 25)

A

modular orthocomplemented
(Definition 1.85 page 25)

=

[ boolean ]
(

Definition 1.69 page 18)

Figure 4: relationships between selected lattice types (see Theorem 1.86 page 26)

1.3.1 Definition

Definition 1.72 54 Let L2 (X, Vv, A, 0, 1; <) be a bounded lattice (Definition 1.39 page 12).

An element x* € X is an orthocomplement of an element x € X if
11l
L X

2. XA xJ‘ = 0 VxeX (non-contradiction) and

3. xZYy == yl < x* Vx,y€X (antitone).
Thelattice L is orthocomplemented (L is an orthocomplemented lattice) if every element
x in X has an orthocomplement. The elements {x, y} are orthocomplemented pairs in L
if y = x*.

= b VxeX (involutory) and

Definition 1.73 55 1
The O lattice is the ordered set ({0, p, ¢, p*, ¢*, 1}, <) with cover relation 4+ ot
<={(0,p). (0,9), (p.q%). (a.p"). (P~ 1), (¢, 1)}. p q
The Oq lattice is illustrated by the Hasse diagram to the right. 0

54® [152], page 11, ® [12], page 28, ® [96], page 16, ® [77], page 76, ® [109], page 3, [20],
page 830, (L71-L73)

55% [96], page 22, [86], page 50, ® [12], page 33, ® [152], page 12. The O latticeis also called
the Benzene ring or the hexagon.
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1 BACKGROUND: LATTICES Daniel J. Greenhoe page 21

Example 1.74 56 There are a total of 10 orthocomplemented lattices with 8 elements or
less. These 10, along with 3 other orthocomplemented lattices with 10 elements, are illus-
trated next:

Lattices that are orthocomplemented but non-orthomodular and hence also not
modular orthocomplemented and non-Boolean:

1 1 1
L 1
yt L y X s Xt
p
X X y x z
0 1 0
1. Oq lattice 2. Og lattice 4.
1
zt xt
p pJ‘
X b4
0
5 6. 7.

Lattices that are orthocomplemented and orthomodular but not modular
orthocomplemented and hence also non-Boolean:

8. 9.
Lattices that are orthocomplemented, orthomodular, and modular
orthocomplemented but non-Boolean:

10. M, lattice 11. Mg lattice
Lattices that are orthocomplemented, orthomodular, modular
orthocomplemented and Boolean:

56® [12], pages 33-42,E [114], page 250, ® [96], page 24, (Figure3.2), ® [152], page12,[ [86],
page 50
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1 BACKGROUND: LATTICES

Il
001 0

12. L, lattice 13. L, lattice

16. L lattice 17. Lg lattice

2 RV isan Euclidean space with dimension N and
2%" is the set of all subspaces of RV

V + W is the Minkowski sum of subspaces V and W and
V n W is the intersection of subspaces V and W.

H BB

Yl
Example 1.75 The structure <2RN, +.n, @, H; g) is an A
orthocomplemented lattice where
a Y,
v
y

Example 1.76 The structure (2” , D, N, 3, H; g) is an orthocomplemented lattice where
H is a Hilbert space, 2" is the set of all closed subspaces of H, X + Y is the Minkowski
sum of subspaces X and Y, X ® Y £ (X + Y) ™ is the closureof X + Y,and X n Y is the
intersection of subspaces X and Y.

1.3.2 Properties

Theorem 1.77 57 Let x* be the ORTHOCOMPLEMENT (Definition 1.72 page 20) of an element x ina
BOUNDED LATTICE L 2 (X, Vv, A, 0, 1; <).

57® [12], pages 30-31, g [20], page 830, (L74), ® [29], page 37, (3B.13. Theorem)
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1 BACKGROUND: LATTICES Daniel J. Greenhoe page 23

(1). OJ‘ 1 (BOUNDARY CONDITION) and
Lis 2). lJ‘ = 0 (BOUNDARY CONDITION) and
ortho- - 3. (xVv y)J‘ = xtA yJ‘ Vx,y€X (DISJUNCTIVE DE MORGAN)  and
complemented @. (xA y)J‘ = xtv yJ‘ Vx,y€X (CONJUNCTIVE DE MORGAN) and
(5). XV xl 1 VxeX (EXCLUDED MIDDLE).

& Proor: Let x* £ -x, where - is an ortho negation function (Definition 2.14 page 29). Then this theorem
follows directly from Theorem 2.21 (page 30). =

Corollary 1.78 Let L2 (X, V, A, 0, 1; <) be a LATTICE (Definition 1.31 page 10).
L is orthocomplemented N L is complemented
(Definition 1.72 page 20) (Definition 1.63 page 17)

&Proor: This follows directly from the definition of orthocomplemented lattices (Definition 1.72 page 20)

and complemented lattices (Definition 1.63 page 17). (=4
Example 1.79
The O lattice (Definition 1.73 page 20) illustrated to the left is
a p» both orthocomplemented (Definition 1.72 page 20) and mul-
tiply complemented (Definition 1.63 page 17). The lattice il-
P \ lustrated to the right is multiply complemented, but is
0 non-orthocomplemented.
N PROOF:

(1) Proofthat Oy lattice is multiply complemented: » and ¢ are both complements of p.

(2) Proof that the right side lattice is multiply complemented: «a, p, and q are all complements of
r.

1.3.3 Restrictions resulting in Boolean algebras

Proposition 1.80 58 Let L= (X, V, A, 0, 1; <) be a BOUNDED LATTICE (Definition 1.39 page 12).
1. L is orthocomplemented (Definition 1.72 page 20) and L is Boolean
2. L isdistributive (Definition 1.53 page 15) (Definition 1.69 page 18)

58® [96], page 22
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1 BACKGROUND: LATTICES Daniel J. Greenhoe page 24

N PROOF:
L is orthocomplemented and L is complemented and
{ L is distributive } { L is distributive } by Corollary 1.78
= { LisBoolean } by Definition 1.69
(=4

The center of an orthocomplemented lattice is defined later, but here is a characterization
involving it now anyways.

Proposition 1.81 Let L= (X, V, A, 0, 1; <) be a LATTICE (Definition 1.31 page 10).
1. L is orthocomplemented (Definition 1.72 page 20) ~ and Lis
2. Everyx € Lisin the center of L (petniion 5.5 page 37) Boolean

DN PROOF:

(1) Proofthat (1,2) = Boolean: L is Boolean because it satisfies Huntington's Fourth Set (Propo-
sition 1.71 page 19), as demonstrated by the following ...

(a) Proofthat x v x = x (idempotent): L is a lattice (by definition of L), and all lattices are
idempotent (Definition 1.31 page 10).

(b) Proofthat x v y=yVx (commutative): L is a lattice (by definition of L), and all lattices
are commutative (Definition 1.31 page 10).

(c) Proofthat (xVvy)Vvz=xV(yV z) (associative): L is a lattice (by definition of L), and all
lattices are associative (Definition 1.31 page 10).

(d) Proofthat (x* v yhH)* v (x*t v y)t = x (Huntington's axiom):

Chvyht vt vt

=t LAyt vt Layh by de Morgan property (Theorem 1.77 page 22)
=(xAYVEAY) by involution property (Definition 1.72 page 20)
=x by def. of center (Definition 3.15 page 37)

(2) Proofthat (1) <= Boolean:

(a) Proofthat x v x* = 1: by definition of Boolean algebras (Definition 1.69 page 18).

(b) Proofthat x A x* = 0: by definition of Boolean algebras (Definition 1.69 page 18).

(c) Proofthat x** = x: by involutory property of Boolean algebra (Theorem 1.70 page 19).
(d) Proofthatx <y = y* <«x*:

ypr<xt = yt =yt Axt by Lemma 1.33 page 10
s
= yH = ( yEA xl)
=y =yttt by de Morgan property (Theorem 1.70 page 19)
=y =yVx by involutory property (Theorem 1.70 page 19)
=y =y by x < y hypothesis
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1 BACKGROUND: LATTICES Daniel J. Greenhoe page 25

(3) Proofthat (2) <= Boolean: forall x,y € L

xXAYV(xAy") =[(xAy) VXIA[(xAy) Vy'| by distributive property (Theorem 1.70 page 19)

=xA[xAp vy by absorptive property (Theorem 1.70 page 19)
=xA[(xvy)A(yvyh)] by distributive property (Theorem 1.70 page 19)
=xA(xVvy)al by complement property (Theorem 1.70 page 19)
=x by absorptive property (Theorem 1.70 page 19)
= x@y Vx,yeL by Definition 3.9 page 36

= xisin the center of L by Definition 3.15 page 37

Example 1.82 The Oy lattice (Definition 1.73 page 20) illustrated

/)\ to the left is orthocomplemented (Definition 1.72 page 20) but
non-join-distributive (Definition 1.53 page 15),and hence non-
Boolean. The lattice illustrated to the right is orthocom-
plemented and distributive and hence also Boolean (Propo-
sition 1.80 page 23).

1.3.4 Orthomodular lattices

Definition 1.83 5° Let L £ (X, Vv, A, 0, 1; <) be a bounded lattice (Definition 1.39 page 12).

L is orthomodular if
1. Lis orthocomplemented and

2. x<y — xV (xl A y) =Yy Vx,yeX (orthomodularidentity)

Theorem 1.84 6° Let L= (X, V, A, 0, 1; <) bean algebraic structure.

L is an orthomodular lattice and Lisa

1\L 1 1
(x AV )T =yv(xtAy) vx.y€X = Boolean algebra
(. 7

N inition 1. 1
ELKAN'S LAW (Definition 1.69 page 18)

Definition 1.85 Let L 2 (X, v, A, 0, 1; <) be a bounded lattice (Definition 1.39 page 12).
L is a modular orthocomplemeted lattice if

1. Lis orthocomplemented (Definition 1.72 page 20) and

2. Lis modular (Definition 1.47 page 14)

598 [96], page 22, ® [107], page 90, [89]
60 [140], page 72
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2 BACKGROUND: FUNCTIONS ON LATTICES Daniel J. Greenhoe page 26

Theorem 1.86 6! Let L be a lattice.
{Lis BOOLEAN} — {L is MODULAR ORTHOCOMPLEMENTED (Definition 1.85 page 25)}

—> {L is ORTHOMODULAR (Definition 1.83 page 25)}
= {L iS ORTHOCOMPLEMENTED (Definition 1.72 page 20)}

2 Background: functions on lattices

2.1 Valuations

Definition 2.1 62Let L 2 (X, Vv, A; <) be a lattice (Definition 1.31 page 10).
A function v € RX is a valuation on L if
vixVy)+vixAy) = v(x)+v(y) vxyex

Proposition 2.2 Letv € RX be a FUNCTION on a LATTICE L 2 (X, V, A; <) (Definition 1.31
page 10).

{ L is LINEAR (Definition 1.31 page 10) } - { V iS @ VALUATION (Definition 2.1 page 26) }

S ProOF:  Let x,y € X suchthat x < yor y<x.

v(xV y)+v(x Ay) = v(x)+ v(p) because L is linear
=
Example 2.3 63 Consider the real valued lattice L 2 (R, max, min; <).
The absolute value function |-| is a valuationon L.
®Proor: L is linear (Definition 1.31 page 10), SO v is a valuation by Proposition 2.2 (page 26). =

Definition 2.4 64 Let X be a set and R" the set of non-negative real numbers.
A function d € R™¥ is a metric on X if

1. dix,y) > 0 Vx,yeX  (non-negative) and
2. dx,y) = 0 < x=y Vx,yeX (nondegenerate) and
3. d(x,y) = d(y,x) Vx,yeX (symmetric) and

4. d(x, y) < d(x, z)+ d(z, y) Vx,y,z€X  (subadditivel triangle inequality).s>
A metric space is the pair (X, d). A metric is also called a distance function.

61® [96], page 32, (20.), A [92], page 57

62® [9]1], page 127, ® [18], page 230, (Definition X.1(V1)), ® [22], page 58, (Exercise 4.25),
® [43], page 105, ((8.1.1)), ® [41], page 143, (§10.3), ® [42], page 193, (§10.3)

63® [99], page 119, (§5.7)

64 ® [44], page 28, ® [31], page 21, ® [80], page 109, ® [63], ® [62], page 30
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2 BACKGROUND: FUNCTIONS ON LATTICES Daniel J. Greenhoe page 27

Definition 2.5 66 Let (X, d) be a metric space (Definition 2.4 page 26).
An open ball centered at x with radius r isthesetB(x,r) 2 {y € X |[d(x,y) < r]}.
A closed ball centered at x with radius r is the set B(x,r) 2 {y € X |d(x,y) < r}.
A unit ball centered at x isthe set B (x, 1).
A closed unit ball centered at x is the set B (x, 1).

Theorem 2.6 67 Letv € RX bea function on a LATTICE L £ (X, V, A; <) (Definition 1.31 page 10).

d =
L V(xVY)+Vv(xXAy) =v(x)+Vv(y) VxyeX (VALUATION) and } N (x, )

V(X Vy)—v(xAYy)
2. < < v X .
x<y = v(x) <Vv(y) x,y€X  (ISOTONE) is a METRIC on L

Definition 2.7 68 Let v be a valuation (Definition 2.1 page 26) on a lattice L 2 (X, V, A; <) (Defini-
tion 1.31 page 10). Let d(x, y) be the metric defined in Theorem 2.6 (page 27).
The pair (L, d) is called a metric lattice.

For finite modular lattices, the height function h(x) (Definition 1.42 page 12) can serve as the iso-
tone valuation that induces a metric (next proposition).

Proposition 2.8 ©° Let h(x) be the HEIGHT (Definition 1.42 page 12) Of @ point x in @ BOUNDED
LATTICE (Definition 1.39 page 12) L 2 (X, V, A, 0, 1; <).
{ 1. LisMODULAR and 2 LiSFINITE }

— { 1. h(xVvy)+h(xAy) =h(x)+h(y) vxyex (vawuarion) and }

2 x££y = h(x) £h() Vx,y€X  (POSITIVE)

I. h(xvy)+h(xAy) =h(x)+h(y) vxyex (vawuarion) and
=

2 x<y = h(x)<h(®) Vx,y€X  (ISOTONE)

Theorem 2.9 7° Let v be a VALUATION (Definition 2.1 page 26) ON @ LATTICE L £ (X, V, A; <)
(Definition 1.31 page 10). Let d(x, y) be the METRIC defined in Theorem 2.6 (page 27).
(L,d) is a METRIC LATTICE L is MODULAR
{ (Definition 2.7 page 27) } = { (Definition 1.47 page 14)

65® [54], (Book I Proposition 20)

66 ® [5], page 35

67® [43], page 105, ((8.1.2)), ® [18], pages 230-231

68 ® [43], page 105, ® [18], page 231, (§X.2)

69 ® [18], page 230

70 [18], page 232, (Theorem X.2), ® [43], pages 105-106, ® [22], page 58, ( Exercise 4.25)
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2 BACKGROUND: FUNCTIONS ON LATTICES Daniel J. Greenhoe page 28

Example 2.10
The function h on the Boolean (and thus also modular) lattice
Lg illustrated to the right is a valuation (Definition 2.1 page 26) that is
positive (and thus also isotone, Proposition 2.8 page 27). Therefore
dx,») £h(xVy)—h(xAY) Vx,yeX
is a metric (Definition 2.7 page 27) On L;. For example,
d(b,q) 2h(bVvg)—h(bAg)=h(1)—h(0)=3-0=3.
The closed unit ball centered at b (Definition 2.5 page 27) and illustrated
with solid dots to the right is
B(bh,1)2 {x e X |d(b,x) <1} ={b,p,r, 0}

Example 2.11

The height function h (Definition 1.42 page 12) on the orthocomple-
mented but non-modular lattice O illustrated to the right is not h(l) =3
a valuation because for example

h(ave)+h(anc) = h(1)+h(0) = 3+0 =3 # 2 = 1+1 = h(a)+h(b). h@) =2 h(r) = 2
Moreover, we might expect the “distance” from a to ¢ to be 2.  h(@) =1 h(c) =1
However, if we attempt to use h(x) to define a metric on O, then
we get

d@,c)2h@ve)—h(@Ae)=h(1)—h(0)=3-0=3#2.

h(0)=0

2.2 Negation
2.2.1 Definitions

Definition 2.12 71 Let L 2 (X, v, A, 0, 1; <) be a bounded lattice (Definition 1.39 page 12).
A function -~ € X* is a subminimal negation on L if 72
x<y = "y X VxyeX (antitone).

Definition 2.13 73 Let L2 (X, Vv, A, 0, 1; <) be a bounded lattice (Definition 1.39 page 12).

1® [50], pages 4-6, ® [51], pages 24-26, (2 THE KITE OF NEGATIONS)

72 In the context of natural language, D. Devidi has argued that, subminimal negation (Definition 2.12
page 28) is “difficult to take seriously as” a negation. For further details see g [40], page 511, [39],
page 568, g [75], (§2.1.1), ® [76], (S11.1)

% [50], pages 4-6, ® [51], pages 24-26, (2 THE KITE OF NEGATIONS), ® [156], PAGE 4, (1.6
INTUITIONISM. (B)), [157], PAGE 11, (DEFINITION 16), ® [68], PAGE 21, {( DEFINITION 3.3), ®
[128], PAGE 50, ( DEFINITION 2.26), ® [127], PAGES 98-99, (5.4 NEGATIONS), & [10], PAGES 155-156,
((N1) =0 =1 AND =1 =0, (N3) ==x = x)
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2 BACKGROUND: FUNCTIONS ON LATTICES Daniel J. Greenhoe page 29

subminimal negation
(Definition 2.12 page 28)

A

minimal negation
(Definition 2.13 page 28)

Z_

de Morgan negation fuzzy negation
(Definition 2.14 page 29) (Definition 2.13 page 28)

A A

Kleene negation intuitionalistic negation
(Definition 2.14 page 29) (Definition 2.13 page 28)

XN Z

[ ortho negation ]

(Definition 2.14 page 29)

A

[ orthomodular negation

(Definition 2.14 page 29)

Figure 5: lattice of negations

A function- € XX isa negation, or minimal negation, on L if

1. xZy = -y <X VxyeX (antitone) and
2. X < X vxeX (weak double negation).
A minimal negation — is an intuitionistic negation on L if
3. XAX = 0 Vx,yeX (non-contradiction).
A minimal negation — is a fuzzy negation on L if
4., —1 = 0 (boundary condition).

Definition 2.14 74 Let L2 (X, Vv, A, 0, 1; <) be a bounded lattice (Definition 1.39 page 12).
A minimal negation - is a de Morgan negation on L if

5. X =S b VxeX (involutory).
A de Morgan negatzon - is a Kleene negation on L if
6. XATX < yVv -y Vx,yeX (Kleene condition).
A de Morgan negation - is an ortho negation on L if
7. XATX = 0 Vx,yeX (non-contradiction).
A de Morgan negation - is an orthomodular negation on L if
8. XAX = 0 Vx,yeX (non-contradiction) and

9. x<Yy - xV (XJ‘ A y) =Yy VxyeX (orthomodular).

7% [51], pages 24-26, (2 THE KITE OF NEGATIONS), ® [94], PAGE 283, ® [96], PAGE 22, ® [107],
PAGE 90, & [89]
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2 BACKGROUND: FUNCTIONS ON LATTICES Daniel J. Greenhoe page 30

Remark 2.15 75 The Kleene condition is a weakened form of the non-contradiction and
excluded middle properties in the sense xAx=0 < 1l=yv-y.
———

non-contradiction  excluded middle

Definition 2.16 Let L 2 (X, v, A, 1, 0, 1; <) be a bounded lattice (Definition 1.39 page 12) with
afunction - € XX . If - is a negation (Definition 2.13 page 28), then L is a lattice with negation.

2.2.2 Properties of negations

Theorem 2.17 76 Let - € XX be a function on a BOUNDED LATTICE L 2 (X, v, A, 0, 1; <).

—isa
- { -0 = 1 (BOUNDARY CONDITION) }
FUZZY NEGATION
Theorem 2.18 77 Let- € XX be a function on a BOUNDED LATTICE L 2 (X, V, A, 0, 1; <).

. @ -1 = 0 (BOUNDARYCONDITION) and

isan
= ) -0 = 1 (BOoUNDARYcCONDITION) and

INTUITIONISTIC NEGATION

(¢ IS aFUZZY NEGATION

Theorem 2.19 78 Let ~ € X* be a function on a BOUNDED LATTICE L £ (X, v, A, 0, 1; <).

sa
.. axV-ay < —|(x A y) Vx,y€X (CONJUNCTIVE DE MORGAN INEQUALITY) and
minimal ; =
. "(X \Y% y) < XA 1y  Vx,yeX (DISJUNCTIVE DE MORGAN INEQUALITY)
negcmon

Theorem 2.20 7° Let ~ € X* be a function on a BOUNDED LATTICE L £ (X, v, A, 0, 1; <).
-isa —|(x \Y y) = "X ATy Vx,yeX (DISJUNCTIVEDEMORGAN) and
de Morgan negation (XAY) = —TXV-TYy VxyeX (CONJUNCTIVEDE MORGAN)

Theorem 2.21 8° Let— € XX be a function on a BOUNDED LATTICE L 2 (X, V, A, 0, 1; <).

(1. -0 = 1 (BOUNDARY CONDITION) and )
isan 2. =1 = 0 (BOUNDARY CONDITION) and
ortho — ) 3. -|(x \Y y) = TX ATy Vx,yeX (DISJUNCTIVEDEMORGAN) and {
. 4. (xAy) = —XVTYy VxyeX (CONJUNCTIVEDEMORGAN) and
negation
5. xVix = 1 VxeX (EXCLUDED MIDDLE) and
L 6. xAx < yVvV-y Vx,y€X (KLEENE CONDITION). )
»® [26], page 78
6@ [75], (§2.1.2),® [76], (§11.2)
7@ [75], (§2.1.2),® [76], (§11.2)
@ [75], (§2.1.2), ® [76], (§11.2)
7@ [75], (§2.1.2), ® [76], (§11.2)
I, [

8o [75], (§2.1.2),® [76], (S11.2)
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2 BACKGROUND: FUNCTIONS ON LATTICES Daniel J. Greenhoe page 31

2.3 Projections

Definition 2.22 8! Let L £ (X, v, A, 0, 1; <) be an orthocomplemented lattice (Definition 1.72
page 20). A function ¢, € X* is a Sasaki projection on x € X if ¢,(») £ (yvx') Ax.
The Sasaki projections ¢, and ¢, are permutable if ¢, o ¢ () =, ¢, (1) Vu€ X.

Proposition 2.23 Let ¢, (y) be the SASAKI PROJECTION OF y ONTO X (Definition 2.22 page 31) il an
ORTHOCOMPLEMENTED LATTICE L 2 (X, V, A, 0, 1; <).

®. x<y = d,(y) = x Vxyex
@. y<x = y < ¢,(») £ x Vxpex
@). y<xandLisBOOLEAN — . (y) = ¥y Vxyex
N PROOF:
1) = o= (yvxt)ax by definition of Sasaki projection (Definition 2.22 page 31)
=1Ax by x < y hypothesis and Proposition 3.1 page 34
=Xx by property of bounded lattices (Proposition 1.41 page 12)
2 = =yAX by y < x hypothesis
<@VxHAax by definition of v (Definition 1.27 page 9)
= by definition of Sasaki projection (Definition 2.22 page 31)
<@VvxHax by definition of Sasaki projection (Definition 2.22 page 31)
< by definition of A (Definition 1.28 page 9)
B) = ¢ »=@VvxHax by definition of Sasaki projection (Definition 2.22 page 31)
=(Ax)V(xt Ax) by distributive property of Boolean lattices (Theorem 1.70 page 19)
=(WAx)VO by non-contradiction of Boolean lattices (Theorem 1.70 page 19)
= AXx) by boundary property of bounded lattices (Proposition 1.41 page 12)
=y by y < x hypothesis and definition of A (Definition 1.28 page 9)
=4

Proposition 2.24 Let ¢, (y) be the SASAKI PROJECTION OF y ONTO X (Definition 2.22 page 31) in an
ORTHOCOMPLEMENTED LATTICE (X, V, A, 0, 1; <).

(). Po(y) = 0 wyex
@). ¢,.(0) = 0 wvxex
@.  ¢1(») = 1 wex
“@. ¢ (1) = x vxex
6. ¢ (xt) = 0 weex

81® []123], pages 158-159, (equation (S)), ® [148], page 300, (Def.5.1, cf Foulis 1962), ® [96],
page 117
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2 BACKGROUND: FUNCTIONS ON LATTICES

Daniel J. Greenhoe

page 32

N PROOF:
$o(») =0
¢ (0) 2 (0vxt)Ax
=xtAx
=0
)2 (yvit)al
=(VvOoAal
=yAl
=1
$(1)=x
qﬁx(xL) £ (xl Vxl) AX
=xtAx
=0

because 0 < y and by Proposition 2.23 page 31

by definition of Sasaki projection (Definition 2.22 page 31)

by property of bounded lattices (Proposition 1.41 page 12)

by definition of orthocomplemented (Definition 1.72 page 20)
by definition of Sasaki projection (Definition 2.22 page 31)

by boundary condition (Theorem 2.21 page 30)

by property of bounded lattices (Proposition 1.41 page 12)

by property of bounded lattices (Proposition 1.41 page 12)
because x < 1 and by Proposition 2.23 page 31

by definition of Sasaki projection (Definition 2.22 page 31)

by idempotency of lattices (Theorem 1.32 page 10)

by non-contradiction prop. of orthocomplemented lattice (Definition 1.72 page 20)

Example 2.25 Here are some examples of projections in the O, lattice onto the element

x:
b)) = (@ Vv
o,(p") & - v
o,(a) & @ v
bprp) = (@ Vv
o) £ (1 v
$,00 = (0 v
Example 2.26

pl) A D PJ' A p = 0 (becausep Ll g
Pl) A p = Pl A p = 0 (becausepLph)
Pi) A p =1 A p = p (becausep<q’)
q) A ql = 1 A tll = CIl (because g+ < 1)
) A’p =1 A p = p (becausep<1)
pl) AN PJ' A D = 0 (because p 1 0)

Let R? be the 3-dimensional Euclidean space (Ex-

ample 1.75 page 22) with subspaces Z and V. Then
the projection operator P,. onto Z* is a sasaki
projection ¢ z..

P,V

> 1>

as illustrated to the right.

In particular

$z:(V)
(V+zH)nzt

(V+2Z)nZ*

Z+V

e
MonpAy 29™ SepTEMBER, 2014 % MRA—WUV Ie’r subspace architecture for logic, probability, and symbolic sequence processing % VERSION BB4A

Peer] PrePrints | http://dx.doi.org/10.7287/peerj.preprints.520v1 | CC-BY 4.0 Open Access | rec: 2 Oct 2014, publ: 2 Oct 2014
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fuzzy logic

[ de Morgan logic ]

[ intuitionalistic logic ]

[ Boolean logic / classic logic ]

Figure 6: lattice of logics

2.4 Logics

Definition 2.27 82 Let — be an implication function defined on a lattice with negation
L2(X,V, A, 1,0, 1; <) (Definition 2.16 page 30).

(X,V,A,=0,1;<,-)is a logic if — is a minimal negation.
(X.v,A,=.0,1: < —) is a fuzzy logic if ~is a fuzzy negation.
(X,v,A~,0,1;<,-)is an intuitionalistic logic if - is an intuitionalistic negation.
(X,V,A,0,1;<,—)is a de Morgan logic if - is a de Morgan negation.
(X,v,A~,0,1;<,-)is a Kleene logic if ~is a Kleene negation.
(X,V,A,-,0,1;<,—)is an ortho logic if - is an ortho negation.
(X,V,A,~,0,1;<,-)1s a Boolean logic if ~is an ortho negation and

L is Boolean.

For examples and a definition of implication, see@ [75], (§3.1).

3 Background: relations on lattices

The relations in this section are typically defined on an orthocomplemented lattice (Defini-
tion 1.72 page 20). Here, some relations are generalized to a lattice with negation (Definition 2.16
page 30). A lattice (Definition 1.31 page 10) with an ortho negation successfully defined on it is an
orthocomplemented lattice (Definition 1.72 page 20). In many cases, these relations only work

82 [154], page 136, (Definition 2.1), g [157], page 11, (Definition 16), & [75], (§3.1)
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3 BACKGROUND: RELATIONS ON LATTICES Daniel J. Greenhoe page 34

well on an orthocomplemented lattice, and thus many results are restricted to orthocom-
plemented lattices.

3.1 Orthogonality

Proposition 3.1 Let (X, V, A, 0, 1; <) be an ORTHOCOMPLEMENTED LATTICE (Definition 1.72

page 20).
L
X vV y = 1 and
x< == Vx,yeX
=Y { X A yL 0 } i
DN PROOF:
x<y = xVxt<yvxt by monotone property of lattices (Proposition 1.34 page 11)
= I<yvxt by excluded middle property (Definition 1.72 page 20)
= xtvy=1 by upper bounded property of bounded lattices (Definition 1.39 page 12)
x<y = xAy' <yAyt by monotone property of lattices (Proposition 1.34 page 11)
= XAy <0 by non-contradiction property (Definition 1.72 page 20)
= xAyt=0 by lower bounded property of bounded lattices (Definition 1.39 page 12)
=
Definition 3.2 8 Let (X, v, A, 0, 0, 1; <) be a lattice with negation (Definition 2.16 page 30).
The orthogonality relation Le 2X¥ is defined as
def
xLly = x <y
If x L y, we say that x is orthogonal to y.
Lemma3.3 Let(X,V, A, 0,0, 1; <) bea LATTICE WITH NEGATION (Definition 2.16 page 30).
{ X L ¥y (ORTHOGONAL Definition 3.2 page 34) } = { y L x (symMmETRIC) }
X PROOF:
xly = x<y by definition of L (Definition 3.2 page 34)
= (—y) < x by antitone property (Definition 1.72 page 20)
= y<x by weak double negation property of negation (Definition 2.13 page 28)
= ylx by definition of L (Definition 3.2 page 34)
=

838 [152], page 12,® [109], page 3
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3 BACKGROUND: RELATIONS ON LATTICES Daniel J. Greenhoe page 35

Lemma3.4 84 Let(X, V, A, 0, 1; <) bean ORTHOCOMPLEMENTED LATTICE (Definition 1.72 page 20).

1. XA = 0 and
xly - 1 Y 1
N 2 x~ vy =1
ORTHOGONAL (Definition 3.2 page 34)

Remark 3.5 In an orthocomplemented lattice L, the orthogonality relation L is in general
non-associative. That is,

{)CJ.yand};be_Z
y 1 z

©Proor: Consider the L‘z1 Boolean lattice in Example 1.74 (page 21).
2 a* L pbecause a* < p*.
2 plrbecausep < rt. -
2 Butyeta’ is not orthogonal to r because a* £ r*.

G- — 2
distinct unordered (the L relation is symmetric by Lemma 3.3 page 34 so the order doesn't

matter) pairs of elements.

Of these 15 pairs, 8 are orthogonal to each other, |x L y |x L1 0 yi 1 0
and 0 is orthogonal to itself, makinga totalof9or- |x L x'|y L1 0|1 L1 0
thogonal pairs: y L ytixt L 0oj0o L1 o0
Example 3.7 In lattice 5 of Example 1.74 (page 21), there are a total of () = A 01_02’)!2! =
199 = 45 distinct unordered pairs of elements.
T T T
Of these 45 pairs, 18 are orthogonal to poLop n x Loxmly Loz g n L0
. . p L x|x L y |y L 0 |y L O
each other, and 0 is orthogonal to it- I
self, making a total of 19 orthogonal poloyx Lozgz Llozmz 10
aiI"S' p L z |x L O |z L 00 L O
pairs: p L O |y L yr{pt L 0O

Example 3.8 In the R® Euclidean space illustrated in Example 1.75 (page 22),
XcYt = XLY Ycxt = YlX
XczZt = XLz YczZt = Y.LZ
XANY=XANZ=YANZ=0

84® [85], page 67, ® [76], (Lemma 13.2)
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3 BACKGROUND: RELATIONS ON LATTICES Daniel J. Greenhoe page 36

3.2 Commutativity

The commutes relation is defined next. Motivation for the name “commutes” is provided
by Proposition 3.14 (page 36) which shows that if x commutes with y in a lattice L, then x
and y commute in the Sasaki projection ¢.(y) on L.

Definition3.9 85 Let L =2 (X, V, A, -, 0, 1; <) be a lattice with negation (Definition 2.16 page 30).

The commutes relation © is defined as
def
x©y = x=xAY)V(XAY) Vx,yeX,

in which case we say, “x commutes with y in L”.
That is, © is a relation in 2XX such that
©2{(x, )€ X x=(xANV A}

Proposition 3.10 86 Ler L 2(X,V, A 0,1; <) bean ORTHOCOMPLEMENTED LATTICE.

x©0 and 0Ox vxex x©y = xOyt viyex
x©1 and 1©x vxex x<y = xOpy vxyex
x©x vxeXx xly = xO@py vxyex

Definition3.11 Let © be the commutes relation (Definition 3.9 page 36) On a lattice with negation
L2(X,V, A, -0, 1; <) (Definition 2.16 page 30). L is symmetric if
x©y = yOx Vx,yeX

In general, the commutes relation is not symmetric. But Proposition 3.12 (next) describes
some conditions under which it is symmetric.

Proposition3.12 87 Let( X, V, A, 0, 1; <) bean ORTHOCOMPLEMENTED LATTICE (Definition 1.72

page 20).
{x©y = y©Ox} — {x Ly = y=xV (xi A y)} (ORTHOMODULAR IDENTITY) @)
N ~ v _ 1 _
© is SYMMETRIC af (x. ) (1) == {x <y = x=yA (x Vf )} (x = ¢, (x) (SASAKI PROJECTION) ) (3)
= {y:(x/\y)v[y/\(x/\y)]} “)
= {x=(xVy)/\[xv(xVy)l]} )

Theorem 3.13 88 Let L £ (X, V, A, 0, 1; <) be an ORTHOCOMPLEMENTED LATTICE (Defini-
tion 1.72 page 20).
(x©c Vx e X} = {L is 1soMORPHIC 100, ¢] X [0, ¢*]}
with isomorphism 6(x) £ ([0, c], [0, ¢*]).

Proposition 3.14 8° Let (X, V, A, 0, 1; <) be an ORTHOMODULAR lattice.

85® [96], page 20, ® [86], page 79, (A. Commutativity), ® [112], page 227, (Hilfssatz (Lemma)
XII1.1.2), @ [148], page 301, (Def.5.2, cf Foulis 1962), & [15], page 833, (“a=(anx)u(anx’)”)

86 ® [85], page 67, ® [76], (Proposition 13.2)

87® [85], page 68, B [123], page 158, ® [76], (Proposition 13.3)

88 ® [96], page 20, & [111]

89 [61], page 66, B [148], (cf Foulis 1962)
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3 BACKGROUND: RELATIONS ON LATTICES Daniel J. Greenhoe page 37

1 1
N N Zl Xl ZL Xl
z x
P pt x z
X z Y .,
0 0 0
(A) Oy lattice (B) © D) L% Boolean lattice

Figure 7: Lattices with centers marked with solid dots (see Example 3.17 page 37)
x©y = (M =¢,(x)=xAy Vx,yeX

3.3 Center

An element in an orthocomplemented lattice (Definition 1.72 page 20) is in the center of the lattice
if that element commutes (Definition 3.9 page 36) with every other element in the lattice (next
definition). All the elements of an orthocomplemented lattice are in the center if and only
if that lattice is Boolean (Proposition 1.81 page 24).

Definition 3.15 °° Let © be the commutes relation (Definition 3.9 page 36) On a lattice with nega-
tion L2 (X, V, A, 1, 0, 1; <) (Definition 2.16 page 30). The center of L is defined as
{(xeX|x0y Vye X}

Proposition 3.16 Let L = (X, V,A,0,1; <) bean ORTHOCOMPLEMENTED LATTICE (Defini-
tion 1.72 page 20). The elements 0 and 1 are in the center of L.

&Proor: This follows directly from Definition 3.9 (page 36) and Proposition 3.10 (page 36). @©
Example 3.17 The centers of the lattices in Figure 7 (page 37) are illustrated with solid

dots. Note thatin the case of the Boolean lattice in (D), every dot is in the center (Proposition 1.81
page 24).

3.4 D-Posets

Definition 3.18 °! Let 1 be the upper bound of an ordered set ( X, <).
An operation \ is a difference on ( X, <) if

90 ® [86], page 80
91 [102], page 22,24, ( DEFINITIONS 1,2)
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4 BACKGROUND: MRA-WAVELET ANALYSIS Daniel J. Greenhoe page 38

. x<y = y\x<y vx,yeX  and
2. x<y = »\O\x)=x vx,yeX  and
3. x<y<z = z\y<z\x Vx,yz€X and

4. x<y<z = (\x)\@\y) =y\x vryzex
The structure (X, <,\, 1) is called a D-poset.

Proposition 3.19 92 Let X be a SET.

. 1. xLy<Lz = x < z\x Vx,y.zEX and
(X.<\.Disa =r= Y\x <2\ >
2 x<y<z = x<z\(\x) Vx,y,z€X and
D-POSET -
o 3 x<y<z = (\\O\x)=z\y vxyzex and
(Definition 3.18 page 37)
4 xLy<z = [z\(y\x)] \x =2z\y vryzex

Example 3.20 93 The structure (R+, -, S) is a D-poset where R* is the set of positive real
numbers, — is the standard subtraction operation on R, and < is the standard ordering
relation on R*.

Example 3.21 94 The structure (ZX .\ €) is a D-poset where 2% is the power set of a set X,
\ is the set difference operator, and C is the set inclusion relation.

4 Background: MRA-wavelet analysis

4.1 Transversal Operators

Definition 4.1 95
1. Tis the translation operator on C® defined as

Tf(x) £ f(x—7) and T=2T, vfec®
2. Dis the dilation operator on C* defined as
D f(x) £ f(ax) and D2£4/2D, vrece

Df(x)
T 'f(x) f(x) Tf(x)

I I I I t } I I I } t
-2 -1 0 1 2 -2 -1 0 1 2

92/ [102], page 23, (PROPOSITION 1.)

3@ [102], page 22, (Example 1)

94 & [102], page 24, (Example 4)

95 ® [158], pages 79-80, ( Definition 3.39), ® [27], pages 41-42, ® [163], page 18, (Definitions
2.3,24),® [98], page A-21, ® [8], page 473, ® [131], page 260, ® [11], page, ® [81], page 250,
(Notation 9.4), ® [25], page 74, ® [67], page 639, ® [34], page 81, ® [33], page 2, ® [73], page 2
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4 BACKGROUND: MRA-WAVELET ANALYSIS Daniel J. Greenhoe page 39

Proposition 4.2 96 Let T be the TRANSLATION OPERATOR (Definition 4.1 page 38).

Z T"f(x) = Z T'f(x+1) vfeRR® < Y T"f(x) is PERIODIC with period 1>

nezZ nezZ nez

Proposition 4.3 °7 Let T and D be as defined in Definition 4.1 page 38.
T has an inverse T~! in C® expressed by the relation
T_lf(x) = f(x+1) vfec® (translation operator inverse).
D has an inverseD~! in C® expressed by the relation

D_1 f(x) = ﬁ f lx vfec® (dilation operator inverse).
2 2

Proposition 4.4 9 Let T and D be as defined in Definition 4.1 page 38. Let D° = T® 2 1 be
the IDENTITY OPERATOR.
D/T"f (x) =2/ (2/x — n) Vj.nez, fect

Example 4.5 (linear functions) °° Let T be the translation operator (Definition 4.1 page 38). Let
L(C, C) be the set of all linear functions in Lui.

1. {x, Tx}is a basis for L(C,C) and

2. f(x)=f(1)x—-f(O0)Tx Vf € £(C,C)

“Proor: By left hypothesis, f is linear; so let f(x) £ ax + b

f(1)x — f(0)Tx = f(1)x — f(O)(x — 1) by Definition 4.1 page 38
= (ax+b)|,_; x — (ax + b)|,_o(x = 1) by left hypothesis and definition of f
=(a+b)x—b(x—1)
=ax+bx—bx+b
=ax+b
= f(x) by left hypothesis and definition of f

Example 4.6 (Cardinal Series) Let T be the translation operator (Definition 4.1 page 38). The
Paley-Wiener class of functions PW? are those functions which are “bandlimited” with re-
spect to their Fourier transform. The cardinal series forms an orthogonal basis for such a
space. The Fourier coefficients for a projection of a function f onto the Cardinal series ba-
sis elements is particularly simple—these coefficients are samples of f(x) taken at regular
intervals. In fact, one could represent the coefficients using inner product notation with

9% ® [73], page 3
7 ® [73], page 3
98 ® [73], page 4
9® [84], page 2
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4 BACKGROUND: MRA-WAVELET ANALYSIS Daniel J. Greenhoe page 40

the Dirac delta distribution § as follows:
(f(x)| T"8(x)) & / f(x)6(x — n) dx 2 f(n)
R

sin (zx . .
S| s a basis for PW? and
X
- sin (7x)
X
2. f(x) =) fmT'—— Ve o<l
X
n=1
. ~
v
Cardinal series

Example 4.7 (Fourier Series)

L {D,e” |n€Z} is a basis for L(0, 27x) and
2. f(x) = L Z a,D,e™ Vxe(0,27), feL(0,27) where
\/E nez

A

2
1 —ix
3. a, = — f(x)D, e dx vfeL(©,2x)
" \/Z/o D, "

Example 4.8 (Fourier Transform)

1. {D,e" |wer } is a basis for L}, and
2. f(x) = % / f(w)D e dw Vel where
T

3. f(w) 2 L\/z_ff(x)Dwe‘i"dx vfel2
7 JRr

Example 4.9 (Gabor Transform) 100
L. { (Tfe_’”‘2 ) (D,,e™)

2. f(x) = G (r,0)D,e" dw VxeR,fel?  where

r,weR} is a basis for L and

5. G(r,w) 2 ? f(x)(TTe'”"z)(Dwe'ix) dx  vxeR. fel?
R

Example 4.10 (wavelets) Let w(x) be a mother wavelet.
1. { Danl//(x)|k,n€Z} is a basisfor L2 and

2 f(x) = D ) o, DT"y(x) vrer) where
keZ nez

3. a, = / fOD T y*(x) dx  vreL?
R

100 [139], (Chapter 3)
® [60], page 32, (Definition 1.69)
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4 BACKGROUND: MRA-WAVELET ANALYSIS Daniel J. Greenhoe page 41

4.2 The Structure of Wavelets

In Fourier analysis, continuous dilations (Definition 4.1 page 38) of the complex exponential form
a basis for the space of square integrable functions Lﬁ such that
L}, =g {D,e™ |oer }.

In Fourier series analysis , discrete dilations of the complex exponential form a basis for
L2 (0, 27) such that
L3O, 27) =gm{ D, ™ |jez} .

In Wavelet analysis, for some mother wavelet (Definition 4.18 page 47) w(x),
Lz = gn{D,T,y(x)|w,7 €R}.

However, the ranges of parameters w and r can be much reduced to the countable set Z
resulting in a dyadic wavelet basis such that for some mother wavelet y(x),

L2 =n{D'T"y(x)|j,nEZ}.
Wavelets that are both dyadic and compactly supported have the attractive feature that they
can be easily implemented in hardware or software by use of the Fast Wavelet Transform
(Figure 10 page 49).

In 1989, Stéphane G. Mallat introduced the Multiresolution Analysis (MRA, Definition 4.12 page 43)
method for wavelet construction. The MRA has since become the dominate wavelet con-
struction method. Moreover, PG. Lemarié has proved that all wavelets with compact sup-
port are generated by an MRA.101

The MRA is an analysis of the linear space L?R. An analysis of a linear space X is any se-
quence ([Vj])jeZ of linear subspaces of X. The partial or complete reconstruction of X

from ((Vj))jEZ is a synthesis.!?? Some analyses are completely characterized by a trans-

form. For example, a Fourier analysis is a sequence of subspaces with sinusoidal bases.
Examples of subspaces in a Fourier analysis include V; = gmn{e’}, V,3 = gmn{e>?*}, V 3=

spn{ o V2x }, etc. A transform is loosely defined as a function that maps a family of func-

tions into an analysis. A very useful transform (a “Fourier transform”) for Fourier Analysis

1S
[Ff](@) & —— [ f(xe " dx
2n JR

11E [106], ® [116], page 240
102The word analysis comes from the Greek word dvélvoig, meaning “dissolution” (® [136],

page 23, (entry 359)), which in turn means “the resolution or separation into component parts”
(® [21], nttp://dictionary.reference.com/browse/dissolution)
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4 BACKGROUND: MRA-WAVELET ANALYSIS Daniel J. Greenhoe page 42

Cosine analysis (even Fourier series) Cosine polynomial analysis

<sm1{cos(27rnx) In=0, 1D <spn{cos"(27rx) In=0, 1D

Chebyshev polynomial analysis

\/\\

scaling subspace scaling subspace

Figure 8: Examples of order structures for selected analyses (Example 4.11 page 42)

An analysis can be partially characterized by its or-

der structure with respect to an order relation such scaling subspace

as the setinclusion relation C. Most transforms have subspaces
a very simple M-n order structure, as illustrated to
the right.103The M-n lattices for n > 3 are modu-
lar (Lemma 1.56 page 16) but not distributive (Theorem 1.57
page 16). Analyses typically have one subspace that is
a scaling subspace; and this subspace is often sim-
ply a family of constants (as is the case with Fourier 0
Analysis).

An analysis can be represented using three different structures:
® sequence of subspaces
@ sequence of basis vectors
® sequence of basis coefficients
These structures are isomorphic to each other, and can therefore be used interchangeably.

Example 4.11 %4 Some examples of the order structures of some analyses are illustrated
in Figure 8 (page 42).

103 [73], page 29, (§2.2)
4 [73], pages 30-31
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4 BACKGROUND: MRA-WAVELET ANALYSIS Daniel J. Greenhoe page 43

4.3 Multiresolution analysis

A multiresolution analysis provides “coarse” approximations of a function in a linear space
Luzq{ at multiple “scales” or “resolutions”. Key to this process is a sequence of scaling func-
tions. Most traditional transforms feature a single scaling function ¢(x) set equal to one
(¢(x) = 1). This allows for convenient representation of the most basic functions, such as
constants.!°> A multiresolution system, on the other hand, uses a generalized form of the
scaling concept:106

(1) Instead of the scaling function simply being set equal to unity (¢(x) = 1), a multires-
olution analysis (Definition 4.12 page 43) is often constructed in such a way that the scaling
function ¢(x) forms a partition of unitysuch that ), _, T"¢(x) = 1.

(2) Instead of there being just one scaling function, there is an entire sequence of scaling
functions ([Df qb(x)))jez, each corresponding to a different “resolution’.

Definition 4.12 197 Let ( Vj))jeZ be a sequence of subspaces on Lé. Let A~ be the closure

. . . . 2
of aset A. The sequence (V, ))jeZ is a multiresolution analysis on L, if

1. V] = Vj_ vjez (closed) and

2. VJ C Vj+1 vjez (linearly ordered) and

3. U V] =S LHZQ (dense in L%R) and
JjEZ

4. fe VJ = Df e Vj+1 vjez, fel’  (self-similar) and

5. 3¢ suchthat {T"¢|nez} isa Riesz basis for V.
A multiresolution analysis is also called an MRA. An element V; of ([Vj])jEZ is a scaling

subspace of the space L. The pair (L3, (V;)) is a multiresolution analysis space, or
MRA space. The function ¢ is the scaling function of the MRA space.

The traditional definition of the MRA also includes the following:
6. fe VJ — T'f € Vj Vn,j€Z, feLDZQ (translation invariant)
7. ﬂ Vj = {0} (greatest lower bound is 0)
i€z
However, these follow from the MRA as defined in Definition 4.12 (Proposition 4.13 page 44, Propo-
sition 4.14 page 44).

105 [93], page 8

106 The concept of a scaling space was perhaps first introduced by Taizo Iijima in 1959 in Japan,
and later as the Gaussian Pyramid by Burt and Adelson in the 1980s in the West. ® [115], page 70,
® [90],® [24],® [4],® [108],™® [6],® [78],® [161], (historical survey)

107 ® [83], page 44, ® [116], page 221, (Definition 7.1) , ® [115], page 70, ® [119], page 21,
(Definition 2.2.1), ® [27], page 284, (Definition 13.1.1), ® [8], pages 451-452, (Definition 7.7.6),
® [158], pages 300-301, (Definition 10.16), ® [35], pages 129-140, (Riesz basis: page 139)
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4 BACKGROUND: MRA-WAVELET ANALYSIS Daniel J. Greenhoe page 44

Proposition 4.13 198 Let MRA be defined as in Definition 4.12 page 43.
{(V), sanMRA} = {feV, & T'feV, wenres |

/

~~
TRANSLATION INVARIANT

Proposition 4.14 1°° Let MRA be defined as in Definition 4.12 page 43.

{ ((Vj))jez isan MRA} — { m Vj = {@} (GREATEST LOWER BOUND is0) }
JEZ

The MRA (Definition 4.12 page 43) is more than just an interesting mathematical toy. Under some

very “reasonable” conditions (next proposition), as j — oo, the scaling subspace V; is dense

in Lui ...meaning that with the MRA we can represent any “reasonable” function to within

an arbitrary accuracy.

Proposition 4.15 110

@. ¢(w) is CONTINUOUS at0 and

@. $0)#0

A multiresolution analysis (Definition 4.12 page 43) together

with the setinclusion relation C form the linearly ordered ~ L. ®@———entirelinear space
set (Definition 1.4 page 4) ((V;) . C), illustrated to the right by a :
Hasse diagram (Definition 1.6 page 4). Subspaces v, increasein v,
“size” with increasing j. That is, they contain more and Vi larger subspaces
more vectors (functions) forlarger and larger j—withthe  V, smaller subspaces
upper limit of this sequence being L?R. Alternatively, we V.,
can say that approximation within a subspace V; yields :
greater “resolution” for increasing j.!!! 0 O<——smallest subspace

@. (T"¢) is a RIESZ SEQUENCE and

U Vj> = L@2R (DENSE in L2) }

j€z

Remark 4.16 ''2Note that the greatest lower bound (g.1.b.) of thelinearly orderedset ((V;) <)
is O (Proposition 4.14 page 44): All linear subspaces contain the zero vector. So the intersection of
any two subspaces must at least contain 0. If the intersection of any two linear subspaces

X and Y is exactly {0}, then for any vector in the sum of those subspaces (u € X 4+ Y)
there are unique vectors f € X and g € Y such that u = f + g. This is not necessarily true

if the intersection contains more than just {0} .

108 ® [83], page 45, (Theorem 1.6), ® [73], pages 32-33, (Proposition 2.1)

109 ® [163], pages 19-28, (Proposition 2.14), ® [83], page 45, (Theorem 1.6), ® [137],
pages 313-314, (Lemma 6.4.28), ® [73], pages 33-35, (Proposition 2.2)

1o [163], pages 28-31, (Proposition 2.15), ® [73], pages 35-37, (Proposition 2.3)

e [120], page 83, (Theorem 3.2.12), ® [104], page 67, (Theorem 2.14), ® [74], (Theorem
7.1)

2@ [73], page 38, (§2.3.2 Order structure)
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| subspace | transform [ approximation |
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Figure 9: Example approximations of sin(xx) in 3 Haar scaling subspaces (see Example 4.17 page 45)

Example 4.17
In the Haar MRA, the scaling function ¢(x) is the pulse function
lo—o°
B 1 forxelo, 1) : f
¢x) = { 0 otherwise. ; s é ;
-1 1 2

In the subspace V; (j € Z) the scaling functions are
2j/2

D/ () {(2)”2 forx € [0, (27))

0 otherwise. |

The scaling subspace V, is the span V, 2 gn{ T"¢|nez}. The scaling subspace V; is the
span V; £ gm{D/T"¢ |n € Z } . Note that |[D/T"¢|| for each resolution j and shift » is unity:

ID/T"¢|* = Il
1
2 . e 2
=/O [1]7 dx by definition of ||-|| on L,
=1
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4 BACKGROUND: MRA-WAVELET ANALYSIS Daniel J. Greenhoe page 46

1+
Let f(x) = sin(zx). Suppose we want to project f(x) "-,‘ /\ /\

onto the subspaces V,, V|, V,, .... _\/2 _ 1\/2 ;

/ \ / \
The values of the transform coefficients for the T/ ; - T’ o
subspace V; are given by -¢,[3\ F2 -L[,l\ /| 2 i\\ /2 i
1 .
R f(x)|(n) = ——— (f(x)| DT"¢
S ID/T"¢]|? < )
1 (F0)| 2Pp(2x —n)) by Proposition 4.4 page 39

=22 (f(x)| $(2/x—n))

. 27 (n+1)
=2/ / f(x)dx
2

i
) 27 (n+1)
=2/ / sin(zx) dx
2=in
27 (n+1)

=2/ (—%) cos (rx)

2J/2 . .
=— [cos (27/nx) — cos (277 (n+ Dr)]

2=in

And the projection A, f(x) of the function f(x) onto the subspace V; is

Af(x) = Z (f(x)| DT"¢) D'T"¢

neZ

= %/2 Z [cos (2_/mz') — cos (2_j(n + 1)ﬂ)]2j/2¢(2jx _ n)

nez

= i—l Z [cos (2_jn7r) — oS (2_j(n + 1)”)]¢(2jx - n)

nez

The transforms into the subspaces V,, V,, and V,, as well as the approximations in those
subspaces are as illustrated in Figure 9 (page 45).
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4 BACKGROUND: MRA-WAVELET ANALYSIS Daniel J. Greenhoe page 47

4.4 Wavelet analysis

The term “wavelet” comes from the French word “ondelette”, meaning “small wave”. And
in essence, wavelets are “small waves” (as opposed to the “long waves” of Fourier analysis)
that form a basis for the Hilbert space Lé J1s

Definition 4.18 !4 Let T and D be as defined in Definition 4.1 page 38. A function y(x)
in L2 is a wavelet function for L% if

{D/T"y |jnez } is a Riesz basis for L2,
In this case, y is also called the mother wavelet of the basis {Dj T"y |jnez } . The sequence
of subspaces ( Wj))jGZ is the wavelet analysis induced by y, where each subspace W; is
defined as

W, £ gn{D'T"y|nez} .

A wavelet analysis (W;) is often constructed from a multiresolution anaysis (Definition 4.12
page 43) ( Vj]) under the relationship

Via=V,+W, where 4 is subspace addition (Minkowski addition).
By this relationship alone, ( WJ)) is in no way uniquely defined in terms of a multiresolu-
tion analysis (V;). In general there are many possible complements of a subspace V;. To
uniquely define such a wavelet subspace, one or more additional constraints are required.
One of the most common additional constraints is orthogonality, such that V; and W, are

orthogonal to each other.

Definition 4.19 Let (Lﬂé, (V;). ¢. (h,)) be a multiresolution system (Definition 4.12 page 43)
and ((Wj])jeZ a wavelet analysis (Definition 4.18 page 47) with respect to ((Vj])jez. Let (g,)
be a sequence of coefficients such that y = ) _, g,DT"¢.
A wavelet system is the tuple
(Lz- (V). (W) b w. (m). (80))

and the sequence (g,), is the wavelet coefficient sequence.

nezZ

Theorem 4.20 115 Let (L?R, (V). (W,). . w. (h,). (g,)) beaWAVELET SYSTEM (Definition 4.19
page 47). Let V| + V, represent MINKOWSKI ADDITION of two subspaces V, and V, of a Hilbert
space H.

Lﬂé = lim Vj (LDZR is equivalent to one very large scaling subspace)
/—)00
2 2 7 7 L% is equivalent to one scaling space
VJ + M/J + M/J-i'1 + M/J'*‘2 + < and a sequence of wavelet subspaces :
= ... F W_2 + W—l F WO + Wl F W2 F ... (L?R is equivalent to a sequence of wavelet subspaces)

13® [153], page ix, ® [7], page 191
14 ® [163], page 17, (Definition 2.1), ® [73], page 50, (Definition 2.4)
1us® [73], page 53, (Theorem 2.8)
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4 BACKGROUND: MRA-WAVELET ANALYSIS Daniel J. Greenhoe page 48

DNPROOF:

(1) Prooffor (1):

L = lim V, by Definition 4.12 page 43
J—7
(2) Prooffor (2):
VJ‘-T_M/J'T'MIJH'T'M//H‘T' =Vj+1'T'M/j+1'T'M/j+2'T'M/j+3'T'
N~—— ————
V“'l Vj+2
=Vt Win Wi+ Wi+
S—————
Vj+3
=VigtW W, F W5+
—
Vit
=VistWist Wit Wit
—
Viss
=l Vs + Wias & Wy + Wi oo
2
=12
(3) Proof for (3):
Lz = Vo W AW W, R W4 by (2)
Vot w,
= V—l W_]'T"'V()+W1+W2+W3‘T‘
Va,iWw,
= V_z W_z'T'W]‘T'Wo‘i'W1+W2+W3'T'
Vi W,
= V_3 W_3"+\' W_z"'\' W_I'T‘W()'T‘ WI'T‘Wz'T' W3"|\"“
Viw,

:"‘4\‘W3‘T‘W2‘T‘W_14‘W04‘ W14\‘W24\‘ W34\‘"'

Remark 4.21 In the special case that two subspaces W, and W, are orthogonal to each
other, then the subspace addition operation W, + W, is frequently expressed as W, & W,.
In the case of an orthonormal wavelet system, the expressions in Theorem 4.20 (page 47)
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4 BACKGROUND: MRA-WAVELET ANALYSIS Daniel J. Greenhoe page 49

could be expressed as
L2 = limV

VOW,eW, &W, o
— OWLOW OW, W, W, ® .

4.5 Fast Wavelet Transform (FWT)

Filter banks can be used to implement a “ Fast Wavelet Transform” (FWT). This is illustrated
in Figure 10 page 49.116

0,00 = (f(X)] ¢;,(0)

—

(n) &)
! !
12 12
Uy (n) = <f(x) | ¢k_1$n(x)> I—' Wy_y(n) = <f(x) | Wk_l,n(x)>
Y L
R(n) &)
! !
12 12
Dea() = (£ | dan()) L ) = (F) | i)
Y L
0 = ()| 1,(0) wyn) = (£ | w1, ()
Y }
R(n) &)
! !
12 12
vo(m) = (F) | px—m)) ¥ v wym) = (F) | w(x—m)

Figure 10: k-Stage Fast Wavelet Transform (FWT)

1ne® [116], page 257, (Figure 7.12), ® [73], pages 371-372, (Figure L.1)
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5 MAIN RESULTS Daniel J. Greenhoe page 50

QIN = Yn-1 V XNy

(C) p-lattice of cosets (D) p-lattice of MRA and wavelet subspaces

Figure 11: Some selected primorial lattices (see Example 5.2 page 50-Example 5.5 page 51)
5 Main Results

5.1 Primorial Lattices

Definition 5.1 Let X £ {0,x, X, ..., Xy, Yo, Y15 .., Yy } be aset.

A lattice L £ (X, V, A; <) is primorial if
1. 0isthe least element of L and
2. Lis atomic (Definition 1.44 page 13) and { yg, x, x|, ..., Xy } are atoms of L and
3 V1 = Vn VX, -

A lattice that is primorial is a primorial lattice, or simply a p-lattice.

Example 5.2 A general primorial lattice is illustrated to in Figure 11 page 50 (A).

Example 5.3 !'7 The set of primorial numbers and prime numbers ordered by the divides
(“1”) relation forms a primorial lattice, as illustrated in Figure 11 page 50 (B).

n7® [73], page 30, 2 [2] (http://oceis.org/A002110)
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5 MAIN RESULTS Daniel J. Greenhoe page 51
Haar/Daubechies-p1 wavelet analysis Daubechies-p2 wavelet analysis
P TN
7
/
’
,/ scaling ,/ scaling
/ subspaces subspaces

Figure 12: some MRA-wavelet systems

Example 5.4 Any partition, along with successive unions of the partition elements, gen-
erates a primorial lattice. One example of this is the cosets of Z, which generate a finite
primorial lattice, as illustrated in Figure 11 page 50 (C).

Example 5.5 A special characteristic of MRA-wavelet analysis is that it's order structure
with respect to the C relation is not a simple M,, lattice (as is with the case of Fourier and
several other analyses). Rather, it is a primorial lattice as illustrated in Figure 11 page 50 (D)
and in Figure 12 page 51.

Proposition 5.6 118 Let L 2 (X, V, A; <) be a LATTICE.

-

1. L is NONDISTRIBUTIVE (Definition 1.53 page 15) and. )
2. L is NONMODULAR (Definition 1.47 page 14)  and
Lis 3. L iS COMPLEMENTED <= L iS FINITE (pefinition 1.63page 17) ~and
{ primorial } = 4. L is NOT UNIQUELY COMPLEMENTED (Definition 1.63page 17) ~ and (
5. L iSs NONORTHOCOMPLEMENTED (Definition 1.72 page 20)  and
L 6. L is NONBOOLEAN (Definition 1.69 page 18)

17 [73], page 72, (Section 2.4.3 Order structure)

us® [73], page 52, (Proposition 2.6)
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5 MAIN RESULTS Daniel J. Greenhoe page 52

N PROOF:
0
(1) Proofthat L is nondistributive:

(@) L contains the N5 lattice (Definition 1.49 page 14).
(b) Because L contains the N5 lattice, L is nondistributive (Theorem 1.57 page 16).

(2) Proofthat L is nonmodular and nondistributive:

(a) L containsthe N5 lattice (Definition 1.49 page 14).
(b) Because L contains the N5 lattice, L is nonmodular (Theorem 1.50 page 14).

(3) Proofthat L is noncomplemented.:

z' = {x,y,v}
X” — (x/)/
=z/
= {x,y,v}
#*x

(4) Proofthat L is nonBoolean:

(a) L is nondistributive (item 1 page 52).
(b) Because L is nondistributive, it is nonBoolean (Definition 1.69 page 18).

5.2 Reduction operator on boolean lattices

Definition 5.7 Let B be the setofall bounded lattices (Definition 1.39 page 12). Let LQ’ 2(X,V,A0,1;<)
be a Boolean lattice (Definition 1.69 page 18) with 2V elementsand N € N (N isa positive integer).
The operator R is the lattice reduction operator of LQ’ and RLQ’ is the reduction of LQ’ if

1. Lisa2"N~! element Boolean lattice and
2. LC Lév and

RLY23LeB|3 {0,1}el and
4. {x,y}isan orthocomplemented pair in L =

{x,y} is an orthocomplemented pair in LQ’
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Note that in Definition 5.7, the order relation < is the same for both LQ’ and any L in RLQ’ .
That s, if x < y in L), then x < y in L as well.

Example 5.8 Let Lg be a Boolean lattice (Definition 1.69 page 18) of order 2. Let R be the lattice
reduction operator R and RL% be the reduction of L% (Definition 5.7 page 52). Then RL% yields a
set of exactly one 2°~! value Boolean lattice, as illustrated next:

Example 5.9 Let Lg be a Boolean lattice (Definition 1.69 page 18) of order 3. Let R be the lattice
reduction operator R and RL] be the reduction of L] (Definition 5.7 page 52). The operation RL}
yields a set of three 2° value Boolean lattices, as illustrated next:

Example5.10 Let L‘z‘ be a Boolean lattice (Definition 1.69 page 18) of order 4. Let R be the lattice
reduction operator R and RL‘Z‘ be the reduction of L‘Z‘ (Definition 5.7 page 52). The operation RL‘Z‘
yields a set of ten 2° value Boolean lattices, as illustrated in Figure 13 (page 54).

Remark 5.11 In a boolean lattice LQ’ (Definition 1.69 page 18), besides the pair {0, 1}, there are
a total of 2V-1 — 1 orthocomplemented (Definition 1.72 page 20) pairs of elements. But note that
any arbitrary 2V~! — 2 pairs of orthocomplemented pairs does not in general generate a
boolean lattice. The lattice Lg, for example, has 2*~! — 1 = 7 orthocomplemented pairs
besides {0,1}. To generate an Lg lattice, we need 3 orthocomplemented pairs. There are

(}) = 7 = 35 ways of selecting 3 pairs from L%, but only 10 of these ways generate a boolean
lattice (Example 5.10 page 53). All other ways fail.
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y
1
Figure 13: reduction of L‘Z‘ (Example 5.10 page 53)
For example, if we were to select the pairs {0, w,w",a,a*,b,b",1}, we
would get the orthocomplemented, but non-boolean (Definition 1.69 page 18) 1
lattice illustrated to the right; In particular, it is complemented, but non- b

distributive. For example, w' A(avb) = wt #0=0v0 = (w! Aa)V(wt Ab).

Alternatively, note that the set {1,a,w,0,b", w"} together with the order- K i
ing relation < form an Oy sublattice (Definition 1.73 page 20), which contains an b \ a
Njs sublattice, which implies that the lattice to the right is non-distributive

(by the Birkhoff distributivity criterion Theorem 1.57 page 16).

Example5.12 Let Lg be a Boolean lattice (Definition 1.69 page 18) of order 5. Let R be the lattice
reduction operator R and RLg be the reduction of Lg (Definition 5.7 page 52). The result of the
operation RLS is partially illustrated in Figure 14 (page 55).

5.3 Difference operator on bounded lattices
Definition 5.13 Let X \Y be the standard set difference of aset X and aset Y. Let L, £
(X, V,A0,1;<)and L, 2(Y, vV, A0, 1; <) be bounded lattices (Definition 1.39 page 12).

The bounded lattice difference L, O L, of L, and L, is the lattice L such that
L2((X\Y)U{0,1},V, A0, 1; <)
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Example 5.14 Let® be the bounded lattice difference operator (Definition 5.13 page 54).

1 1
N
q a c
© <>,? p<>
]
0 0

Proposition 5.15 Let B be the set of all BOUNDED LATTICES (Definition 1.39 page 12). Let® be the
BOUNDED LATTICE DIFFERENCE Operator (Definition 5.13 page 54).
(B, ©) is a D-POSET (Definition 3.18 page 37).

Theorem 5.16 Let L 2 LY © L)™' be the BOUNDED LATTICE DIFFERENCE (Definition 5.13 page 54)
0f a BOOLEAN LATTICE LQ’ (Definition 1.69 page 18) and a BOOLEAN LATTICE Lg’ -1 selected from the
set RLY (Definition 5.7 page 52). Let X & {L3|n=1,2,...} U{LiQLy " |n=2,3,... }.

1. LQ’ ) LQ’ = is an orthocomplemented lattice (Definition 1.72 page 20) and

2. ThestructureP 2 (X, V, A; C) is a primorial lattice (Definition 5.1 page 50).

PROOF:

(1) Proofthat L) © L)~" is an orthocomplemented lattice:

(@) LQ’ is a Boolean lattice by definition.
(b) L)~'isalso a Boolean lattice (Definition 5.7 page 52).
(c) Every lattice that is Boolean is also orthocomplemented (Proposition 1.80 page 23).

(d) By definition of L)Y © L)~!, orthocomplemented pairs are removed from L} and the or-
thocomplemented pair {0, 1} is put back in.

(e) Whatremainsin LY © L)~ is a set of orthocomplemented pairs, ordered with the same
ordering relation < that orders L)'

(f) All remaining orthocomplemented pairs are still involutory: x = x** vxex

(g) All remaining orthocomplemented pairs are still antitone because the ordering relation
<in L} and L} © L)™' is the same.

(h) All remaining orthocomplemented pairs still have the non-contradiction property be-
cause suppose thatin LY © L)~!, there is an element x such that x A x* = m # 0. Then
in LQ’ , it would also be true that x A x* # 0. This cannot be true (is a contradiction); so
therefore for all x in LY @ L™, x A x* = 0 (non-contradiction property).

(i) So LQ’ S LQ’ ~lisan orthocomplemented lattice (Definition 1.72 page 20).

(2) Proof that (X £{L;|n=1,2,...}u{L50L; " [n=2,3,...}, C) is a primorial lattice: This
follows directly from the construction of the bounded lattice difference (Definition 5.13 page 54) and
the definition of primorial lattices (Definition 5.1 page 50).

=
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orthocomplemented

Boolean

. . . . . 5
Figure 15: a primorial lattice generated by L5
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5 MAIN RESULTS Daniel J. Greenhoe page 58

Definition 5.17 Let LQ’ be a 2" element Boolean lattice (Definition 1.69 page 18).
The lattice P as described in Theorem 5.16 is a primorial lattice generated by LQ’ .

. . . . . 5
Example 5.18 Figure 15 (page 57) illustrates a primorial lattice generated by L.

5.4 Projections on primorial lattices

This section introduces three lattice projections. When performing analysis in a primorial
lattice (Definition 5.1 page 50), it is necessary to project a point that exists in a lattice of “high
resolution” onto alattice L of lower resolution that may or may not contain this point. The
three projections introduced here are the

1. zero primorial projection (Definition 5.19 page 58) which assigns to 0 any point that does
not existin L

2. Sasaki primorial projection (Definition 5.20 page 58) Which assigns a projection value us-
ing the Sasaki projection (Definition 2.22 page 31)

3. metric primorial projection (Definition 5.22 page 59) Which assigns a projection value
based on a lattice metric (Definition 2.7 page 27).

Definition 5.19 Let P be a primorial lattice (Definition 5.17 page 58) generated by a Boolean lat-
tice LQ’ (Definition 1.69 page 18). Let L £ (Y, V, A, 0, 1; <) be a lattice in P. Let x £ (x,) be a
sequence over the set X. The zero primorial projection @, (x) of x onto L is defined as

D;0)2\/[(x.0)nY]  vxex
L
The zero primorial projection @} (x) of x onto L is defined as

@} (x) = (y,) where y, £ @} (x,)  Vx,e(x,).3,€0,).

Definition 5.20 Let P and x be defined as in Definition 5.19 (page 58). Let P be a pri-
morial lattice (Definition 5.17 page 58) generated by a Boolean lattice LQ’ (Definition 1.69 page 18). Let
L2 (Y,V, A0, 1;<)bealattice in P. Let x £ (x,) be a sequence over the set X. The
Sasaki primorial projection @; (x) of x onto L is defined as

o2\ [{p,0lyey}nY| v
L

where ¢,(x) is the Sasaki projection of x onto y (Definition 2.22 page 31) in the smallest Boolean
lattice L)' that contains both x and L. The Sasaki primorial projection ®; (x) of x onto L

is defined as
@} (x) £ (y,) where y, £ ®}(x,) Vx,elx,).
The Sasaki primorial projection yields a kind of maxmini (Theorem 1.35 page 11) result:
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Proposition 5.21 Let @, (x) be the SASAKI PRIMORIAL PROJECTION of x onto L in a PRIMO-
RIAL LATTICE P.
O =\/UxAylyeY}nY]  weex

L
N PROOF:
D (x) £ \/ {o,0)lyeY}nY] by def. of Sasaki primorial projection (Definition 5.20 page 58)
& \/ {&xvyHaylyeYyny] by definition of Sasaki projection (Definition 2.22 page 31)
= \/ [{xA» VG AW IyeY}nY]| bydistributive prop. (Theorem 1.70 page 19)
= \/ HxAyVO|yeY}nY] by noncontradiction property (Theorem 1.70 page 19)
= \/ [{xAylyeY}nY] by bounded property (Theorem 1.70 page 19)

Definition 5.22 Let P and x be defined as in Definition 5.19.
The metric primorial projection ®@7'(x) of x onto L is defined as
D(x) = /\ [E (x,r) N Y] where
L
1. B(x,r)is the closed ball in (LQ” , d) with the smallest radius r that contains x and
2. (LY ,d) is a metric lattice (Definition 2.7 page 27) and
3. Léw is the smallest Boolean lattice (Definition 1.69 page 18) containing x and
4. the valuation function defining d is the height function on LY'.
The metric primorial projection @, (x) of x onto L is defined as
@, (x) £ (y,) suchthaty, £ ®,(x,).

Example 5.23 Here are examples of the primorial projections @fyﬁ(x) (Definition 5.19 page 58),

cbsoé(x) (Definition 5.20 page 58), and @, (x) (Definition 5.22 page 59) in the primorial lattice (Definition 5.1
6

page 50) generated by the Boolean lattice (Definition 1.69 page 18) Lg 2(X,V, A0, 1;<) asillus-

trated in Figure 15 page 57 onto the lattice Oy 2 ;O L5 £ (Y, v, A, 0, 1; <).

| projection || xinO, 2 oL, [xinL| xinl] | xin L] |
)C:OfttlflqulrrLsslgglppla'dl
@gﬁ(x):Ofttlf'LIOOOOOOOOOOOO
cbsoﬁ(x)=0ftzlfl10 110 f£ 0 Yt F 0 1 0
cbgﬁ(x):ojfttlfiloo0fi0fizf010z
DNPROOF:
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(1) Proof for zero primorial projection values:

@y, (0)=\/ [0y u{oHn {0, f.1, 1%, /4 1}] =\/ 1oy =0
@y, () =\/ [dryufonn{o, f,ert fh 1] =\/to. s =7
@, ) =\/ [} u (o {0, f.0,e%, 11 1}] =\/[{0,1}] =1
@5, () = \/[({r} u10}) n{o.f 0ot 41} =/ [{0.r*}] =rt
o5, (FH =\ [({r}uioy) n{o.ronrt s 1] =\/ [{0./}] =f*
@y, () =\/[(1yu{onpn{o, f.o 4 1}] =\/[{1.0}] =1
@y, (@)= \/ [(tay u{OH {0, f.1, %, 14 1}] =\/ 1o}] =0
@5 (9 =\/[({a*} u10}) n{0. /.11t " 1}] =\ [{0.4*}] =0
@y, (= \/[(ruionn{o, /.0, fH 1] =\/ [{0}] =0
@, () = VI({r}utoy) n{o, £.eet,rt 1} =\/ [{o.r}] =0
oy, ()= \/ [dshu{opn {0, f.o, 1 fH 1] =\/[{0}] =0
@, = \/ [({s*}utor) n{o. f.0et r 1] =\/ 1oy =0
@, ()= \/ [ty utopn {0, f,0.rt f4 1] =\/ 1oy =0
@y, (¢ =\/ [({g"} u0}) n {0, f,1,rH 1} ] =\/ [{0}] =0
@y, (0 =\/ [dpyuiohn{o, 1.1t 4 1} =\/ 1oy =0
o5, () = \/ [({p"} U {0}) n {0, f,1,1" 1] =\/[{0}] =0
@y, (@)= \/ [ddyuopn{o, £, fH1}] =\/ [{0}] =0
@y, (@) =\/ [({d*}u{0}) n{o, f.0rt 1} ] =\/ 1oy =0

(2) Proof for Sasaki primorial projection (Definition 5.20 page 58):

o, 0 =\/[{0AylyeY}nY]l  =\/{0,0,0,0,0,0}nY] =\/ {0} =0
oy (H=\/Usrylyerinyl  =\/1{0.7,0,7,0,7}nY]l  =\/{0o.f} =7
oy 1 =\/lirylyeyinyl  =\/1{0,0,1,0,,1} Y] =\/{0.1) =1

o, M =\/[{avlyey}ny] =\/[{o,f.0.",q. ' Y] =\[{of.it} =+
o, (H=\/[{rrvlvey}ny] =\/[{0.0n.q.7" r }ny] =\/{owns} =r*

o, ()=\/l{1aylyeyinyl  =\/[{o.s.nr51hnY] =\/Y =1
o, (@ =\/lHarylyeYinyl  =\/1{0,0,0,4,0,g} Y] =\/ 10} =0

oy @)=\ [{a"rviveriny] =\/[{o.f..f.na ) nY]  =\/{0.r1) =1
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5 MAIN RESULTS Daniel J. Greenhoe page 61
o, (=\/lraylyeyinyl  =\/1{0,r0,r,0,r}nY] =\/ {0} =0
o, =\ [{r"ryvlveriny] =\/[{ostertrtyny]  =\/{onr} =r*
o, (9=\/lsaylyeYinyl  =\/1{0,50,50,5}nY] =\ (0 =0
o, sH=\/[{s"rvlyeriny] =\/[{o.0.nd st s ny] =\/{orrt} =r*
o, (@) =\/Hegrylyerinyl  =\/1{0,0,1,p.g.8}nY] =\ (0.1} =1
o, g =\ [{e"avlveriny] =\/[{0.5.0.¢%0¢ nY] =\/{0./} =7
@, () =\/liprylyeYinyl  =\/1{0,0,0,p,p,p} Y] =\/ 0} =0
o, =\ [{r rviveriny] =\/[{o.f.ne"0p Y] =\/{0r1} =1
o, (@)=\/ldrylyeYinyl  =\/1{0,r,0,d,0,d}nY] =\/ {0} =0
oy @) =\/[{a*rylyeriny] =\/[{0.s10.g.d }nY] =\/{0.1) =1
(3) Proof for metric primorial projection (Definition 5.22 page 59):
o5 0 = /\ :E(0,0)nY] = Aloyn{o. st i1y = Ao =0
opN=A\[Br.ony] =Alsin{oret iy =Ay =
op 0= /\ :E(t,O)nY] = Altrn{o.r.eet rh1] = A\ —1
oy ()= [\ B (1,0) nY] = AUt n{o. et i) = A\ {et) =1t
o= A\BULo) Y] = Al nfornt il = Afrt =
@”éﬁ(l):/\:g(l,O)nY = A lityn{o.r.eet, £ 1}] = A1} =1
op@=A[Ba@vny] = A[a0r}ny] =A\{o.t} =0
o= A\[B-1)ny] = Alen1}ny] =N\l =t
o5 =\[Benny = \l(r.0.d.f}nY] =A\.s} =0
oy () =\ B(rt1)ny| = N [{rdt i1y ny| =A{rt1} =r*
@’gé(s)z/\ :E(s nny = A\ [{s.0.e.r.¢*} nY] = A\ (0.7} =0
@y (sh) =\ B(sh1)ny] = N [{stet a1} ny] =A\{rt1} =r*
op@=/\[Benny] = Alsprrtediiny] = At =
oy (sh =\ :E(gL,l) ny| = Algtderptiny] = A{rt} =7
opm=/A\[Benny| = Alnopabegny = A\ (0) =0
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op 0= A\[B(H1)nY] = Alfphatbhctegh1iny] = A1) =1

oy (d) = /\ [E(d,z) n {0, f.0,14, 1, 1}]
= /\ [{0, a,b,d,e, f,h,i,q, r,cl,gl,jl,pl,sl,tl} N {0, fotth fL, 1}]

- Ados.)
=0

o @ = A\ [B(a42) n{o. £t r4 1]
= /\ [{c,g,j,p, s,t,at, bt dt et A ont it gt 1} N {O,f,t, t, 1}]

= N\ {erh1j

=t

5.5 A generalized probability function

This paper introduces a new definition for a lattice-valued probability function (next).

Definition 5.24 Let L 2 (X, V, A, 1, 0, 1; <) be a lattice with negation (Definition 2.16 page 30).
Let © be the distributivity relation (Definition 1.52 page 15). A function p in RX isa probability
on L if

1. p(0) = 0 (nondegenerate) and
2. p( 1) = 1 (normalized) and
3. xZy = p(x) < p) Vx,yeX (monotone) and

= p(xVy)

=0 d
{ XNy an p(x) +p(y) Vxyex (additive).

(z,x,y)) E® vzex
If p is a probability on a lattice with negation L, then (L, p) is a probability space.

Remark 5.25 Definition 5.24 page 62 (previous) is not any standard definition of the prob-
ability function. On a Boolean lattice, the measure-theoretic probability function, due to
A. N. Kolmogorov, is defined as!'®

. p(1) = 1 (normalized)  and
2). p(x) > 0 Vx€X  (nonnegative) and
o0 o0 o0
3. /\ x, =0 = p<\/ x,,) = p(x,) Vx,€X (o-additive)
n=1 n=1 n=1

19 [13], pages 22-23, (Probability Measures), ® [101], ® [100], page 16, (field of probability),
® [133], pages 8-9, (Definition 2.3(13) ), ® [97], page 27
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The advantage of this definition is that p is a measure, and hence all the power of mea-
sure theory is subsequently at one's disposal in using p. However, it has often been ar-
gued that the requirement of o-additivity is unnecessary for a probability function. Even
as early as 1930, de Finetti argued against it, in what became a kind of polite running debate
with Fréchet.120 In fact, Kolmogorov himself provided some argument against o-additivity
when referring to the closely related Axiom of Continuity saying, “Since the new axiom is
essential for infinite fields of probability only, it is almost impossible to elucidate its em-
pirical meaning...For, in describing any observable random process we can obtain only
finite fields of probability....” But in its support he added, “This limitation has been found
expedient in researches of the most diverse sort.”12!

There are several other definitions of probability that only require additivity rather than

o-additivity. On a Boolean lattice, the traditional probability function is defined as!22
). p(1)
2). p(x) 0 VxeX (nonnegative) and
B). xAy=0 = pxVvy p(x) +p(y) VxyeXx (additive)

This definition implies (on a Boolean lattice) that

1 (normalized) and

v

(a). p(O) = 0 (nondegenerate)  and
(b). p(x) < 1 vxex (upper bounded) and
(©). p(x) = 1-p(—x) VxeX and
(. pxVvy =< px)+p®) Vx.yeX (subadditive) and
). p(xVy = px)+p» —p(xAy) Vxyex and
0. x<y = px) < p®» Vx,y€X  (monotone)

On a distributive pseudocomplemented lattice, the generalized probability function has
been defined as!23

1). p(O) = 0 (nondegenerate) and
2). p( 1 ) = 1 (normalized) and
@. 0<p(1) £ 1 and
@. p(xVvy = px)+pQy)—pxAy) Vxyex

On an orthomodular lattice, or a finite modular lattice, the quantum probability function
is defined as!24

1. p(0) =0 (nondegenerate) and
2). ( 1 ) = 1 (normalized) and
@. xly = pkxVvy = px)+p(y) vxyeX (additive)

However, for lattices that are not distributive, modular, or orthomodular none of these
definitions work out so well. Take for example the Oy lattice with the “very reasonable”

120 [59], @ [64],E [58],& [65],& [57],& [28], pages 258-260
121 @ [100] page 15

122® [134], pages 21-22, ® [100], page 2, (S1. Axioms I-V)
123 [125], page 118, ® [124]

124 [72], page 126, (DEFINITIONS ), E [125], page 118
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probability function given in Example 5.31 (page 66). This probability space (O, p) fails
to be any of the 4 probability functions defined in this Remark. It fails to be a measure-
theoretic or traditional probability function because

anb=0 but plavb)=pl)=1%#1+1=p@)+pb).
It fails to be a generalized probability function because

plavb)=p(l)=1%# 1+ 1 —0=p(a)+p(b) — p(0) = p(a) + p(b) — pla A b) .
It fails to be an quantum probability function because

alb=0  but plavb)=p(l)=1%# 1+ 1 =p(a)+p(b) .
In each of these cases, the function p fails to be additive. The solution of Definition 5.24
(page 62) is simply to “switch off” additivity when the lattice is not distributive. This method
is a little “crude”, but at least it allows us to define probability on a very wide class of lat-
tices, while retaining compatibility with the Boolean case (Proposition 5.26 page 64, Proposition 5.27
page 64, Proposition 5.28 page 65).

Proposition 5.26 125 Let (L, p) be a PROBABILITY SPACE (Definition 5.24 page 62).
0 < p(x) £ 1 wxex

N PROOF:
0 = p(0) by previous result
< p(x) because 0 < x and monotone property (Definition 5.24 page 62)
p(x) < p(1) because x < 1 and monotone property (Definition 5.24 page 62)
=1 by property of p (Definition 5.24 page 62)
=
Proposition 5.27 126 Let (L, p) be a PROBABILITY SPACE (Definition 5.24 page 62).
Lis
= x) = 1—-p(-x) vxex
{ ORTHOCOMPLEMENTED } { p(x) P(x) Ve }
N PROOF:
1 — p(=x) = p(1) — p(=x) by Definition 5.24 page 62
= p(x V 7ix) — p(—x) by excluded middle property of ortho negation (Definition 2.14 page 29)
= p(x) + p(-x) — p(-x) because (x)(-x) = 0 and additive property (Definition 5.24 page 62)
= p(x)
=

125 ® [134], page 21, ((2-11))
126 ® [134], page 21, ((2-12))

e
MonpAy 29™ SepTEMBER, 2014 % MRA—WUV Ie’r subspace architecture for logic, probability, and symbolic sequence processing 4;5 VERSION BB4A

Peer] PrePrints | http://dx.doi.org/10.7287/peerj.preprints.520v1 | CC-BY 4.0 Open Access | rec: 2 Oct 2014, publ: 2 Oct 2014



http://books.google.com/books?vid=ISBN0070484775&pg=PA21
http://books.google.com/books?vid=ISBN0070484775&pg=PA21

5 MAIN RESULTS Daniel J. Greenhoe page 65

Proposition 5.28 127 Let (L, p) be a PROBABILITY SPACE (Definition 5.24 page 62).

Lis L pxVvVy = px)+pQ)—p(xAy) vxyeXx and
——
BOOLEAN 2 p(xvy < px)+p®») Vx,y€X (BOOLE'S INEQUALITY)

DN PROOF:

(1) lemma: Proof that p((-x) A y) = p(y) — p(x A ¥):

p(y) — p(xy) = p(1 A y) — p(xy) by definition of 1 and A (Definition 1.28 page 9)
= p[(x vV x)y] — p(xy) by excluded middle property of Boolean lattices
= p(xy V xy) — p(xy) by distributive property of Boolean lattices

= p(xy) + p(-xy) — p(xy)  because (xy)(-~xy) = 0 and by additive property
= p(—xy)

(2) Proofthat p(xV y) = p(x) + p(y) — p(x A y):

p(xVy) =p(xV-xy) by property of Boolean lattices
= p(x) + p(-xy) because (x)(—xy) = 0 and by additive property
=p(x) +p() —p(xAY) by item 1 (page 65)

Example5.29 The function — on the lattice L as illustrated to the right | = -00p(l) = 1
is a Kleene negation (Definition 2.14 page 29). Together with the probability . ~ . P (@)=
function p, also illustrated to the right, the pair (L, p) is a probability B Prar=2

=" 0 = 0
Spdace (Definition 5.24 page 62). 0 10p©)

Example 5.30 The lattice with negation L (Defini- 1==0 p(l)=1

tion 2.16 page 30) illustrated to the right is a Boolean lat-

tice. Together with the probability function p, also ~ a=-b pla)=3 b=-a p(b)=3
illustrated to the right, the pair (L, p) is a probability

0=-1 p0)=0
Space (Definition 5.24 page 62).

1278 [134], page 21, ((2-13)), ® [56], pages 22-23, ((7.4),(7.6))
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Example 5.31 The lattice with negation L (Defini-

tion 2.16 page 30) illustrated to the right is an orthocom- I==0 p)=1
plemented Oy lattice (Definition 1.73 page 20). Together — P(c) =3 d=-a p(d)=1
with the probability function p, also illustrated to p(@) = 3 b=-c p(b)=13
the right, the pair (L, p) is a probability space (Defini- 0=-1 p0)=0
tion 5.24 page 62).

5.6 Applications

This section discusses some possible applications of primorial lattices.

5.6.1 Logic analysis

Let LQ’ be a 2" -valued Boolean logic (Definition 2.27 page 33). Let P be the primorial lattice gen-
erated by L (Definition 5.17 page 58). The sequence of lattices (LY, L)™",...,L3,L,) in P are
Boolean logics with decreasing “resolution” (higher values of » in L} correspond to greater
resolution). Thus, we can reduce a very complex logic in LQ’ to a simpler lower resolution
logic.

Moreover, the sequence of ortho logics (Definition 2.27 page 33) in [P

(LYol LtY'oll= ... LoL, L)
represents the Boolean logic LQ’ at N — 1 progressively lower “frequencies”. Alternatively,
we could say that the Boolean logic at resolution N is “decomposed” into (or analyzed by)
N — 1 ortho logics. Moreover, a proposition p in a higher resolution space can be projected
into a lower resolution space (including the two-value classic logic space) by a projection
operator (Section 5.4 page 58).

5.6.2 Fuzzy logic analysis

Fuzzy logics (Definition 2.27 page 33) can be constructed on Boolean and orthocomplemented lat-
tices'?8 such that together with the subset ordering relation C, form of a primorial lattice
P (Definition 5.1 page 50). A Boolean fuzzy logic Lg’ can then be rendered at N — 1 different “res-
olutions” using the Boolean lattices of P and analyzed at N — 1 “frequencies” using the
orthocomplemented lattices of P, as described in Section 5.6.1 (page 66).

1288 [75], (§2.2)
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Tmy ) = mgeo

R(x) = TN 4 (x)

M p (x)

My = —mgeo

[ g0 =m0

LNz (o) = 4 ()
1
LMy ) —'mg | EISY
M f }/ )
2 51+ C(x)/é_ﬂmp(x)
[ [
L L L L L

2

[mgeo =m0
|mgeo =m0

DI

Figure 16: primorial lattice for fuzzy subset logic (Example 5.32 page 68)
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Example 5.32 Figure 16 (page 67) illustrates a fuzzy subset logic'?® on a primorial lattice.
The lattice Lg contains both monotonic and non-monotonic membership functions. These
are separated into lower resolution spaces L% containing the non-monotonic membership
functions (neglecting 1 and 0), Lg ) L% containing the monotonic membership functions,
and L, containing crisp set logic. A projection operator (Section 5.4 page 58) can be used to
project a membership function onto any of these spaces as perhaps called for by a given
application.

5.6.3 Probability analysis

A logicis a lattice with negation (Definition 2.16 page 30) and with an implication function defined
on it. A probability is a lattice with negation and with a probability function (Definition 5.24
page 62) defined on it.

Let LQ’ be the 2" -element Boolean lattice generated by an N-event Boolean probability
space (Definition 5.24 page 62). Let P be the primorial lattice (Definition 5.1 page 50) generated by LQ’ .
Then in P, the probability space can be rendered at progressively lower resolutions using
the Boolean lattices of P, and can be analyzed at assorted “frequencies” using the ortho-
complemented lattices of P.

Example 5.33 A primorial lattice with a probability function is illustrated in Figure 17
(page 69).

5.6.4 Symbolic sequence analysis

Definitions. Finding some properties of a sequence x that is constructed over a field F
may be referred to as sequence analysis or discrete-time signal analysis. If we somehow
mathematically alter x with an operator A to produce a new sequence y 2 Ax, then this
may be referred to as sequence processing, or more commonly as discrete-time signal pro-
cessing or digital signal processing (DSP).

Basis theory. Sequence analysis and sequence processing typically make use of basis the-
ory. In basis theory in general (of which Fourier analysis and wavelet analysis are special
cases), we represent some point x (x is a sequence) in a Banach space (a complete normed
linear space) by a linear combination of a basis sequence (x,) such that
X = a,x,
nezZ

129 [75], (§3.2)
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Boolean/
classic probabilities

Figure 17: primorial lattice with probability function (Example 5.33 page 68)
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where = represents strong convergence with respect to the norm ||-|| of the Banach space.
Each element a, is a member of the field F of the Banach space and the sequence (a,)
is often referred to as a “transform” (Fourier transform, discrete-time Fourier transform,
wavelet transform, etc.)

In order to be able to successfully compute any transform (such as a Fourier transform or
wavelet transform) in a Banach space or even a finite linear space, the sequence x needs
to be somehow related to the field F over which the Banach space is constructed.

The problem. Let F be the discrete-time Fourier transform operator and W be a discrete-
time wavelet transform. Suppose we want to compute Fx or Wx. This is a problem in sym-
bolic sequence analysis and symbolic signal processing in general because of the following
reasons:

1. The symbols in x have no field structure; so we can't even add them.

2. The symbols in x have no order structure; so if A, B, and C are symbols, we can't
say, for example, A < B or B < C, etc.

3. The symbols in x have no topology; so we can't say, for example, that A is “closer”
to B thanitis to C, etc.

In fact, symbol sequence analysis does not just cause problems for Fourier or wavelet anal-
ysis only—it causes problems for basis theory in general because a basis is constructed in
a Banach space, and symbolic sequences are in general not constructed in Banach spaces.

A kind of “hack” solution may be to map the symbols to points (p,, p,, ..., py) in the com-
plex plane C. If these points are chosen such that they are distinct, not on either the real
or imaginary axes, and |p,| = |p,| = ... = |py|, then that would seem to be a good start,
because now the mapped symbols have a field structure, and they are arguably unordered
(arguably we can't say any one of them is greater or less than any other, just as in the orig-
inal symbol sequence).

But we still have the topology problem. If we map, say, 4 symbols to 4 pointsin C as p; = 1,
p, =-1, p3 =i,and p, = —i, then “p, ” is closer (with respect to the metric induced by the
norm |[-|) to “p;” thenitis to “p,”:

d(p1-p3) = |1 —ps| = (P} = p3)" = (1= )" =v252=(22=0%)" =d(p). 1,)
This unwanted topological property is introduced by the mapping, will affect the trans-
form, but yet is not a property of the original symbolic sequence.

“Frequency” properties may be useful in symbolic sequence analysis and symbolic sequence
processing. But the point here is that any kind of basis theory technique (including Fourier
or wavelet techniques) may result in a kind of imperfect “hack” solution.
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Proposed solution. The solution proposed here is to perform symbolic sequence analy-
sis using primorial lattices. Suppose we have a sequence x over a set of N symbols (each
element in the sequence can be any one of N different symbols). Let P be the primorial
lattice generated by LQ’ . The orthogonal N atoms of LQ’ represent the N symbols. The
element Av B in LQ’ , where A and B are 2 symbols, represents the event of a particular po-
sition in the sequence being A or B (it is not possible for a particular position to be both
A AND B).

Any symbol in L} can be projected onto any other Boolean or orthocomplemented lattice
in P by use of a lattice projection (Section 5.4 page 58). The result of projecting an entire sequence
onto a lattice in P is another sequence (Definition 5.19 page 58). SO after projection, a sequence
on Lév results in N — 1 sequences of lower resolution and N — 1 sequences of assorted
frequencies. This is similar in form to the Fast Wavelet Transform, as illustrated in Figure 10
(page 49).

5.6.5 Symbolic sequence processing (SSP)

Introduction. The previous section discusses symbolic sequence analysis—meaning we
are not trying to change the properties of the sequence, we are only trying to understand
its properties. This section discusses symbolic sequence processing (or symbolic signal pro-
cessing)—meaning we are trying to change the properties of the sequence.

Digital signal processing (DSP) or discrete-time signal processing operates on a sequence
constructed over a field F, where F is typically either R or C. Often by use of simple multi-
plication and addition operations on elements of the sequence, one can change the prop-
erties of the sequence. Often when the properties are related to Fourier analysis, the DSP
operations are called “filtering”.

The problem. Multiplication and addition operations commonly used in DSP require
field properties. In symbolic sequence processing, we don't in general have a field.

Proposed solution. Sequence processing of, or “filtering” on, a symbolic sequence x can
be performed by judicious selection and/or rejection of the various projections onto the
logics in the primorial lattice P.

For example, if one wants x at a lower “resolution”s, then simply select the sequence from
a projection onto the Boolean logic at resolution lower than N. If one wants to “filter out”
the “high frequency” components of x, then simply discard the projections onto the higher
frequency orthocomplemented lattices before synthesizing a new sequence from the “low
frequency” component sequences.
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Synthesis of two projection sequences y and z into a new sequence x’ can be performed,
for example, by pointwise join such that

Y Dz 2 ([yn))nez \/ ((zn))nez
£ ([yn v Zn))nEZ

([xn))nEZ

X

> 1>

5.6.6 Genomic Signal Processing (GSP)

Genomic Signal Processing (GSP) is simply a special case of Symbolic Sequence Processing
with N = 4. In GSB the 4 symbols are commonly referred to as A, C, T, and G, each
of which corresponds to a nucleobase (adenine, thymine, cytosine, and guanine, respec-
tively).13¢ The sequence itself is called a genome. A typical genome sequence contains a
large number of symbols (about 3 billion for humans, 29751 for the SARS virus).131

Example 5.34 Traditionally in GSP, the symbols (Av T) and (C v G) are of special interest.
Portions of a genome sequence high in (Av T) content separate at lower temperatures than
do those with high (C v G) content.!32 Therefore, one could construct a primorial lattice
induced by L‘21 that allows for convenient analysis of Av T and/or C v G in some lower
resolution space. An example is illustrated in Figure 18 (page 73).

Example 5.35 Insome cases, genomic sequences with more than 4 symbols (N > 4) have
been studied.'3? Figure 19 (page 74) illustrates a primorial lattice with an extra symbol X
in the higher resolution Lg Boolean lattice, but with only the symbols A, C, G,and T in
the lower resolution L‘2l Boolean lattice. The symbol X can be projected onto any of the
lower resolution spaces using a projection operator (Section 5.4 page 58).

130 [118], (Mendel (1853): gene coding uses discrete symbols), & [160], page 737, (Watson and
Crick (1953): gene coding symbols are adenine, thymine, cytosine, and guanine), g [159], page 965,
® [138], page 52

1811 (1], (http://www.ncbi.nlm.nih.gov/genome/guide/human/), (Homo sapiens,
NC_000001-NC_000022 (22 chromosome pairs), NC_000023 (X chromosome), NC_000024 (Y
chromosome), NC_012920 (mitochondria)), = [1], (http://www.ncbi.nlm.nih.gov/nuccore/
30271926), (SARS coronavirus, NC_004718.3) [146], (homo sapien chromosome 1), [145],
(SARS coronavirus)

132 ® [32], page 13, (Remark 1.2)

13 [30], @ [52]
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(CVG) =(AV T

orthocomplemented

Boolean

Figure 18: primorial lattice for genomic signal processing (GSP) with Av T and C v G analysis
features (Example 5.34 page 72)
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orthocomplemented

Boolean

Figure 19: primorial lattice for genomic signal processing (GSP) with extra symbol X (Example 5.35
page 72)
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