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ABSTRACT9

Biological data analysis is frequently performed with command line software. While this practice provides

considerable flexibility for computationally savy individuals, such as investigators trained in bioinformatics,

this also creates a barrier to the widespread use of data analysis software by investigators trained as

biologists and/or clinicians. Workflow systems such as Galaxy and Taverna have been developed to

try and provide generic user interfaces that can wrap command line analysis software. These solutions

are useful for problems that can be solved with workflows, and that do not require specialized user

interfaces. However, some types of analyses can benefit from custom user interfaces. For instance,

developing biomarker models from high-throughput data is a type of analysis that can be expressed

more succinctly with specialized user interfaces. Here, we show how Language Workbench (LW)

technology can be used to model the biomarker development and validation process. We developed

a language that models the concepts of Dataset, Endpoint, Feature Selection Method and Classifier.

These high-level language concepts map directly to abstractions that analysts who develop biomarker

models are familiar with. We found that user interfaces developed in the Meta-Programming System

(MPS) LW provide convenient means to configure a biomarker development project, to train models

and view the validation statistics. We discuss several advantages of developing user interfaces for data

analysis with a LW, including increased interface consistency, portability and extension by language

composition. The language developed during this experiment is distributed as an MPS plugin (available

at http://campagnelab.org/software/bdval-for-mps/).
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INTRODUCTION12

Popular software available to analyze biological data is often developed with a variety of technology,13

including programming languages as well as standard and non-standard data formats used to configure14

the tools for specific analyses. While scientists with a broad computational background have no major15

difficulty using most of the software tools, this is not the case for scientists whose training did not include16

computational experience, such as many biologists or physician scientists.17

Helping Biologists Take Advantage of Analysis Tools18

Several approaches have been used in the past to make it easier to use tools for biological data analysis.19

These approaches fall under the following broad categories:20

1. Custom Graphical User Interfaces. User interfaces (UIs) can be programmed with a variety of21

technology to present the end-user with graphical user interfaces (GUIs) that simplify a specific22

analysis task. While earlier custom user interfaces were developed as desktop applications (e.g.,23

Clustal-X Thompson et al. (1997), Viseur Campagne et al. (1999)), many biological analysis tools24

are now programmed and offered as web applications (e.g., from the TMHMM server Krogh et al.25

(2001) to the vast number of tools described in the Nucleic Acids Research Web Server Special26

Issue).27
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2. Generic workflow Systems. A minimal workflow system consists of a user interface to create and28

maintain workflows, and of a runtime engine to execute the workflows. A workflow consists of a set29

of elements representing units of work (often called workflow components), and connections among30

the elements representing how data flows from one element to another when the work of an element31

is completed. Examples of workflow systems include Taverna and Galaxy. these systems were32

developed to make it easier for biologists to assemble analyses pipelines that require using several33

tools. Supporting new tools in these systems does not require developing new user interfaces, but34

in exchange the ability to customize the system is limited to analyses that can be expressed with35

the workflow abstraction. The workflow abstraction has limited expressiveness. For instance, a36

workflow system does not support notions of variables or loops, which are often used in scripting37

or programming languages to automate repetitive tasks. While it is possible to use a scripting or38

general programming language to implement a work element and therefore perform repetitive tasks39

inside a workflow component, this requires knowledge beyond that of the workflow system, which40

the intended audience often does not have.41

3. Training Workshops. Most universities and medical schools offer training workshops to help42

biologists and clinical investigators learn the computational skills needed to work with command43

line analysis tools. Instructors who have taught such workshops know that most of the instructors’44

time is spent explaining technical aspects of the operating system and command line user interface45

rather than the concepts needed to perform a given analysis. Training workshops that focus on46

teaching workflow systems avoid this problem, but teach their trainees only how to solve the subset47

of problems that workflow systems can represent.48

Language Workbench Technology49

Readers are refered to Voelter et al. (2013); Erdweg et al. (2013) for an introduction to Language50

Workbench (LW) technology. We previously discussed the advantages of LW technology in Bioinformatics51

in the context of the development of GobyWeb plugin scripts Simi and Campagne (2014). In this52

new study, we investigated whether LW technology—specifically the MPS Language Workbench (see53

http://www.jetbrains.com/mps/ and Campagne (2014))—could be used to model the high-54

level concepts that an analyst should be aware of when he or she conducts an analysis. The MPS platform55

is one of several LW platforms that have been developed. Other platforms include Spoofax Kats and56

Visser (2010), Intentional Programming Simonyi (1995), or XText Eysholdt and Behrens (2010). We have57

chosen MPS for our study because of FC’s increasing familiarity with the platform Campagne (2014).58

The central innovation of the approach we present in this manuscript is to provide the end-user of an59

analysis tool with user interface elements that directly represent the high-level analysis concepts that the60

user needs to understand to perform a specific analysis. We will illustrate this idea in this manuscript with61

an analysis tool that helps end-users develop biomarker models from high-throughput data. We presented62

an introduction to the biomarker development and validation process in Deng and Campagne (2010).63

Similar descriptions are also available in the MAQC-II articles Shi et al. (2010). This manuscript follows64

the conventions and definitions given in this published work, which are briefly summarized here.65

The Biomarker Development Process66

Biomarker development studies measure a large number of molecular features across a collection of67

biological specimens, called samples. Data obtained for k subjects and n samples constitute a dataset68

in the form of a table of features. In the MAQC-II study, for instance, microarray assays were used to69

assemble 6 training datasets and 6 validation datasets. Several microarray platforms were used across70

the study. A total of 13 prediction endpoints were defined across these datasets that encoded a specific71

condition about each subject. For instance, in one dataset, an endpoint was defined by whether a subject72

of the breast cancer dataset was ER2 positive. Models were developed against this endpoint to try and73

predict whether the sample, for which gene expression data was available, was ER2 positive. Simply74

stated, an endpoint is what a predictive model is trained to predict. In general, an endpoint may have two75

or more categories, be a continous value, or a survival outcome for each subject of a dataset.76

All these concepts are well represented and can be directly manipulated by the end-user in the analysis77

tool developed in this study.78
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MATERIALS & METHODS79

MPS Language Workbench80

We used version 3.1 of the Jetbrains MPS Language Workbench.81

BDVal82

We adapted the BDVal Ant script to make it easier to use BDVal with configuration files automatically83

generated from the MPS project. This modified script is distributed with BDVal version 1.3+.84

Unified Modeling Language Diagrams85

The UML diagrams presented in this manuscript were generated automatically using the MPS lan-86

guage and the MPS UML Diagrams plugin developed by our laboratory (https://github.com/87

CampagneLaboratory/UML Diagrams).88

User Interface Buttons and File Selection89

Buttons and file selection buttons and dialogs were implemented using the MPS language org.campagnelab90

.ui (http://campagnelab.org/extending-mps-editors-with-buttons-just-got-easier/).91

The UI language was used to integrate buttons in the editor of the BDVal language concepts.92

Histogram Charts93

Charts were implemented with the org.campagnelab.XChart language, which integrates the XChart library94

with MPS (https://github.com/CampagneLaboratory/XChart).95

RESULTS96

Limitations of Existing Software97

In a previous report, we described the BDVal software, which automates the development and validation98

of biomarker models from high-throughput data Dorff et al. (2010). End-users of BDVal must configure a99

biomarker development project by creating a number of configuration files, as described in detail in the100

software online manual Chambwe and Campagne (2010). Configuring BDVal projects requires editing101

a number of files in different formats (including Ant build scripts written in XML, Java property files,102

and tab delimited files). Our experience suggests that this activity can be challenging and error-prone for103

non-technically savvy users.104

Modeling the Biomarker Development Process105

We modeled the biomarker development process with the MPS LW by creating concepts to represent each106

component of a biomarker analysis, as supported by the BDVal software (Figure 1):107

• Project This concept represents a biomarker discovery project and groups multiple datasets needed108

for analysis.109

• Sample A sample is the biological material that was assayed. Each sample is associated with110

feature values measured by an assay.111

• Platform The platform represents the assay used to measure features in the Sample. The platform112

concept links the assay probe Ids to the genes that the probe measures. Platforms are particularly113

important for micro-array based assays where multiple probes may measure the expression of the114

same gene.115

• DataSet A dataset contains feature values for many samples.116

• Endpoint An endpoint defines what the models will aim to predict. Endpoints are typically defined117

by the clinical application at hand (e.g., predict which patient respond to a treatment, or predict118

which patients have a specific disease).119

• Validation Protocol BDVal supports Cross Validation to estimate performance on a training set.120

Cross-validation can be performed with k folds and with r random repeats. The parameters k and r121

can be configured.122
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• Feature selection approach A feature selection approach implements a strategy to prioritize123

features according to their level of association with an endpoint. Several feature selection approaches124

have been implemented in BDVal and are available to reduce the subset of features used to construct125

a model. Feature selection is useful when there is a cost or time advantage in measuring few features126

values for each subject.127

• Classification approach A classification approach is able to train a prediction model from feature128

values in each subject and information about the endpoint for these subjects. Several classification129

algorithms are implemented in BDVal, including Support Vector Machines with libSVM, Random130

Forests, Naive Bayes, LogitBoost and the K-Star classification approach.131

• Modeling Approach The combination of one or more feature selection approaches and a classifi-132

cation approach is a modeling approach and can train a predictive model from a training dataset.133

• Model A model contains all the information needed to predict an endpoint when presented with134

feature values for a subject. BDVal models are written to a self-contained ZIP archive which135

contains the parameters of the model and threshold value for prediction of an endpoint Dorff et al.136

(2010).137

We were able to develop MPS concepts that almost directly represent each of these components of the138

biomarker discovery process. For clarity, we present these concepts as UML diagrams. Figure 1 presents139

the Project, Dataset, Endpoint and Platform concepts. Figure 2 presents the concepts used to capture the140

configuration of the user computer. Figure 3 presents how a modeling approach includes both a choice of141

Feature Selection, Classification method, and a list of models that can be generated with the approach.142

Figure 4 illustrates how we leveraged concept interfaces and inheritance to support auto-completion for143

different feature selection and classification approaches.144

Figure 4 presents concepts for the feature selection and classification approaches, which map directly145

to the methods supported by BDVal. Note the use of concept interfaces to indicate that each approach146

implementation can be used as element of the approach needed to construct a model.147

Figure 1. Main concepts of the BDVal MPS language. The Project concept is a root of the BDVal

language. This means that end-users can import the BDVal language and immediately create an instance

of the Project concept. A Project defines a project folder and properties of the user computational

environment where models will be generated (see Figure 2). The concept ModelingApproaches makes it

possible to configure which approaches should be used to generate models (i.e., a combination of feature

selection strategy and classification approaches) and records information about each model that will be

generated when executing the Project (see Figure 3). Endpoint, Platform and Dataset are modeled

explicitly and contained in a Project as well.

Generating and Running a Configured Project148

Instances of the Project concept can be configured by the end-user using the MPS user interface. When149

an instance is fully configured, it can be compiled within the LW. Compilation, also called generation150

in MPS, creates executable files from an instance of the Project concept and its children (instances of151

the concepts contained a Project). In the context of BDVal for MPS, generation converts the high-level152

analysis concepts described in the previous section to the configuration files needed to run BDVal on the153

end-user’s machine. The generated BDVal files can be executed and will produce results files in configured154
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Figure 2. Concepts for Project Configuration. The Properties concept represents the configuration of

the user computing environment. For instance, end-users can configure the project to use a server-class

computer with at least 8GB of memory and multiple cores, or a desktop computer with at least 1GB of

memory and a single core. This is achieved by selecting the appropriate computerType in the Project

Properties. Project properties also define the location of two software packages that must be installed on

the end-user’s computer and the directory where models will be developed (outputDirectory).

Figure 3. Concepts for Configuring Modeling Approaches. BDVal makes it possible to combine

choices for feature selection approaches and choices for classification approaches.

5/13

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.511v2 | CC-BY 4.0 Open Access | rec: 23 Jan 2015, publ: 23 Jan 2015

P
re
P
ri
n
ts



Auto-completion in the

Projectional Editor

Figure 4. Feature Selection and Classification Approaches. A FeatureSelection concept interface is

implemented by individual concepts that represent each feature selection method supported by BDVal.

The inheritance hierarchy is used by the MPS language workbench to offer auto-completion when an

end-user needs to identify a feature selection approach (see bottom-right inset). The same mechanism is

used to represent the classification approaches supported by BDVal.

output directory (a traditional user interface is generated for the Project to help provide feedback as the155

computation is progressing). The end-user can press the Refresh button (see Figure 5 and 6, in the Status156

section) to trigger inspection of the output directory.157

Analysis User Interface in a Language Workbench158

Developing a user interface in a LW consists of creating an editor for each concept of a language. We159

developed editors for each concept to layout information in a logical manner. Figure 5 presents an instance160

of the Project concept rendered in the MPS projectional editor Campagne (2014). Project Properties are161

shown first because they need to be configured before a project can be executed (see Figure 2).162

Approach section This section makes it possible to define which approaches should be used to develop163

and evaluate models. It includes the description of the cross-validation parameters (i.e., number of folds164

and number of random repeats) and provides an interactive editor to configure feature selection methods.165

The figure shows for instance an approach section configured to select features with a T-test followed166

by SVM iterative feature selection (recursive feature elimination), a simpler selection by SVM weights167

(SVM Global) and no selection where all the features (Whole Chip) are used to train a model.168

The Approach section ends by showing the number of models. This number is calculated dynamically169

by considering the different feature selection, classification and parameters entered so far in the editor.170

Status section This section offers a button to refresh the status. Pressing this button scans the output171

directory to identify results directories generated after BDVal is executed. Each directory found is shown172

with the folder name and the number of models that were generated by the execution.173

Endpoints section This section makes it possible for the end-user to define one or more prediction174

endpoints, and the various possible categories for each endpoint. In the example shown, the Fusion175

endpoint models the TMPRSS2-ERG gene fusion fusion event described in Setlur et al. (2008).176

Platform section This section indicates the location of the platform file in the GEO database soft177

format Edgar et al. (2002). The Dataset section was intentionally left blank to illustrate that the content of178

Figure 5 is not a plain text output, but provides error highlighting (red text is automatically highlighted by179

the MPS editor because the data attributes are required and missing).180

We note that the LW user interface that we implemented is not limited to text. It includes user interface181

elements such as buttons that an end-user can press to perform some action, and can include images either182

static or dynamically generated at runtime. This is more evident in Figure 6 where the histograms of the183

AUC and MCC statistics (estimated by cross-validation on the training set) are shown for a set of models184

developed with BDVal.185

6/13

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.511v2 | CC-BY 4.0 Open Access | rec: 23 Jan 2015, publ: 23 Jan 2015

P
re
P
ri
n
ts



Project: Prostate_Example

Properties:

Desired Output Location: /Users/fac2003/Downloads/test-bdval ...

Location of BDVal Installation Directory: /Users/fac2003/Downloads/bdval_1.3 ...

Location of ANT Installation Directory: /Applications/apache-ant-1.9.4 ...

Type of Computer BDVal is running on: Desktop
Number of Parallel Threads to Use: 1
Amount of Memory to Use (Mb): 1200
Directory Name: FunFolder_1
Tag Description: Testing Sample Prostate Project for BDVal Configured with MPS

Approach:
Evaluate Statistics After Splits: false
External CV Repeats: 3
External CV Folds: 5
Number of Features:  20, 50, 100
Feature Selection Fold: true, false
Feature Selection: T-Test + SVM Iterative | optional: select mode

SVM Global + optional: select second feature selection | optional: select mode
Whole Chip + optional: select second feature selection | optional: select mode

Maximum Number of Features to Keep After the First Step: 400
SVM Iterative:

Ratio: 0.5
Ttest:

Cutoff for T-test Feature Selection: 0.05
Classification: SVM, K Star, Naive Bayes, SVM Tune C

SVM:
Train a Probabilistic SVM: false

Tune C:
C Values for Tune C Classification: 0.5, 1, 10

Number of Models: 60

Status: Refresh

Result:
Directory Name: FunFolder_1
Folder Name: 20140903-1221-results
Number of Models: 0

20140902-1832-results

Endpoints: Fusion {YES, NO}

Platform: /Users/fac2003/Downloads/bdval_1.3/data/Prostate/GSE8402/platforms/GPL5474_family.soft.gz ...

Type of Array: Single Color Array
Optional floor for the Signal Value: optional: enter value

Data Set:  enter name

Run This Dataset: true

Prediction Endpoint : select endpoint
Categories : select category

Input: enter file path ...

Figure 5. Project User Interface Overview. This snapshot presents a view of a BDVal Project instance

in the MPS editor. A project contains different sections: Properties, Approach, Status with Result folder,

Platform (describing the assay and the datasets produced with this assay). The Dataset section is shown

still incomplete to illustrate error highlighting in the MPS language workbench. The editor is fully

interactive: end users can add datasets, feature selection methods, additional number of features. Some

classification approaches have parameters that are only displayed when the feature selection method is

part of the Project (e.g., the SVM Tune-C approach performs a parameter scan for the C cost parameter

of a linear support vector machine). These features make the MPS editor a convenient user interface to

configure a biomarker development project.

7/13

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.511v2 | CC-BY 4.0 Open Access | rec: 23 Jan 2015, publ: 23 Jan 2015

P
re
P
ri
n
ts



Figure 6. The LW User Interface can Incorporate Interactivity and Graphics.

Advantages of Language Workbench User Interfaces186

UI Consistency We found that a user interface for data analysis implemented in a LW (LW UI) provides187

an important advantage over traditional approaches: the LW UI provides a consistent experience to the188

end-user. Custom developed UIs need to be designed for consistency and periodically reviewed to make189

sure that end-users have a predictable experience throughout the UI Nielsen (1989).190

In this context, we note that the LW UI is defined using the jetbrains.mps.editor MPS platform191

language (see Campagne (2014)) and created from this definition by the LW platform. This mainly192

declarative approach to UI development ensures that most editing and navigation mechanisms provide a193

consistent user interface to the end-user.194

For instance, auto-completion to set the value of a reference to other nodes already defined in the195

Project is an example of such a consistent UI behavior. Auto-completion is implemented by the LW196

platform and always provide a consistent user experience (which needs to be learned once and is then197

used used many times across LW UIs). Behaviors that are implemented consistently also include: copy198

and paste, source control, navigation to a referenced node, find usage, undo/redo.199

We explain here the first two behaviors in more details:200

1. A Project or a part of a project can be copied and pasted by the end-user. This is useful to make201

copies of a project before customization to explore a different analysis scenario. For instance, in202

BDVal, users may copy the Sample Project provided with the tool and start customizing this project203

to a new dataset and assay platform. With traditional technology for constructing user interfaces,204

copy and paste would need to be implemented explicitly by the programmer who creates the user205

interface. In a command line environment, copying a project would require copying a file, but206

copying a part of a project would require understanding the file format(s) for the file(s) that describe207

this part of the project. The LW UI provides a uniform mechanism for copy and paste that does208

not require custom programming nor detailed understanding of the file formats affected by the209

operation.210

2. The LW UI provides a tight integration with a source control system (Git, Subversion and CVS are211

supported). This makes it possible for the end-user to put a BDVal Project under source control to212
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track changes to the analysis configuration. This is an important feature to support reproducible data213

analysis that requires no special effort from the LW UI developer. Figure 7 provides an illustration214

of how the MPS LW visually identifies changes made to a model after a commit, shows differences,215

and provides the ability to revert specific changes to the model. These features are offered by the216

platform consistently across all editors for the language, and do not require any custom coding.217

In contrast, such a source control integration of the software usage would be difficult to achieve218

with a traditionally developed user application. Developers of such an application would need to219

capture the state of the application in a file format, write the state to a file, call a source control tool220

to commit or checkout the application state, and provide a projection from the differences reported221

by the source control tool, into user interface elements. Because such developments are non trivial,222

few if any custom data applications with user interface offer such a tight integration with source223

control. On the contrary, command line analysis tools integrate more naturally with source control:224

they process files that their users can put and maintain under source control. Source control over225

files reports differences at the level of granularity of a line, whereas LW UIs can pinpoint changes226

at different levels of granularity: from the level of a model property (e.g., see Figure 7), all the227

way down to the insertion or deletion of a node of a model (e.g., Project node for instance). Indeed,228

LW UIs track changes at the logical level established when designing the concepts of the analysis229

system. For instance, in BDVal for MPS, adding a feature selection approach to an analysis will230

record a single change to the Project, which will appear clearly as a change in feature selection231

when looking at revisions in the Difference tool. When the project is generated, this single change232

may affect several generated files, which if they were tracked in source control at their physical233

level would make it harder to recognize that these line-level changes are related.234

Language Composition A key feature of the MPS LW is to support seamless language composition235

(see Voelter and Solomatov (2010) and Campagne (2014), Chapter 2). This feature is particularly useful236

in a data analysis context because the concepts that represent methods or datasets can be extended by237

the end-user very easily. For instance, in the context of BDVal, assume an end-user wanted to test the238

system with a number of random datasets, constructed with varying numbers of subjects and features with239

random values. With a custom user interface, it would not be possible to change the user interface of the240

tool to make it easier to configure such random datasets. Using the command line, it would be necessary241

to create simulated random datasets with the appropriate number of subjects and features, store these in242

separate files, and configure the project to use these new dataset files.243

In a LW UI, we are able to create a new language that extends the BDVal language. This means that it244

is possible to define concepts and associated editors that provide different behavior, customized by the245

end-user. Assume we create such a language, and define the concept RandomDataset in this new language.246

We can declare that this concept extends Dataset (defined in the org.campagnelab.BDVal language). We247

can then define two attributes to encode the number of subjects and samples that the random dataset248

should have. In the RandomDataset editor, we provide the means to edit these parameters, and a button to249

create the dataset. The button would be pressed by the end user after he/she has configured the parameters.250

We can then define a behavior method in the RandomDataset concept that will construct the dataset file251

and configure the attributes of the super-concept. This behavior will be executed when the button is252

clicked. When this new language is imported into a model alongside the BDVal language, the end-user253

is able to create a RandomDataset instance in a BDVal Project, wherever it was previously possible to254

create a standard Dataset, and use it to configure random datasets. This extension mechanism does not255

require any modification to the original BDVal language. This simple scenario illustrates how language256

composition can be useful for data analysis.257

Another way to extend the LW UI is to create new intentions for an existing language. Briefly,258

intentions are context dependent actions that the end user can activate after positioning the cursor over259

some specific concept instance (see Simi and Campagne (2014) for illustrations, or Campagne (2014)260

Chapter 9). The MPS LW allows to define new intentions for concepts of another language. This feature261

can be used by a data analyst to automate common configurations. For instance, the BDVal language262

provides an intention that configures a Project with the location of the Sample data files distributed with263

BDVal. An analyst could define a language that provides intentions suitable to configure a BDVal project264

with specific analysis protocols (e.g., SVM only model construction, with predefined number of features).265
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(1)

(2)

(3)

Figure 7. Seamless Integration with Source Control. This snapshot illustrates how source control

integration makes it possible to visualize changes over a BDVal project. Source control integration is

offered by the MPS LW for all languages developed with the platform and requires no custom

programming. After committing a model to source control, any change to the model is reflected in the

editor and visualized with a color bar in the left margin, as illustrated in this snapshot. (1) A modification

is highlighted with a blue bar. The UI dialog presented when the user clicks on the blue bar offers the

ability to view the difference, revert the change, or copy the previous version of the model fragment

affected by the change. Here, it shows that the number of cross-validation fold has been changed from 5

to 10. (2) The green bar indicates that a model fragment has been added. We inserted a fold-change

feature selection to the list of feature selection strategies to use when evaluating models. The change also

introduced the fold-change parameter shown in (3), also highlighted with a green margin indicator.
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Portability A LW UI is portable because it runs on the MPS LW, which is implemented in Java, and is266

available for Windows, Linux and Mac OS operating systems. A given analysis tool could limit portability267

to a specific platform. However, BDVal is also implemented in Java and the Java-based Ant build system,268

and will run on the same set of platforms as the MPS platform.269

Distribution as Language Plugin We have created an MPS build script that generates an MPS plugin270

for the BDVal language. This plugin was uploaded to the LW plugin repository and has therefore become271

available to any user of the MPS platform. The MPS LW provides a convenient user interface to manage272

the discovery and installation of plugins. Different versions of a plugin can be offered and the user273

of a previous version is notified when a new version of an installed plugin has become available in274

the pugin repository. In a way, the MPS plugin repository can serve a similar function to the Galaxy275

ToolShed Blankenberg et al. (2014).276

While language plugins can depend on other plugins, it is currently not possible to specify a range of277

compatible versions for the target of a language dependency declaration (for instance, when specifying278

that the BDVal plugin depends on the XChart plugin, we are not able to indicate which range of versions279

of XChart is compatible with a given version of the BDVal plugin). This drawback is expected to limit the280

ability to evolve languages iteratively while maintaining compatibility with existing deployments.281

DISCUSSION282

To our knowledge, our study is the first to propose and prototype the use of a Language Workbench to283

facilitate data analysis. Language Workbench technology has been developed in the context of general284

programming, and has been traditionally applied to developing programming languages that generate285

executable code. In this report, we have shown that the same technology can be successfully used to286

model the analysis process for biomarker development. Biomarker model development is an example287

of a complex biological data analysis that can benefit from high-level abstractions. Indeed, this activity288

requires using validation protocols such as cross-validation (Stone (1974)) or bootstrap (Efron and289

Tibshirani (1997)), and fully embedding feature selection in the cross-validation loop (or in the boostrap290

procedure) in order to avoid selection bias (Varma and Simon (2006)). Testing multiple feature selection291

approaches, machine learning methods, or parameters of these methods often produces tens of thousands292

of trained models across splits of cross-validation and parameter choices. The large number of models and293

intermediate files (such as lists of features used to train the models) produced in these studies can quickly294

become a daunting data management challenge, even for analysts who know enough programming to295

automate analyses with a language such as R, Python or Java. The LW UI that we have described in296

this report facilitates the configuration of complete biomarker model projects, which can be executed to297

produce a large number of models in a single run. All models and intermediate files are automatically298

organized and, after completing, the LW UI displays performance evaluation statistics. The LW UI299

requires no programming experience and helps represent succinct solutions to biomarker development300

problems.301

The idea of using a language workbench for data visualization (a component of data analysis) is not302

completely new. We identified precursors of this idea as early as 1975. For instance, a previous attempt303

was described as DDA Guthery (1976), a system designed to help with graphical data analysis. The304

DDA prototype was built with the LANG-PACK language design system Heindel and Roberto (1975).305

While a language design system, LANG-PACK was not a LW in the modern sense because it was based306

on parsing technology and therefore did not avoid the issue of ambiguity during language composition.307

While using similar wording to the present manuscript (i.e., ”language workbench”, ”interactive graphical308

data analysis techniques”), the DDA manuscript described a system to help draw lines on a screen for309

data visualization, which is a task orders of magnitude simpler than the biomarker data analysis task that310

we use as a motivating example in the present study.311

We have also been conducting a large-scale test of the idea of using a language workbench for data312

analysis in related projects. The NYoSh analysis workbench, a data analysis platform constructed with313

the MPS language workbench, focuses on interactive analysis of high-throughput sequencing data and314

will be presented in detail in another article (http://workbench.campagnelab.org, Simi and315

Campagne, manuscript under preparation). The MetaR project (http://metaR.campagnelab.org) is a set of316

composable languages that help users create heatmaps from tables of data, or prepare other visualizations.317

Analyses written with MetaR generate to R code that can be executed directly within the MPS language318
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workbench (Simi and Campagne, unpublished).319

CONCLUSIONS320

In this manuscript, we propose that Language Workbench technology can be used to develop interactive321

user interfaces to help scientists with data analysis. We tested this idea by developing a prototype of a Data322

Analysis Language Workbench User Interface (DALWUI). This prototype was designed to help end-users323

develop and evaluate biomarker models from high-throughput datasets. This manuscript presented this324

prototype and briefly discussed the advantages of LW technology compared to custom graphical user325

interface development with traditional programming technology, or compared to command line driven326

data analysis.327

Based on this experience, we propose that LW technology can be used to create a new generation of328

computational environment for data analysis and expect that these environments will yield key advan-329

tages for many data analysts, from the computational expert to the biomedical researcher with limited330

computational experience.331
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