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Connectance and degree distributions are important components of the structure

of ecological networks. In this contribution, we use a statistical argument and

simple network generating models to show that properties of the degree distri-

bution are driven by network connectance. We discuss the consequences of this

finding for (1) the generation of random networks in null-model analyses, and (2)

the interpretation of network structure and ecosystem properties in relationship

with degree distribution.
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1 Introduction

Ecologists developed a strong interest for network theory, as it allowed to make sense of some

of the complexity of ecological communities. In contrast to early approaches on “community

modules” (groups of a few species within a large community, Holt 1997) a network level ap-

proach allows one to account for the whole community scale (Dunne 2006), thus integrating

all direct and indirect interactions (Berlow et al. 2009). Networks have often been called

“complex” (Williams and Martinez 2000), on account of the fact that they represent objects

(ecological communities) with complex dynamics (i.-e. non-linear, sensitive to indirect inter-

actions). Because networks are multi-faceted objects with a rich range of structure, ecologists

have been looking for emerging properties that can be easily measured and analyzed, and

that relate to ecological properties and processes.

Early in the ecological network literature, connectance, i.e. the proportion of realized ecolog-

ical interactions among the potential ones (most often the squared species richness), has been

recognized as a central network property (May 1972, Yodzis 1980, Martinez 1992). In part,

this success can be attributed to the relationship between connectance and early definitions of

network complexity (Pimm 1982), and to the fact that connectance predicts reasonably well

key dynamical properties of ecological networks (Dunne et al. 2002a, b) including their sta-

bility (May 1972). More recently, attention shifted from connectance, a community-averaged

property, to the degree distribution, that is the statistical properties of the distribution of

number of interactions per species. Variation of degree distribution among networks has

often been taken as evidence that assembly or interaction mechanisms differ (Vázquez 2005,

Williams 2011), and increasingly refined methods to estimate degree distribution have been

devised (Williams 2009). Some authors proposed that degree distribution, rather than con-

nectance, is driving higher level network properties such as nestedness or modularity, which

are important drivers of network dynamics (Fortuna et al. 2010).

However, it is worth asking if we were not too quick in discarding connectance in profit of
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degree distribution. A network, ecological or otherwise, can be viewed as a physical space

that edges (interactions) occupy. The size of this space is limited by the number of nodes.

This means that there are physical constraints on the filling of a network, due to the fact that

placing the first edge will limit the number of ways to place the remaining edges, and so on.

For example, there is only one way to have a fully connected network, and there are a limited

number of ways to have a network with the lowest possible connectance. For this reason, and

given the rising importance of degree distribution in the literature, it is important that we

clearly understand how constrained this distribution actually is in relation to connectance.

In this contribution, using an argument from combinatorial statistics and simulations of

pseudo-random networks under two different models, we present strong evidence that degree

distribution, along with other emerging network properties, are constrained (and can be

predicted to a certain extent) by connectance. We discuss the consequences of our results for

the comparison of different ecological networks, and for the generation of random networks

in null-model analyses.

2 Statistical argument

Assuming an ecological network made of n species, and assuming undirected interactions with

no self-edges (e.g. no cannibalism), there can be at most M = n(n−1)/2 interactions in this

network, in which case it is a complete graph (the results presented below hold qualitatively

for both directed graphs, and graphs in which self-edges are allowed). We note this maximal

number of links Mn. With this information in hand, it is possible to know the total number

of possible networks given a number l of interactions.

If we term Sn the set of all possible Mn edges in a n-node network, then the number Gn,l

of possible networks with l links is the number of l-combinations of Sn, i.e. how many

possibilities are there to pick l edges among Mn. Formally, this is expressed as Gn,l = CMn
l ,

(where Cy
x is the binomial coefficient, i.e. the number of possible ways to pick x elements

3

PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.50v3 | CC-BY 3.0 Open Access | rec: 10 Sep 2013, publ: 10 Sep 2013



among a set of y elements) or

Gn,l =
Mn!

l!(Mn − l)!

Note that this number of possible networks include some graphs in which nodes have a degree

of 0, and that in most ecological studies, such nodes will be discarded. We therefore have to

evaluate how many of such networks will be found withing Gn,l. In addition, in a null-model

context (Bascompte et al. 2003, Fortuna and Bascompte 2006), having unconnected nodes in

random replicates will change the richness of the community, thus possibly biasing the value

of randomized emerging properties. As some measures of network structure covary with

species richness, if one is to generate a randomly expected distribution of the values of these

properties, then it is important to hold species richness constant. Finding out the number of

networks in which a given node have a degree of 0 is similar to finding out how many networks

exist with l links between the n − 1 nodes. If one node is removed from the network, there

are Cn
n−1 possible combinations of nodes (which is (n)!/((n−1)!(n− (n−1)!)), which further

simplifies to n). For each of these, there are Gn−1,l possible networks configurations. Note

that these networks will also include situations in which more than one species has a degree

of 0, so that by recurrence, evaluating Gn−2,l and so forth is not necessary (all networks with

more than one node of null degree are within the set of the networks with at least one node

of null degree. Calling Rn,l the number of networks with n nodes and l edges in which all

nodes have at least one edge attached, we can write that the number of networks with all

nodes having at least one edge is the total number of networks minus the number of networks

having at least one node of null degree (evaluated for each node), or

Rn,l = Gn,l − Cn
n−1 ×Gn−1,l

We call the quantities R and G, respectively, the realized and total network space. They
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measure how many networks of n nodes and l edges exists, either allowing or preventing

the existence of nodes with no interactions. Based on this reasoning, we can make two

predictions.

Prediction 1: Because Cy
x = Cy

y−x, it comes that the total network space is largest when

l = Mn/2. As in this context the maximal number of edges is Mn, we define effective

connectance as Co = l/Mn, so max(Gn,l) is reached at Co = 1/2. The algebraic expression

of the maximum value of Rn,l is hard to find, but simulations show that it also occurs around

Co = 1/2. In other words, regardless of the number of nodes in a network, the “degrees

of freedom” of network structure, as indicated by the size of the realized and total network

spaces, is maximized at intermediate connectance.

Prediction 2: Rn,l will become asymptotically closer to Gn,l when l is close to Mn. In other

words, there is only one way to fill a network of n nodes with Mn interactions, and in this

situation there is no possibility to have nodes with a degree of 0. In the situation in which

l = Mn, Gn,l = CMn
Mn

= 1, given that Mn > Mn−1, it comes that Gn,l = Rn,l = 1. Intuitively

enough, this implies that ecological systems in which connectance is high will display very

little variation from one another, as far as the distribution of emergent network properties

(e.g. variance of the degree distribution, nestednes, . . . ) is concerned.

We now illustrate these predictions using networks of 10 nodes, with a number of edges

varying from 10 to M10 (i.e. 45 edges). As illustrated in Fig. 1, the size of the network space

has a hump-shaped relationship with connectance, and the size of the realized network space

becomes closer to the size of the total network space when connectance increases.

In Fig. 2, we show that regardless of the network size, the relative size of the realized network

space increases with connectance. The rate at which it occurs increases with network size.

However, in all cases, when connectance is low, there are only a very small proportion of

the total network space in which all nodes have at least one edge. This suggest that the

structure of extremely sparse networks is also strongly constrained. This is congruent with
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Figure 1: Size of the total and realized network space for n = 10. As predicted in the main
text, (1) the size of network spaces peaks at Co = 1/2, and (2) the size of the realized network
space becomes asymptotically closer to the size of the total network space when connectance
increases.
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historical findings by Erdos and Rényi (1959), namely that the probability of each node

being connected to the graph giant component increases with average degree (thus for high

connectances, all nodes are likely to be connected to the giant component, hence no node has

a degree of 0). In the context of ecology, in which most networks have a low connectance, it

implies that generating random networks to test null hypotheses can be a computationally

intensive task, as the realized network space is (proportionally) small.

Figure 2: Relative size of the realized network space compared to the total network space
when connectance increases, for four different network sizes.

3 Simulations

In the previous part, we show mathematically that connectance (the number of realized

vs. possible interactions), relative to the network size, determines the size of the network

space, i.e. how many possible network combinations exist. Based on this, we can therefore
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expect that the degree distribution will be contingent upon network connectance. Specifically,

we expect that the variance of the degree distribution, which is often related to ecosystem

properties and other network structures (Fortuna et al. 2010), will display a hump-shaped

relationship with connectance. The mean, kurtosis, and skewness of the degree distribution

should all vary in a monotonous way with connectance.

In the simulations below, we use networks of 30 nodes, filled with 35 to M30 interactions.

We use two different routines to generate random networks, that are contrasted in the way

they distribute edges among nodes. First, we generate Erdős-Rényi (ER) graphs, meaning

that every potential interaction has the same probability of being realized (Erdos and Rényi

1959). We use an algorithm inspired by Knuth (1997), allowing to fix the number of edges

in the graph rather than the probability of an edge occurring, although the generated graphs

have the same properties as the original ER model. A total of 19000 networks are generated

this way. Second, we use the niche model of food webs (Williams and Martinez 2000), which

generates networks under rules representing hypothesized mechanisms of prey-selection in

empirical ecosystems (Gravel et al. 2013). This particular model assumes that the existence

of interactions is constrained by the position of species along a “niche” axis, for example body

size. Other randomization methods for food webs exists, but given that Stouffer et al. (2005)

showed that they yield similar degree distributions to the niche model, we will not use them

here. A total of 500 replicates for each value of l are generated. All networks generated with

the two models are free of self-edges and nodes with a null degree.

For each replicate, we measure the degree distribution and report its variance, coefficient

of variation, kurtosis, and skewness. In addition, for each network, we fit a power-law dis-

tribution on the sorted degree distribution using the least-squares method; we report the

power-law exponent.

Qualitatively, the random graphs and the niche networks behave exactly the same. With the

exception of the kurtosis, all statistical descriptors of the degree distribution were influenced

by the effective connectance (Fig. 3). As predicted in the previous part, variance of the degree
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Figure 3: Statistical descriptors of the degree distribution of randomized networks, n = 30,
increasing connectance. These results show that central properties of the degree distribu-
tion are contingent upon connectance, at a given network size, and under a given network
generation model. ER networks are in blue, niche-model networks are in red.
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distribution is hump-shaped with regard to connectance, which implies that as average degree

increases with connectance, the coefficient of variation of the degree distribution decreases at

high connectances. Note also that the range of variances in the degree distribution is higher

at intermediate connectances, but lower at the extreme. Due to the fact that the Erdős-Rényi

graphs we simulate are essentially Poisson random graphs, it is expected that the variance of

their degree distribution would be lower than for the niche model, which in contrast forces

strong difference in the degree of species according to their niche position.

Kurtosis is independent of connectance, while skewness decreases with connectance. This

result is expected. Positively skewed distribution have longer or fatter right tails, indicating

mostly low values (low degree): unconnected networks are made mostly of species with a

weak generality (Schoener 1989). On the other hand, negative skewness indicate that most

of the values in the distribution are high. Ecologically, it means that most species are

wide-range generalists, which happens in densely connected networks. This bears important

ecological consequences, as it indicates that due to physical constraints acting on the filling

of interactions within the graphs, networks with intermediate connectances are expected to

have species with both low and high generality (Schoener 1989).

The estimate of the power-law exponent increases when connectance increases (Fig. 4). This

indicates that the degree distribution flattens when connectance increases. Taken with the

elements presented above, we show that all of the estimators of the degree distribution vary

strongly with connectance of the network. Although power-laws should be truncated as soon

as the probability of a species having a degree of 2*n is not negligible, and as such the fitting

of power-laws should not be done on highly connected networks for practical purposes, this

result emphasizes the key role of connectance in driving central network structure properties.
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Figure 4: The estimate of the power-law exponent increases with connectance, reaching a
flat distribution for complete graphs.
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4 Practical consequences

Randomized null models are often used to estimate how much a given network property

deviates from its random expectation (Flores et al. 2011). Our results show two things.

First, except for extremely high or low connectance, the proportion of the network space

that will be explored using 103 or 104 replicates (typical values in null models analyses) is

orders of magnitude smaller than the realized network space. Although this is somewhat

compensated by the fact that a part of these networks are isomorphic, the risk of inferring

deviation from the random expectation based on a drastically small sampling of the network

space is real, and un-addressed. On the other hand, when connectance is high, the number of

unique network combinations decreases, and there is a risk to generate a number of replicates

that is larger than the realized network space, thus decreasing the information content of the

randomizations. To the best of our knowledge, these issues have seldom be addressed in the

literature on ecological network randomization.

Second, generating null models with a low connectance is a computationally intensive task.

When connectance decreases, the realized network space decreases faster than the total net-

work space, meaning that the probability of picking a network with no 0 degree nodes (which

is simply Rn,l/Gn,l) goes toward zero. For this reason, classical rejection sampling (accept the

random network if no nodes have no edges, reject it if not) is bound to take an unreasonable

amount of time in networks with low connectance. In addition, there is a risk of selecting

some particular types of networks. It makes intuitive sense that networks with extremely

skewed degree distributions have less chance of being generated this way, as when a few nodes

collect most of the edges, the probability than the remaining nodes each have at least one

edge decreases. To the best of our knowledge, this source of bias has not received important

attention in the literature. For this reason, using a purely random matrix shuffling as a

starting point, then swapping interactions until no free nodes remain, seems to be a promis-

ing way to address this problem. Given the important of null-model approaches in network
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analysis, the generation of efficient and unbiased algorithms is a fruitful research problem.

5 Conclusions

Connectance is an extremely intuitive property of network, expressing how much of the

potential interactions are realized. Through statistical reasoning and simple simulations using

models of random networks, we show that for a given number of species, connectance drives

(i) how many different networks exist, and (ii) some key elements of the degree distribution.

We observed both among and between model quantitative changes in degree distribution

along a connectance gradient. The niche model is a particularly striking example of this,

with the variance in the degree distribution increasing 50-fold when connectance moves from

0.1 to 0.5. This result has practical implications for network comparisons. As descriptors

of degree distribution vary with connectance, connectance should be factored out from all

analyses. So as to avoid colinearity issues, this can be done by either working on the residuals

of the degree distributions’ property of interest. To some extent, the impact of connectance is

lesser in the 0.05-0.3 range where most empirical food webs lies (although bipartite networks

can have much higher connectances), but the effect is high enough that it should not be

ignored: at equal number of species, networks with different connectances are expected to

have different degree distributions.

Finally, this analysis raises interesting ecological questions. Early analyses focusing on de-

gree distribution argued that ecological mechanisms were responsible for the shape of the

distribution (Vázquez 2005, Fortuna et al. 2010, Williams 2011). In this contribution, we

show that connectance will impose a lower and higher limit for the shape of the degree distri-

bution. Given this information, it is time to bring the debate full-circle: is connectance the

cause of observed network properties, or an emergent property of pairwise species interac-

tions? As the later seems far more likely, it now makes sense to focus on why some networks

deviate, or not, from the expected degree distribution knowing their connectance. As the
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density of interaction plays such a central role in May’s criteria for stability (May 1972),

clarifying how connectance is shaped by mechanisms regulating pairwise species interactions

offers the opportunity of integrating the effects of these mechanisms up to their impact on

emergent,community-wide properties.
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