
When is a network complex? Connectance drives
degree distribution and emerging network

properties

Timothée Poisot & Dominique Gravel

August 18, 2013

Authors affiliation: Université du Québec à Rimouski, Départment de Biologie, G5L3A1

Rimouski (QC), Canada and Québec Centre for Biodiversity Sciences

Contact: timothee_poisot@uqar.ca

Connectance and degree distributions are important components of the struc-

ture of ecological networks. In this contribution, we use a statistical argument

and simple network generating models to show that properties of the degree

distribution are driven by network connectance. We discuss the consequences

of this finding for (1) the generation of random networks in null-model anal-

yses, and (2) the interpretation of network structure and ecosystem properties

in relationship with degree distribution.

1

PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.50v1 | CC-BY 3.0 Open Access | rec: 19 Aug 2013, publ: 19 Aug 2013



1 Introduction

Ecologists developped a strong interest for network theory, as it allowed to make sense

of some of the complexity of ecological communities. In constrast to early approaches,

such as working on “community modules” (groups of a few species within a large com-

munity, Holt 1997), using networks allows one to work at the whole community scale

(Dunne 2006), thus accounting for feedbacks in species interactions (Berlow et al. 2009).

Networks have often been called “complex” (Williams and Martinez 2000), on account

of the fact that they represent objects (ecological communities) with complex (non-linear,

sensitive to indirect interactions) dynamics. Because networks are multi-faceted objects

with a rich range of structure, ecologists have been looking for emerging properties that

can be easily measured and analyzed, and that relate to ecological properties and pro-

cesses.

Early in the ecological network litterature, connectance, i.e. the relative number of eco-

logical interactions over the potential number, usually defined at the squared richness,

has been recognized as a central network property (Yodzis 1980, Martinez 1992). In

part, this success is to be attributed to the fact that connectance relates to early defi-

nitions of network complexity (Pimm 1982), and to the fact that connectance predicts

reasonnably well some key dynamical properties of ecological networks (Dunne et al.

2002a, b) including their stability (May 1972). More recently, attention shifted from con-

nectance to degree distribution, that is the statistical properties of the distrubtion of

number of interactions per species. Variation of degree distribution among networks has

often been taken as evidence that assembly or interaction mechanisms differ (Vázquez

2005, Williams 2011), and increasingly refined methods to estimate degree distribution

have been devised (Williams 2009). Some authors proposed that degree distribution,

rather than connectance, are driving the values of nestedness or modularity, which are

important drivers of network dynamics (Fortuna et al. 2010).
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However, it is worth asking if we were not too quick in discarding connectance in profit

of degree distribution. A network, ecological or otherwise, can be viewed as a physical

space that edges (interactions) occupy. The size of this space is limited by the number of

nodes. This means that there are physical constraints on the filling of a network, due to

the fact that placing the first edge will limit the number of ways to place the remaining

edges, and so on. For example, there is only one way to have a fully connected network,

and there are a limited number of ways to have a network with the lower possible con-

nectance. For this reason, and given the importance that degree distribution took in the

recent years, it is important that we clearly understand how constrained degree distribu-

tion actually is, in relation to connectance. In this contribution, using an argument from

combinatorial statistics and simulations of pseudo-random networks under two different

models, we present strong evidences that degree distribution, along with emerging net-

work properties, are constrained (and can be predicted) by connectance. We discuss the

consequences of our results for the comparison of different ecological networks, and for

the generation of random networks in null-model analyses.

2 Statistical argument

Assuming an ecological network made of n species, and assuming undirected interac-

tions with no self-edges (e.g. no cannibalism), there can be at most M = n(n − 1)/2

interactions in this network, in which case it is a complete graph (the results presented

below hold qualitatively for both directed graphs, and graphs in which self-edges are

allowed). This maximal number of links, Mn, represent the whole space of possible

links. With this information in hand, it is possible to know the total number of possible

networks given a number l of interactions.

If we term Sn the set of all possible Mn edges in a n-node network, then the number Gn,l

of possible networks with l links is the number of l-combinations of Sn, meaning that
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Gn,l = CMn
l , (where Cy

x is the binomial coefficient, i.e. the number of possible ways to

pick x elements among y) or

Gn,l =
Mn!

l!(Mn − l)!

Note that this number of possible networks include some graphs in which nodes have a

degree of 0, and that in most ecological studies, such nodes will be discarded. In addition,

in a null-model context (Bascompte et al. 2003, Fortuna and Bascompte 2006), having

unconnected nodes in random replicates will change the richness of the community,

thus possibily biasing the value of randomized emerging properties. Finding out the

number of graphs in which some nodes have a degree of 0 is similar to finding out how

many networks exist with l links between n − 1 nodes. If one node is removed from the

network, there are Cn
n−1 possible combinations of nodes (this simplifies to n). For each

of these, there are Gn−1,l possible networks configurations. Note that these networks

will also include situations in which more than one species has a degree of 0, so that

evaluating Gn−2,l and so forth is not necessary. Calling Rn,l the number of networks with

n nodes and l edges in which all nodes have at least one edge attached, we can write

Rn,l = Gn,l − Cn
n−1 × Gn−1,l

We call the quantities R and G, respectively, the realized and total network space. They

measure how many networks of n nodes and l edges exists, either allowing or preventing

the existence of nodes with no interactions. Based on these informations, we can make

two predictions.

Prediction 1: Because Cy
x = Cy

y−x, it comes that the total network space is largest when

l = Mn/2. As in this context the maximal number of edges is Mn, we define effective

connectance as Co = l/Mn, so max(Gn,l) is reached at Co = 1/2. The algebraic expres-

4

PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.50v1 | CC-BY 3.0 Open Access | rec: 19 Aug 2013, publ: 19 Aug 2013



sion of the maximum value of Rn,l is hard to find, but simulations show that it also occurs

around Co = 1/2. In other words, regardless of the number of nodes in a network, the

“degrees of freedom” on network structure, as indicated by the size of the realized and

total network spaces, are maximized for intermediate connectances.

Prediction 2: Rn,l will become asimptotically closer to Gn,l when l is close to Mn. In other

words, there is only one way to fill a network of n nodes with Mn interactions, and in

this situation there is no possibility to have nodes with a degree of 0. In the situation in

which l = Mn, Gn,l = CMn
Mn

= 1, given that Mn > Mn−1, it comes that Gn,l = Rn,l = 1.

We now illustrate these predictions using networks of 10 nodes, with a number of edges

varying from 10 to M10 (i.e. 45 edges). As illustrated in Fig. 1, the size of the network

space has a hump-shaped relationship with connectance, and the size of the realized

network space becomes closer to the size of the total network space when connectance

increases.

In Fig. 2, we show that regardless of the network size, the relative size of the realized

network space increases with connectance. The rate at which this increase happens is

higher for networks with more nodes. However, in all cases, when connectance is low,

there are only a very small proportion of total networks in which all nodes have at least

one edge. This suggest that the structure of extremely sparse networks is also strongly

constrained. This is congruent with historical findings by Erdos and Rényi (1959), namely

that the probabilty of each node being connected to the graph giant component increases

with average degree (thus for high connectances, all nodes are likely to be connected to

the giant component, hence no node has a degree of 0). In the context of ecology, in which

most networks have a low connectance, this implies that generating random networks

can be a computationally intensive task, as the realized network space is (proportionally)

small.
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Figure 1: Size of the total and realized network space for n = 10. As predicted in the
main text, (1) the size of network spaces peaks at Co = 1/2, and (2) the size of the
realized network space becomes asymptotically closer to the size of the total network
space when connectance increases.
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Figure 2: Relative size of the realized network space compared to the total network space
when connectance increases, for four different network sizes.
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3 Simulations

In the previous part, we show mathematically that connectance (the number of realized

vs. possible interactions), relative to the network size, determines the size of the network

space, i.e. how many possible network combinations exist. Based on this, we can there-

fore predict that the degree distribution will be contingent upon network connectance.

Specifically, we expect that the variance of the degree distribution, which is often related

to ecosystem prtoperties and other network structures (Fortuna et al. 2010), will display

a hump-shaped relationship with connectance. The mean, kurtosis, and skewness of the

degree distribution should all vary in a monotonous way with connectance.

In the simulations below, we use networks of 30 nodes, filled with 35 to M30 interactions.

We use two different routines to generate networks, that are contrasted in the way they

distribute edges among nodes. First, we generate Erdős-Rényi (ER) graphs, meaning that

every potential interaction has the same probability of being realized (Erdos and Rényi

1959). We use an algorithm inspired by Knuth (1997), allowing to fix the number of edges

in the graph rather than the probability of an edge occuring, although the generated

graphs have the same properties as the original ER model. A total of 19000 networks are

generated this way. Second, we use the niche model of food webs (Williams and Martinez

2000), which generates networks under rules representing hypothetized mechanisms of

prey-selection in empirical ecosystems. This particular model assumes that the existence

of interactions is constrained by the position of species along a “niche” axis, for example

body size. Other randomization methods for food webs exists, but given that Stouffer

et al. (2005) showed that they yield similar degree distributions to the niche model, we

will not use them here. A total of 500 replicates for each level of number of links are

generated. All networks generated with the two models satisfy the same criteria from

the previous part, i.e. there are no self-edges and no nodes with a null degree.

For each replicate, we measure the degree distribution, and report its variance, coefficient
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of variation, kurtosis, and skewness. In addition, for each network, we fit a power-law

distribution on the sorted degree distribution using the least-squares method; we report

the power-law exponent.

Figure 3: Statistical descriptors of the degree distribution of randomized networks, n =
30, increasing connectance. These results clearly show that central properties of the
degree distribution are contingent upon connectance, at a given network size, and under
a given network generation model. ER networks are in blue, niche-model networks are
in red.

Qualitatively, both the random graphs and the niche networks behave exactly the same.

With the exception of the kurtosis, all statistical descriptors of the degree distribution

were influenced by the effective connectance (Fig. 3). As predicted in the previous part,

variance of the degree distribution is hump-shaped with regard to connectance, which

implies that as average degree increases with connectance, the coefficient of variation

of the degree distribution decreases at high connectances. Note also that the range of
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variances in the degree distribution is higher at intermediate connectances, but lower

at the extreme. Due to the fact that the Erdős-Rényi graphs we simulate are essentially

Poisson random graphs, it is expected that the variance of their degree distribution would

be lower than for the niche model, which in contrast forces strong difference in the degree

of species according to their niche position.

Kurtosis is unaffected by connectance. On the other hand, skewness decreases when con-

nectance increases. This result is expected. Positively skewed distribution have longer

or fatter right tails, indicating mostly low values (low degree): unconnected networks

are made mostly of species with a weak generality (Schoener 1989). On the other hand,

negative skewness indicate that most of the values in the distribution are high. Ecolog-

ically, it means that most species are wide-range generalists, which happens in densely

connected networks. This bears importants ecological consequences, as it indicates that

due to physical constraints acting on the filling of interactions within the graphs, net-

works with intermediate connectances are expected to have species with both low and

high generality (Schoener 1989).

The estimate of the power-law exponent increases when connectance increases (Fig. 4).

This indicates that the degree distribution flattens when connectance increases. Taken

with the elements presented above, we show that all of the estimators of the degree

distribution vary strongly with connectance of the network.

4 Practical consequences

Randomized null models are often used to estimate how much a given emerging prop-

erty deviates from its random expectation (Flores et al. 2011). Our results show two

things. First, except for extremely high or low connectance, the proportion of the net-

work space that will be explored using 103 or 104 replicates (typical values in null models

analyses) is orders of magnitude smaller than the realized network space. Although this is
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Figure 4: The estimate of the power-law exponent increases with connectance, arriving
to a flat distribution for complete graphs.
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somewhat compensated by the fact that a part of these networks are isomorphic, the risk

of infering deviation from the random expectation based on a drastically small sampling

of the network space is real, and unadressed. On the other hand, when connectance

is high, the number of unique network combinations decreases, and there is a risk to

pseudo-replicate some of them when generating ramdom networks. To the best of our

knowledge, these issues have seldom be adressed in the literature on ecological network

randomization.

Second, generating null models with a low connectance is a computationally intensive

task. When connectance decreases, the realized network space decreases faster than the to-

tal network space, meaning that the probability of picking a network with no un-attached

nodes (which is simply Rn,l/Gn,l) goes toward zero. For this reason, classical rejection

sampling (accept the random network if no nodes have no edges, reject it if not) is bound

to take an unreasaonable amount of time in networks with low connectance. For this

reason, using a purely random matrix shuffling as a starting point, then swapping inter-

actions until no free nodes remain, seems to be a promising way to adress this problem.

5 Conclusions

Through statistical reasoning and simple simulations using models of random networks,

we show that for a given number of species, the connectance of the network drives (i)

how many different networks can be generated, and (ii) some key elements of the degree

distribution. We observed both among and between model quantitative changes in de-

gree distribution along a connectance gradient. The niche model is a particularly striking

example of this, with the variance in the degree distribution increasing 50-fold when con-

nectance moves from 0.1 to 0.5. This result has extremely practical implications for the

comparison of networks, and network properties. As descriptors of degree distribution

vary with connectance, connectance should be made a covariate in all analyses. To some
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extent, the impact of connectance is lesser in the 0.05-0.3 range where most empirical

food webs lies (although bipartite networks can have much higher connectances), but the

effect is high enough that it should not be ignored: at equal number of species, networks

with different connectances are expected to have different degree distributions.

Finally, this analysis raises interesting ecological questions. Early analyses focusing on

degree distribution argued that ecological mechanisms were responsible for the distri-

bution shape (Vázquez 2005, Fortuna et al. 2010, Williams 2011). In this contribution,

we show that connectance will impose a lower and higher limit for the shape of the

degree distribution. Given this information, it’s time to bring the debate full-circle: is

connectance the cause of observed network properties, or an emergent property of pair-

wise species interactions? As the later seems far more likely, it now makes sense to focus

on why some networks deviate, or not, from the expected degree distribution knowing

their connectance.
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