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Abstract: 48	  

Background: It is now apparent that the complex microbial communities found on and in 49	  

the human body (the human microbiome) vary across individuals. What has largely been 50	  

missing from previous studies is an understanding of how these communities vary over 51	  

time within individuals. To the extent to which it has been considered, it is often assumed 52	  

that temporal variability is negligible for healthy adults. Here we address this gap in 53	  

understanding by profiling the forehead, gut (fecal), palm, and tongue microbial 54	  

communities in 85 adults, weekly over three months.  55	  

 56	  

Results: We found that skin (forehead and palm) varied most in the number of taxa 57	  

present, whereas gut and tongue communities varied more in the relative abundances of 58	  

taxa. Within each body habitat, there was a wide range of temporal variability across the 59	  

study population, with some individuals consistently harboring more variable 60	  

communities than others. The best predictor of these differences in variability across 61	  

individuals was microbial diversity; individuals with more diverse gut or tongue 62	  

communities were less variable than individuals with less diverse communities.  63	  

 64	  

Conclusions: This expanded sampling allowed us to observe consistently high levels of 65	  

temporal variability in both diversity and community structure in all body habitats 66	  

studied. These findings suggest that temporal dynamics may need to be considered when 67	  

attempting to link changes in microbiome structure to changes in health status. 68	  

Furthermore, our findings show that, not only is the composition of an individual’s 69	  
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microbiome highly personalized, but their degree of temporal variability is also a 70	  

personalized feature. 71	  

 72	  

Keywords: 73	  

Human microbiome, microbial community ecology, bacteria, 16S rRNA, DNA 74	  

sequencing, Illumina, temporal dynamics 75	  

 76	  

Background: 77	  

The increasing recognition that commensal and mutualistic microorganisms are necessary 78	  

for many aspects of normal human physiology has altered the traditional pathogen-79	  

dominated view of human-bacterial interactions [1, 2]. However, before we can begin to 80	  

manage, restore, and/or exploit our microbial partners in ways that promote human 81	  

health, we first must have a comprehensive understanding of how and why these 82	  

communities vary through time. Previous studies that have characterized human 83	  

associated microbial communities over time have been based on relatively few 84	  

individuals [3, 4], intermittent sampling intervals [2, 5, 6], single body habitats [4, 7-10] 85	  

or focused on disease states [11], leaving us with an incomplete picture of the range of 86	  

normal variability in the human microbiome.  87	  

 88	  

Here, we investigated the temporal dynamics of forehead, gut (feces), palm, and tongue 89	  

microbial communities of 85 college-age adults (median age = 21 years) from three U.S. 90	  

universities. Samples were self-collected weekly over a three-month period beginning in 91	  

January 2012. Bacterial and archaeal communities were characterized using high-92	  
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throughput sequencing of the variable region 4 (V4) of the 16S rRNA gene [12]. In total, 93	  

we generated 170,563,932 quality-filtered sequences from 3,655 samples, with all 94	  

analyses conducted on samples rarified to exactly 10,000 sequences per sample. To 95	  

identify potential drivers of variability, we collected demographic, lifestyle, and hygiene 96	  

data at the initiation of the sampling period using a standardized 49-question survey 97	  

(Additional file 1). Weekly questionnaires were used to track changes in health status, 98	  

medication use, menstrual cycle for women, and other dramatic changes in routine 99	  

behavior (Additional file 2) De-identified responses to all questions are provided in 100	  

Additional file 3. 101	  

 102	  

Results and Discussion: 103	  

To quantify the amount of temporal variability in diversity of each body habitat, we 104	  

calculated the coefficient of variation (CV = standard deviation/mean) for three alpha 105	  

diversity metrics (phylogenetic diversity, phylotype richness, and Shannon index) for 106	  

each individual [13]. Low CV values indicate that an individual had relatively stable 107	  

alpha diversity levels, whereas high CV values indicate than an individual had variable 108	  

levels of alpha diversity over the three-month study period. As evident in Figure 1a, there 109	  

was a wide range of variability within each body habitat indicating that some individuals 110	  

varied more than others. When we compare values across body habitats, we see that skin 111	  

surfaces, particularly the palm, exhibited higher levels of temporal variability in diversity 112	  

than gut or tongue (Figure 1a). These patterns were generally consistent regardless of the 113	  

alpha diversity metric used. Skin surfaces also hosted the most diverse communities we 114	  

surveyed (Additional file 4), as theory would predict given that uncovered regions like 115	  
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the forehead and palm are more regularly exposed to a larger number of taxa able to 116	  

disperse onto the skin surface [14] (i.e. a large species pool). Ecological theory also 117	  

predicts that habitats with large species pools should vary more through time [14], which 118	  

is what we observed here.  119	  

 120	  

This high degree of temporal variability in alpha diversity levels was matched by high 121	  

variability (and hence instability) in community membership (Figure 1b). Comparing the 122	  

proportion of phylotypes shared among time intervals within an individual shows that 123	  

fewer phylotypes were shared through time in skin communities than in the gut or tongue 124	  

communities. For example, on average only 15% of the phylotypes observed on the palm 125	  

skin surface (excluding singletons on a per individual basis) were observed at any other 126	  

point in time, whether samples were collected one or six weeks apart. A similar pattern 127	  

was observed when we used median unweighted UniFrac values [15] (a phylogenetic 128	  

metric of community membership) for each body habitat, where turnover was found to be 129	  

greater for the skin than for the tongue and gut communities (Figure 2a and Additional 130	  

file 5a). In contrast, variability in community structure, which accounts for phylotype 131	  

abundance (median weighted UniFrac), was lower on the forehead than the other body 132	  

habitats (Figure 2b and Additional file 5b), suggesting that the nature of variability differs 133	  

depending on the body habitat in question. On the tongue and in the gut, changes in the 134	  

relative abundance of persistent taxa (i.e., those taxa that are consistently present over 135	  

time) drive the temporal dynamics, whereas temporal variability in forehead communities 136	  

appears to be driven more by the presence or absence of transient taxa on the skin surface. 137	  

For the palm, both membership and structure appear highly dynamic, likely due to 138	  
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frequent hand washing and exchange of microbes with the numerous objects we touch on 139	  

a daily basis, including our other body parts. 140	  

 141	  

Using median UniFrac values for each individual as our metric of temporal variability in 142	  

community membership (unweighted) and structure (weighted), we found that 143	  

individuals differed dramatically not only in the composition of their microbial 144	  

communities (Additional file 6), as has been observed previously [2, 5, 16, 17], but also 145	  

in the degree of temporal variability observed in their microbial communities (Figure 2 146	  

and Additional file 7). This has been previously shown in vaginal communities [8], but 147	  

we show here that this is a general characteristic of microbial communities across human 148	  

body habitats. The variability of microbial communities in one body habitat, in general, 149	  

did not predict the variability of microbial communities of other body habitats. The 150	  

exception was the two skin habitats, where individuals that had more variable forehead 151	  

communities also had more variable palm communities (Additional files 8 and 9). This 152	  

finding suggests that the factors that contribute to intra-personal temporal variability in 153	  

microbiome composition are shared across skin habitats, but not necessarily across other 154	  

body habitats. Furthermore, relatively few individuals exhibited a significant time-decay 155	  

relationship [18]; in general, samples collected closer together in time did not harbor 156	  

more similar communities than those collected further apart in time (Additional file 10). 157	  

These results highlight that attempts to predict what type of communities to expect in a 158	  

given body habitat based on data collected during the previous week (or weeks) may be 159	  

difficult for most individuals. However, it is important to note that if we had sampled 160	  

more frequently (e.g., on a daily basis [3]) or for a longer period of time, we may have 161	  
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been able to identify a stronger relationship between elapsed time and the composition of 162	  

the communities within body habitats. 163	  

 164	  

Having established that the degree and nature of variability was specific to each body site 165	  

and was in itself an important parameter that distinguished individuals from one another, 166	  

we next sought to identify factors associated with this variation across individuals. Based 167	  

on previous work [4, 19], we expected that antibiotic usage would lead to profound shifts 168	  

in the structure of an individual’s microbiome. Indeed, within a given individual, the 169	  

largest shifts observed in community membership coincided with the time points that the 170	  

individual reported having taken oral antibiotics (p < 0.001 for both unweighted and 171	  

weighted UniFrac, Monte Carlo t-test with 1000 iterations). Across the study population, 172	  

however, with the exception of palm communities, we did not find a significant effect of 173	  

antibiotics on variability in community membership and structure; individuals who took 174	  

antibiotics did not, on average, have more variable communities than those that did not 175	  

take antibiotics over the time period of this experiment (Figure 2). Our observation that 176	  

antibiotic use was not associated with increased temporal variability in microbial 177	  

communities across the study population could be due to the fact that we did not control 178	  

for the timing of sampling relative to antibiotic use, dosage, or type of antibiotics used by 179	  

the individuals sampled here, or it may be because microbial community responses to 180	  

antibiotics are highly individualized, as suggested by recent work [4, 20].  181	  

 182	  

We next used generalized linear models (GLMs) to identify which other factors or 183	  

combination of factors best predicted why some individuals harbored more variable 184	  
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microbial communities than others. For these models, we again used median weighted or 185	  

unweighted UniFrac values of each individual as our response variables for each body 186	  

habitat. Potential predictive factors were compiled from the initial survey responses 187	  

(Additional file 2) and we only included factors for which we had sufficient replication in 188	  

survey responses (Additional file 3). Presented models included factors with a 189	  

significance value < 0.05. As shown in Table 1, our models were often able to explain 190	  

much of the variability in the temporal stability of microbial communities across 191	  

individuals, but the strength of the models was dependent on the body habitat in question 192	  

or the distance metric used. Common predictive factors observed in multiple body 193	  

habitats included median alpha diversity values (Shannon Index), university affiliation 194	  

and antibiotic use (Table 1). However, the strongest predictive variable for most body 195	  

habitats was median diversity, measured using the Shannon index, suggesting an overall 196	  

relationship between diversity and variability. Other factors appeared to have a body site-197	  

specific affect. For example, the number of roommates helped explain a significant 198	  

amount of variability in the structure (weighted) of forehead microbial communities, a 199	  

pattern that may driven by the exchange of skin bacteria between individuals sharing a 200	  

common living area.  201	  

 202	  

To explore the relationship between diversity and temporal variability in greater detail, 203	  

we generated single-factor linear models using median Shannon index values as our 204	  

metric of diversity and either median weighted or unweighted UniFrac values as our 205	  

metric of stability (Figure 3). With these models, we observed statistically significant 206	  

negative correlations between diversity and compositional variability for the gut and 207	  
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tongue communities; individuals with more diverse communities were less variable 208	  

(more stable) than individuals with less diverse communities. In contrast, a positive 209	  

relationship was observed between forehead community diversity and structural 210	  

variability while no relationship was evident for palm communities. Similar directional 211	  

patterns were observed with the other diversity metrics (Additional file 11). Our finding 212	  

that microbial communities which experience lower rates of immigration (the gut and 213	  

tongue) exhibit a positive diversity-stability relationship parallels patterns observed in 214	  

many plant and animal communities where increases in species diversity often result in 215	  

more stable communities and communities that are more resistant to invasions (i.e. the 216	  

portfolio effect) [21]. Although the health implications of the diversity-stability 217	  

relationships observed here remain undetermined, recent work has shown that gut 218	  

communities of lower diversity are often associated with disease phenotypes in humans 219	  

[22]. 220	  

 221	  

Individuals that had more stable communities harbored taxonomically distinct 222	  

communities compared with those found in more variable individuals (Figure 4). For 223	  

example, individuals with stable forehead communities had a greater relative abundance 224	  

of Staphylococcaceae and Corynebacteriaceae, whereas individuals with highly variable 225	  

forehead communities were enriched in Streptococcaceae and Lactobacillaceae (Figure 226	  

4a). The trade-off between Staphylococcaceae and Lactobacillaceae is intriguing because 227	  

several Lactobacillaceae species inhibit attachment of Staphylococcaceae to epithelial 228	  

cells [23, 24]. In the gut, two of the dominant groups of Firmicutes, Clostridiaceae and 229	  

Lactobacillaceae, were more abundant in variable individuals, whereas the 230	  
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Bacteroidaceae (the dominant family within the Bacteroidetes phylum) were most 231	  

abundant in stable individuals (Figure 4b). A higher Firmicutes:Bacteriodetes ratio has 232	  

been observed in guts of obese individuals [25, 26], but we did not have enough diversity 233	  

in body mass index (BMI) to formally test if temporal variability may also be associated 234	  

with obesity. Although the mechanisms underlying these patterns remain unclear, these 235	  

observations highlight the likely importance of bacterial interactions in determining the 236	  

stability of human-associated microbial communities. 237	  

 238	  

Conclusions: 239	  

Our findings suggest that the high degree of temporal variability in alpha diversity levels, 240	  

community membership, and community structure observed across the sampled body 241	  

habitats and across study participants is important to consider when designing studies to 242	  

assess linkages between the human microbiome and health. Although the variability in 243	  

community composition among individuals typically exceeds the temporal variability 244	  

within individuals over time, a pattern we also observed here (Additional file 6), the 245	  

intra-individual temporal variability is considerable and the degree of variability that an 246	  

individual experiences over time may be a (largely unexplored) factor in determining 247	  

disease state or differential treatment success. Further, because variability through time 248	  

can be high, samples collected at one point in time may not adequately characterize an 249	  

individual's microbiome, even if focusing on only the more abundant phylotypes (Figure 250	  

1b, dark shades). If the effect size of a change in disease state on the human microbiome 251	  

is sufficiently large (e.g., the loss of a major lineage), this intra-individual temporal 252	  

variability may be irrelevant. However, if changes in disease state are associated with 253	  
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more subtle shifts in microbial community composition, it would be important to control 254	  

for this temporal variability before one could establish causal linkages between changes 255	  

in the microbiome and changes in health status. It is now well established that there is 256	  

considerable inter-individual variability in the composition of the human microbiome [5, 257	  

17], leading to the concept of a “personal microbiome”, and we are beginning to establish 258	  

causal relationships between composition of the microbiome and disease [27]. Here we 259	  

show that there is also a high-degree of inter-individual variability in the stability of the 260	  

human gut, tongue, forehead, and palm microbiome. As a result, we suggest that the 261	  

“personal microbiome” concept should be extended to incorporate the rate of change of 262	  

an individual’s microbiome, in addition to its composition (a feature which distinguishes 263	  

the “personal microbiome” from the “personal genome”) and that future investigations 264	  

into associations between features of the microbiome and host phenotype may want to 265	  

consider temporal variability as a potential explanatory factor.  266	  

 267	  

Methods 268	  

 269	  

Subject recruitment and sample collection.  270	  

Volunteers were recruited from three Universities (University of Colorado, Boulder 271	  

(UCB), Northern Arizona University (NAU), and North Carolina State University 272	  

(NCSU)) in January/February of 2012 and asked to donate weekly self-collected samples 273	  

for a minimum of ten weeks using sterile, pre-labeled, double-tipped swabs (Becton, 274	  

Dickinson and Company, Sparks, MD, USA.). Participants were instructed to sample two 275	  

skin habitats (foreheads and palms) and the surface of their tongue by swabbing for 10-15 276	  
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seconds. Gut (fecal) samples were collected by touching cotton swabs to used toilet paper 277	  

so that a small amount of fecal material was transferred to each pair of swabs. Volunteers 278	  

were asked to collect samples before showering and as close to drop-off times as possible 279	  

without placing samples in freezers to avoid freeze-thaw cycles. One representative at 280	  

each University collected samples from students and placed them in a -20 °C freezer until 281	  

shipping on dry ice to the UCB where all sample processing occurred. Volunteers were 282	  

also asked to provide a variety of demographic and behavioral metadata at the initiation 283	  

of the project using a scantron-based survey (Additional file 1). Weekly questionnaires 284	  

(Additional file 2) were also provided with sampling kits to collect information on 285	  

changes in health status, medication use, and menstruation for women. At the conclusion 286	  

of the study prior to publication, study participants were provided their personalized 287	  

results via a password-protected website (http://my-microbes.qiime.org). All volunteers 288	  

were made aware of the nature of this project and gave written consent in accordance 289	  

with protocols approved by each University's Institutional Review Board (IRB) (UCB 290	  

409.13; NAU 12.0169; NCSU 2443). Per IRB regulations, volunteers were able to drop 291	  

out of the study at any time and were not required to answer any or all survey questions.  292	  

 293	  

Sample processing.  294	  

Samples from NAU and NCSU were shipped on dry ice to UCB at the conclusion of 295	  

sampling. Upon arrival, individual swabs were linked with Personal IDs using digital 296	  

barcodes and logged into an Excel worksheet. Swabs were then sorted by body habitat 297	  

and the tip of one duplicate swab was aseptically cut into single wells in 2 ml 96-well 298	  

deep-well plates (Axygen Inc., Union City, CA, USA). Plates were sealed with silicone 299	  
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Axymat sealing mats (Axygen Inc., Union City, CA, USA). Each plate contained 300	  

negative control samples that included swab blanks (sterile swabs), extraction blanks 301	  

(reagents), and a PCR control. Forehead, gut, and tongue plates also included positive 302	  

controls that were collected from one individual at the initiation of the project and 303	  

stored/shipped with samples at each university. No differences were observed in 304	  

community membership or structure in positive control samples. 305	  

 306	  

DNA extraction, PCR amplification, and sequencing.  307	  

DNA extraction and PCR amplification of the variable region 4 (V4) of the 16S rRNA 308	  

gene using Illumina adapted universal primers 515F/806R [12, 28] was conducted using 309	  

the direct PCR protocol as previously described [29]. 310	  

 311	  

Aliquots (4 µl) from the fecal and tongue extracts were transferred into 384-well plates 312	  

for triplicate PCR reactions, while skin aliquots (forehead and palm, 4 µl) were 313	  

transferred into 96-well plates. PCRs were conducted in triplicate 20 µl reactions and 314	  

thermal cycling conditions for the 384-well plates were: initial denaturation for 3 min at 315	  

94 °C; 35 cycles (94 °C, 60 sec; 50 °C, 60 sec; 72 °C, 105 sec) followed by a final 316	  

elongation for 10 min at 72 °C. Conditions for the 96-well plates were identical except 317	  

for shorter denaturation (94 °C, 45 sec) and elongation (72 °C, 90 sec) steps. PCR 318	  

products from triplicate reactions of each sample were pooled, visualized on an agarose 319	  

gel, and quantified using the PicoGreen dsDNA assay (Invitrogen, Carlsbad, CA, USA). 320	  

Positive amplicons from each body habitat (forehead, gut, palm, and tongue) were then 321	  

pooled in equimolar concentrations into composite samples that were cleaned using a 322	  
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single-tube MoBio Ultraclean PCR Clean-up Kit (MoBio Laboratories, Carlsbad, CA 323	  

USA). Each body habitat was sequenced on an individual lane (4 lanes total) of an 324	  

Illumina HiSeq2000 instrument at the University of Colorado BioFrontiers Institute 325	  

Advanced Genomics Facility.  326	  

 327	  

Data processing.  328	  

All data processing was performed using QIIME 1.6.0-dev unless otherwise noted. The 329	  

specific processing steps were as follows. Raw fastq data was demultiplexed and quality 330	  

filtered as described previously [30]. Sequences that passed quality filtering were 331	  

clustered into phylotypes (Operational Taxonomic Units, OTUs) at 97% sequence 332	  

identity using a uclust-based [31] closed-reference protocol against the 12_10 revision of 333	  

the Greengenes database [32], where reads that did not match a sequence in the reference 334	  

set at least 97% identity were excluded from subsequent analyses. The taxonomy of each 335	  

phylotype was assigned as the taxonomy associated with the Greengenes sequence 336	  

defining that OTU. The Greengenes phylogenetic tree was used for phylogenetic 337	  

diversity calculations. A median of 49242.0 sequences was collected per sample. After 338	  

removing phylotypes appearing in negative controls at high abundance (≥ 0.5% across all 339	  

controls) [29], all samples were rarefied to 10,000 sequences for all downstream analyses 340	  

unless otherwise noted.  341	  

 342	  

Potentially mislabeled samples were detected using the random forest classification 343	  

approach described previously [33]. Briefly, the full sample-by-phylotype abundance 344	  

matrix (i.e., OTU table) was filtered to exclude phylotypes that were observed in fewer 345	  
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than 10 samples. The OTU table was then randomly subsampled to exactly 1000 346	  

sequences per sample. Three samples achieved a probability of being mislabeled greater 347	  

than 90%, and were excluded from all downstream analyses. 348	  

 349	  

Alpha diversity metrics (phylogenetic diversity (PD), phylotype richness, and Shannon 350	  

Index) were computed as implemented in QIIME. Comparisons of alpha diversity 351	  

presented in this study are computed at exactly 10,000 sequences per sample. Beta 352	  

diversity was computed using the weighted and unweighted UniFrac metrics [15] at 353	  

exactly 10,000 sequences per sample.  354	  

 355	  

The time series samples were defined as the set of samples that came from an 356	  

individual’s body site where at least seven samples were collected and successfully 357	  

sequenced from that individual’s body site over the ten-week collection period. For 358	  

example, if six fecal samples and seven forehead samples were sequenced from an 359	  

individual, their fecal samples would not be included in any time series analyses, but their 360	  

forehead samples would be. This resulted in 75 gut time series sample collections, 80 361	  

tongue time series sample collections, 80 forehead time series sample collections, and 61 362	  

palm time series sample collections.  363	  

 364	  

All QIIME commands for performing these processing steps can be found in Additional 365	  

file 12. 366	  

 367	  

Statistical analysis.  368	  
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To assess the temporal variability of within sample diversity (alpha diversity), we 369	  

calculated the coefficient of variation (CV) for three diversity metrics (phylogenetic 370	  

diversity – PD, OTU richness, and Shannon index) for each body habitat of each 371	  

individual through time. Individual values were used to determine the per body site 372	  

median across the study population, with higher values indicative of more variable 373	  

communities.   374	  

 375	  

Variability in community composition (beta diversity) was determined per body habitat 376	  

by calculating the median weighted and unweighted UniFrac distances for each 377	  

individual over time. With this metric, communities with a higher median value are more 378	  

variable whereas a lower value indicates more stable communities. (Note that because we 379	  

summarize temporal data in a single measurement, we do not need to account for lack of 380	  

independence of temporal samples from a single individual in evaluations based on this 381	  

metric.) Differences across body sites for both alpha- and beta-diversity were assessed 382	  

using the non-parametric Kruskal-Wallis one-way analysis of variance with pairwise 383	  

comparisons made using the Mann-Whitney U-test, as implemented in R.  384	  

 385	  

To determine the number of phylotypes shared by an individual over different windows 386	  

of time, we converted the OTU tables of each body habitat to a presence/absence matrix, 387	  

split it by individual, filtered out singletons, and determined the number of OTUs found 388	  

in exactly two samples, three samples, four samples, and so on up to seven samples using 389	  

a custom R script. Samples did not have to be from consecutive weeks. We repeated this 390	  

analysis on only the top 10% most abundant OTUs per individual. The numbers of 391	  
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phylotypes shared per individual were then averaged across individuals for each window 392	  

of time and each body habitat.     393	  

 394	  

For each body habitat, the study population was divided into quartiles based on median 395	  

intra-individual UniFrac values where the 1st quartile was defined as ‘stable’, the 2nd and 396	  

3rd quartiles as ‘average’, and the 4th quartile as ‘variable.’ To determine if certain taxa 397	  

were more or less abundant in the different quartiles (i.e. stability classes), we rank 398	  

transformed the most abundant bacterial families (> 1% across individuals) for each body 399	  

habitat and tested for differences between the groups using the nonparametric Kruskal-400	  

Wallis analysis of variance. 401	  

 402	  

adonis [34], ANOSIM [35], and PERMDISP [34] (using 999 permutations) were used to 403	  

test for differences in community composition between individuals at each body site. The 404	  

statistical methods were used to analyze both weighted and unweighted UniFrac distance 405	  

matrices, with only the time series samples being included in the analyses.  406	  

 407	  

To determine the affect of antibiotic use on community variability, we grouped 408	  

individuals based on their usage (yes or no) and used the non-parametric Mann-Whitney 409	  

U-test to test for differences between the two groups. Spearman rank correlations were 410	  

used to determine if community variability as measured using median UniFrac distances 411	  

was correlated across pairs of body habitats. To assess if patterns in community 412	  

composition could be related to time between sampling events, Mantel tests (Spearman-413	  

rank correlations on 999 permutations) were conducted for each individual using both 414	  
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weighted and unweighted UniFrac values and Manhattan time-distance matrices 415	  

calculated in R using the VEGAN package (33). Using the mean of the different alpha 416	  

diversity metrics (PD, phylotype richness, and Shannon index) as our metrics of diversity 417	  

and median UniFrac distances (both weighted and unweighted) as our metric of 418	  

community variability on a per individual basis, we constructed linear models for each 419	  

body habitat across individuals to examine the relationship between diversity and 420	  

stability. 421	  

 422	  

We identified key predictors of the variability in composition of bacterial assemblages 423	  

using generalized linear models. We used a model simplification procedure, removing 424	  

non-significant terms (α = 0.05) in a stepwise fashion [36], to explore the relative 425	  

contributions of the various terms included in the start model. Model simplification 426	  

approaches have been criticized [37], but in the absence of strong a priori information on 427	  

the drivers of variability of bacterial assemblages, this approach is a useful first step [38]. 428	  

The final models we present are those that exclusively include variables that explain 429	  

significant variation in our dependent variables. We also used model simplification in 430	  

which final models were those in which Bayesian information criterion (BIC) was 431	  

minimized. However, these “best” models ended up including all variables we tested and 432	  

so here we focus on those variables with significant explanatory power.  433	  

 434	  

To determine if the weeks where individuals reported taking antibiotics were the weeks 435	  

where they experience the largest changes in their gut community compositions, we ran 436	  

per-body-site one-tailed, rank-based Monte Carlo t-tests. The adjacent-week UniFrac 437	  
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distances were compiled for each individual on a per-body-site basis (i.e., the distance 438	  

between their gut samples on week 1 and week 2, week 2 and week 3, and so on). Each 439	  

individual’s UniFrac distances were ranked from smallest to largest, and assigned their 440	  

rank value. Across individual ranks were grouped into distributions based on whether 441	  

they occurred in a week where the individual reported taking antibiotics or not. Those 442	  

distributions were then compared with a one-tailed Monte Carlo t-test with 1000 443	  

iterations. 444	  

 445	  

Data availability: Sequence data and accompanying de-identified metadata has been 446	  

deposited in the EMBI under accession number (ERP005150-ERP005153) and can also 447	  

be found in the QIIME Database under the study ID (will add ID prior to publication) 448	  

(http://www.microbio.me/qiime/). 449	  

 450	  

Abbreviations: 451	  

BIC: Bayesian information criterion; BMI: body mass index; CA: California; CV: 452	  

coefficient of variation; dsDNA: double-stranded deoxyribonucleic acid; GLM: 453	  

generalized linear model; IRB: Institutional Review Board; MD: Maryland; ml: milliliter; 454	  

NAU: Northern Arizona University; NCSU: North Carolina State University; OTU: 455	  

operational taxonomic unit; PCR: polymerase chain reaction; PD: phylogenetic diversity; 456	  

QIIME: Quantitative Insights Into Microbial Ecology; rRNA: ribosomal ribonucleic acid; 457	  

sec: seconds; UCB: University of Colorado, Boulder; µl: microliter; U.S.: United States; 458	  

USA: Unites States of America; V4: variable region 4. 459	  

 460	  
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 484	  

Additional files: 485	  

The following additional data are available with the online version of this paper. 486	  

Additional file 1 is the pre-study questionnaire used to collect demographic, lifestyle, and 487	  

hygiene data on study participants. Additional file 2 is the weekly questionnaire used to 488	  

collect information about changes in health status, medication use, stage of menstrual 489	  

cycle for women, and any other dramatic changes in the routine of study participants. 490	  

Additional file 3 is a list of all samples collected in this study with corresponding de-491	  

identified personal IDs of study subjects and answers to survey questions. Additional file 492	  

4 is a figure showing the amount of microbial diversity observed in each sample. 493	  

Additional file 5 is a figure depicting the temporal variability observed in microbial 494	  

community membership and structure for each body habitat of each individual. 495	  

Additional file 6 is a table showing that the composition of each individual’s microbiome 496	  

is personalized through time. Additional file 7 is a figure showing how the microbial 497	  

communities of selected individuals vary through time. Additional file 8 is a table 498	  

showing the results of Spearman rank correlation of community membership across 499	  

different body habitats. Additional file 9 is a table showing the results of Spearman rank 500	  

correlation of community structure across different body habitats. Additional file 10 is a 501	  

table of Mantel test results correlating microbial community membership and structure 502	  

with time between samples (time distance-decay). Additional file 11 is a table of results 503	  

correlating microbial diversity with temporal variability in community membership and 504	  

structure for each body habitat. Additional file 12 is a list of all QIIME commands used 505	  

in data processing.  506	  
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Figure Legends 629	  

Figure 1. Body habitats exhibited different levels of temporal variability both in 630	  

diversity (a) and membership (b). In A, each point represents the temporal variability 631	  

of a single individual colored by gender (red=female, blue=male) with black bars 632	  

representing the median for a given body habitat and metric. Statistical differences were 633	  

observed for each metric across body habitats (Kruskal-Wallis, p ≤ 0.01) and 634	  

comparisons based on pairwise Mann-Whitney U-test are denoted by asterisks (* = 635	  

corrected p ≤ 0.05, ** = corrected p ≤ 0.01). In B, the smaller, lighter shaded bars in each 636	  

plot are for all phylotypes except singletons and the larger, darker bars are only for the 637	  

100 most abundant phylotypes for each individual. Error bars in B are ± 1 SEM. 638	  

 639	  

Figure 2. Boxplots of unweighted (a) and weighted (b) intra-individual UniFrac 640	  

distances for each body habitat. A broad range of temporal variability in microbial 641	  

community membership (a) and structure (b) was observed across body habitats and 642	  

within body habitats across individuals. Individuals are sorted by median in each plot. 643	  

Green bars depict individuals who did not report antibiotic use during the study period 644	  

while blue bars indicate individuals who took antibiotics. The median values for each 645	  

body habitat are shown with vertical red lines. Dotted horizontal lines in each plot divide 646	  

the study population into 1st and 4th quartiles and depict ‘stable’ and ‘variable’ individuals, 647	  

respectively. Non-parametric Mann-Whitney U-tests were used to determine the affect of 648	  

antibiotic use on temporal variability within each body habitat. P-values are shown in 649	  

each panel. Note that statistical differences were observed for each metric across body 650	  

habitats (Kruskal-Wallis, p ≤ 0.01).  651	  
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 652	  

Figure 3. Relationship between diversity and variability of microbial communities 653	  

associated with each body habitat. Diversity was measured as the median Shannon 654	  

Diversity Index for each individual over the three-month sampling period. Variability 655	  

was measured as intra-individual median weighted (white boxes) and unweighted (grey 656	  

circles) UniFrac distance. Each point represents values of the time-series data for one 657	  

individual. Spearman rank correlation coefficients are presented for statistically 658	  

significant relationships (p ≤ 0.01). Note that similar patterns were observed with other 659	  

alpha diversity metrics (Additional file 11). 660	  

 661	  

Figure 4. Average taxonomic composition was different among stability classes 662	  

across individuals. Individuals were assigned to stability classes based on quartiles (1st = 663	  

stable (blue), 2nd & 3rd = average (red), 4th = variable (green)) of median weighted 664	  

UniFrac distances for each body habitat. Significant differences were observed across 665	  

forehead (a) and gut (b) communities but not in palm (c) or tongue (d) communities as 666	  

determined by rank transforming the most abundant bacterial families (> 1% in any 667	  

group) for each body habitat and testing for differences between stability classes using 668	  

the nonparametric Kruskal-Wallis analysis of variance.  Significance is denoted with 669	  

asterisks (* = corrected p  ≤  0.05, ** = corrected p  ≤  0.01).   670	  

 671	  

 672	  

673	  
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Table 1. Measured factors that influenced the temporal variability of the human 674	  

microbiome. Generalized linear models (GLMs) were used to determine which of the 675	  

measured factors or combination of factors best predicted variability in microbiome 676	  

membership (unweighted UniFrac) and structure (weighted UniFrac). Unweighted 677	  

UniFrac distances are a metric of the phylogenetic dissimilarity of samples through time. 678	  

Weighted UniFrac distances weight dissimilarity both as a function of the phylogenetic 679	  

dissimilarity and the relative abundance of taxa (such that two samples with the same 680	  

phylogenetic dissimilarity are considered more different if one is dominated by a 681	  

particular taxon). 682	  

 Est SS F P BIC R2 
Forehead – 
unweighted  

      

Antibiotic use -0.015 0.010 8.76 0.004 -262.21 0.175 
University -0.119 0.006 5.41 0.023 -263.38  

       
Forehead – weighted        

Median Shannon 0.038 0.090 32.2 3.61 e -7 -190.67 0.580 
Gender -0.023 0.027 9.54 0.003 -193.54  

Number of roommates -0.039 0.016 5.70 0.02 -196.16  
       
Gut – unweighted        

Median Shannon -0.063 0.081 73.24 4.3 e -12 -240.90 0.570 
Over the counter acne 

product 
0.014 0.013 11.18 0.001 -249.97  

University -0.014 0.007 6.64 0.012 -254.34  
       
Gut – weighted        

Median Shannon -0.107 0.238 20.64 2.61 e -5 -85.83 0.319 
Over the counter acne 

product 
-0.034 0.065 5.65 0.021 -90.53  

University -0.028 0.047 4.08 0.047 -90.55  
       
Palm – unweighted        

Exercise frequency -0.033 0.022 15.74 2.00 e -4 -188.6 0.310 
Lives with dogs -0.014 0.010 7.18 0.009 -189.9  

Number of roommates -0.016 0.008 5.77 0.019 -191.8  
       
Palm – weighted       

Antibiotic use -0.026 0.024 4.97 0.029 -129.8 0.080 
       
Tongue – unweighted       

Antibiotic use -0.018 0.015 7.75 0.007 -217.82 0.215 
Median Shannon -0.038 0.010 5.5 0.022 -220.12  

       
Tongue – weighted       

No good model       
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