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Associating disease-related genetic variants in intergenic 

regions to the genes they impact

We present a method to assist in interpretation of the functional impact of intergenic disease-

associated SNPs that is not limited to search strategies proximal to the SNP. The method 

builds on two sources of external knowledge: the growing understanding of three-dimensional

spatial relationships in the genome, and the substantial repository of information about 

relationships among genetic variants, genes, and diseases captured in the published 

biomedical literature. We integrate chromatin conformation capture data (HiC) with literature 

support to rank putative target genes of intergenic disease-associated SNPs. We 

demonstrate that this hybrid method outperforms a genomic distance baseline on a small test

set of expression quantitative trait loci, as well as either method individually. In addition, we 

show the potential for this method to uncover relationships between intergenic SNPs and 

target genes across chromosomes. With more extensive chromatin conformation capture 

data becoming readily available, this method provides a way forward towards functional 

interpretation of SNPs in the context of the three dimensional structure of the genome in the 

nucleus.

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.507v1 | CC-BY 4.0 Open Access | rec: 21 Sep 2014, publ: 21 Sep 2014

P
re
P
ri
n
ts



Associating disease-related genetic

variants in intergenic regions to the genes

they impact

Geoff Macintyre∗1,6, Antonio Jimeno Yepes∗1, Cheng Soon Ong2,3,4, and
Karin Verspoor†1,5

1Dept. of Computing and Information Systems, The University of Melbourne, VIC 3010,
Australia
2Dept. of Electrical and Electronic Engineering, The University of Melbourne, VIC 3010,
Australia
3Machine Learning Group, NICTA Canberra Research Laboratory, Australia
4Research School of Computer Science, Australian National University
5Health and Biomedical Informatics Centre, The University of Melbourne, VIC 3010,
Australia
6Centre for Neural Engineering, The University of Melbourne, VIC 3010, Australia

ABSTRACT

We present a method to assist in interpretation of the functional impact of intergenic disease-associated

SNPs that is not limited to search strategies proximal to the SNP. The method builds on two sources of

external knowledge: the growing understanding of three-dimensional spatial relationships in the genome,

and the substantial repository of information about relationships among genetic variants, genes, and

diseases captured in the published biomedical literature. We integrate chromatin conformation capture

data (HiC) with literature support to rank putative target genes of intergenic disease-associated SNPs.

We demonstrate that this hybrid method outperforms a genomic distance baseline on a small test set

of expression quantitative trait loci, as well as either method individually. In addition, we show the

potential for this method to uncover relationships between intergenic SNPs and target genes across

chromosomes. With more extensive chromatin conformation capture data becoming readily available,

this method provides a way forward towards functional interpretation of SNPs in the context of the three

dimensional structure of the genome in the nucleus.

Keywords: eQTL, text mining, HiC, non-coding variants, data integration

1 INTRODUCTION

Detection and characterisation of disease-associated genetic variation is a major emphasis of current

scientific inquiry. Recent technological advances have enabled investigation of increasingly complex

genetic architectures and their relationship to disease. Genome-wide association studies (GWAS) are

using large sample cohorts to associate increasing numbers of single-nucleotide polymorphisms (SNPs)

with disease phenotypes (Solovieff et al., 2013), and whole-genome sequencing efforts such as The

Cancer Genome Atlas (The Cancer Genome Atlas Research Network, 2011) are uncovering large numbers

of putative cancer-causing single nucleotide variations. However, the functional interpretation of these

variations has focused mainly on those residing in protein-coding regions of the genome (Ward and Kellis,

2012), despite the fact that the majority lie in non-coding regions (Pastinen, 2010; The 1000 Genomes

Project Consortium, 2010). This is due to some of the difficulties in functional interpretation of intergenic

SNPs. Distinguishing driver mutations from passenger in intergenic regions is difficult and intergenic

SNPs may affect function in subtle ways such as disrupting regulatory elements (Schaub et al., 2012).

Experimental approaches for validation of the functional impact of intergenic variation are involved (Paul

et al., 2014), thus new computational approaches are emerging in an attempt to reduce the burden of
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functional interpretation of intergenic variation (Ward and Kellis, 2011; Macintyre et al., 2010; Li et al.,

2013).

Functional interpretation of an intergenic variant requires that the gene impacted by the variant be

identified – the target gene (Anonymous, 2012). A common mode of impact is via disruption of a

regulatory element (enhancer) controlling the target gene (Paul et al., 2014). However, as regulatory

elements can be located far away from the genes they regulate (Lieberman-Aiden et al., 2009; Fullwood

et al., 2009), associating variant and target gene can be problematic. Considering genes flanking the

variant in linear genomic space will, in many cases, miss the target gene. However, considering larger

search spaces will often result in too many putative targets. Therefore additional information is required

to associate the variation with its target gene.

Chromatin marks (Ernst and Kellis, 2010), DNA conservation (Spivakov et al., 2012), chromatin

interaction data (Lieberman-Aiden et al., 2009), expression quantitative trait loci (eQTL) (Gilad et al.,

2009), changes in transcription factor binding affinities (Macintyre et al., 2010), and combinations of

these (Li et al., 2013; Duggal et al., 2014), have been shown to succesfully reduce the target gene search

space. In many cases, however, the underlying data is such that there is inadequate statistical power

to achieve completely unbiased search. For example, eQTLs are based on a statistical association test

between genetic variants and gene expression levels and hence their determination depends on having

sufficient sample sizes (typically tens or hundreds of individuals with both sequence and gene expression

data). Therefore eQTL studies are usually carried out considering only genes nearby SNPs and as such

this data is biased towards SNP-proximal gene associations (Nica and Dermitzakis, 2013).

Careful selection of the types of data used for search space reduction is required in order to achieve an

unbiased search strategy. Recent experimental advances in mapping the three dimensional structure of

the genome in the nucleus have led to the HiC method (Lieberman-Aiden et al., 2009). These data are

ideal for limiting the search space for candidate target genes of a variant in an unbiased fashion. For any

given genomic region containing a variant, it is possible to determine what other regions in the genome

are in close proximity within the nucleus. It can be assumed that these regions are more likely to contain

a gene which is a good candidate for being a direct target of an intergenic variant, and indeed recent

work has demonstrated that chromatin structure is useful for characterising eQTLs (Duggal et al., 2014).

However, the current resolution of the genomic interaction data from these technologies is such that the

list of candidate genes obtained from regions that interact with the region containing the variant is too

large. Therefore, more information is required to prioritise this candidate list. The function of candidate

target genes of a variant may in many cases have been explored within the biomedical literature in the

context of a disease. Consequently, it should be possible to mine the literature for this information and

prioritise candidate genes accordingly.

In this work, we explore strategies for ranking the association of a DNA variant in an intergenic region

to a gene, without the need for SNP-related gene expression data (eQTLs), but using evidence that is more

informative than simple sequence distance. We consider two primary approaches that take advantage of

general background knowledge to establish putative associations between intergenic editsvariants and

genes. One source of this knowledge is the published biomedical literature, which is mined to establish

SNP-gene relationships, considered in the context of specific diseases. This can be viewed as capturing

the broader, indirect associations among SNPs and genes. Another source is the 3D “interactome” data

that is indicative of physical interactions at the genomic level.

We compare these strategies, both individually and in combination, to a sequence distance baseline,

with respect to a set of eQTLs. Our results are suggestive of the promise of the approach, with the

proposed hybrid ranking scheme outperforming the distance baseline edits, and an exploratory analysis

identifying a putative functional mechanism for a gene ranked as a high-ranked candidate target for a

given SNP in the data set.

2 METHODS

When attempting to interpret the functional impact of an intergenic SNP, a number of approaches are

typically employed. As a first step, the likely target gene of the SNP is determined. Once this has been

achieved, the relationship of the SNP relative to the putative target gene will dictate which experimental

or computational procedures will be used to verify the relationship. For intergenic SNPs it is generally

considered that they will have some sort of regulatory effect. Candidate target gene search typically

involves looking at the closest gene to the SNP in linear genomic distance. Given that genetic units are
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inherited as blocks, it is not a bad assumption to make that the nearest gene is the most likely candidate.

However, given that chromatin looping plays a significant role in gene regulation (Fullwood et al., 2009),

the chromatin architecture may be such that the nearest gene is not the correct target gene. As soon as

many genes are considered putative targets, approaches are required to rank these genes for subsequent

followup. Below, we explain four ranking approaches considered in this paper.

2.1 Genome sequence distance (2D) ranking

Given the fundamental assumption that intergenic SNPs impact the closest genes to them, as measured by

sequence distance, we have employed a baseline ranking method based on genomic sequence distance.

In this method, the association between an intergenic SNP and a gene is the number of intervening base

pairs separating them. The ranking is determined by the distance, from the smallest distance to the largest.

Genes on different chromosomes are given the bottom rank as no 2D distance can be calculated. Gene

annotations from build hg18 for the human genome were used to compute distances from the SNPs of

interest from dbSNP 1321.

2.2 Spatial (3D) ranking

The HiC method proposed by Lieberman-Aiden et al. (2009) allows unbiased identification of chromatin

interactions across an entire genome, providing a physical basis for determining interactions among

genomic regions. In brief, chromatin is cross-linked with formaldehyde then restriction enzyme digested,

and the remaining fragments are ligated so that linked regions form the same ligation product. These

products are then subjected to deep sequencing. The method produces a probability contact map for

genomic regions, at megabase resolution. The strength of probability among the region of a given

intergenic SNP of interest and the location of a gene in this 3D map is used to establish the spatial

association between the intergenic SNP and any gene it is in contact with (subject to a threshold). We

used HiC profiling of lymphoblast cells (Lieberman-Aiden et al., 2009) subjected to the normalisation

method of Yaffe and Tanay (2011) which computes log (base2) ratios of observed and expected read

counts for each 1MB window across the human genome (build hg18). For any given SNP, the log ratio of

all 1MB regions across the genome interacting with the 1MB region containing the SNP was assigned

to genes falling within these regions. For the given SNP, all genes were then ranked according to their

likelihood of interacting with the SNP based on HiC profiling. In this study, we limited our analysis to

HiC data for the HindIII restriction enzyme. This source of data is referred to as rankspatial .

2.3 Literature-based ranking

We develop two literature-based ranking strategies, that capture complementary information.

The first approach (described in Section 2.3.5) strictly focuses on establishing disease-specific rankings

of genes. The rankings reflect the strength of association between a disease and a set of genes, based on

how frequently a disease and a gene are mentioned together in the literature (with respect to background

expectation for their co-mention). The particular SNPs of interest do not play a specific role in this

analysis, other than to limit the set of diseases considered; indeed the ranking of genes will be the same

for every SNP, with respect to a given disease.

The second approach (described in Section 2.3.6) aims to identify direct support for the relationship

between a SNP and a gene, by searching the literature specifically for abstracts in which a SNP and a

gene are mentioned together. This approach is clearly tied to the availability of abstract-level details

about a SNP existing in PubMed; this data is very sparse, in part due to the fact that specific details about

genetic variants are only rarely available in published abstracts (Jimeno Yepes and Verspoor, 2014a).

Unfortunately, the access to the full content of the article is limited, with only around 600k articles

available from PubMed Central (a small proportion of the over 23M citations available from PubMed).

However, where it is available it can provide important evidence of an association.

Both methods are applied to a corpus of documents which is processed to detect mentions of genes

and dbSNP SNPs, and to identify the diseases that specific publications are related to. More details of

these steps are provided below.

Several prior efforts have addressed the interpretation of SNPs via the biomedical literature. The

GRAIL method (Raychaudhuri et al., 2009) focuses on prioritising genes in disease-implicated regions on

the basis of similarities of genes as determined by the similarity of the texts associated to the genes. The

1dbSNP: https://www.ncbi.nlm.nih.gov/SNP/
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method has the effect of aggregating all genes within a given disease region, though the analysis usually

results in a single candidate gene in each region being recognised as most significant. Determination of

the genes in a region of a SNP in this method is based on LD (linkage disequilibrium) characteristics, and

is effectively based on genomic distance. Similarly, the method of (Johansson et al., 2012) collects the

genes within a 50k base pair window around a SNP, and then determines probabilities of association of

those genes to a disease or phenotype based on key terms in the literature associated to the genes. These

methods are both successful in supporting SNP interpretation, and demonstrate the utility of the literature

in supporting functional analysis. However, they assume physical proximity of SNPs to genes as the

overriding basis for associating SNPs to genes; we will show that by considering a broader set of genes

we can identify relationships they may miss.

2.3.1 Literature sources

Resources from the US National Library of Medicine (NLM) like PubMed and PubMed Central offer

access to the biomedical literature. PubMed currently indexes over 23 million biomedical publications,

and provides publication meta-data (title, authors, journal, publication date) as well as associated index

concepts from the Medical Subject Headings (MeSH) controlled vocabulary. Among these concepts is the

general concept “cancer”. We used this term to identify cancer-related literature in PubMed. PubMed

expanded this query automatically to include MEDLINE citations indexed with the MeSH heading

“Neoplasms” and any descendent term in the MeSH hierarchy. We retrieved 2.7 million cancer-related

citations from PubMed in December 2012 using this term, and built a local repository of the abstract text

of each of these citations. We refer to this as the cancer corpus. We have restricted our analysis in this

paper to cancer related diseases for two reasons. Firstly, it allows us to limit our predictions of SNP-gene

interaction to a managable number for evaluation of performance of the method. Secondly, the cancer

literature is extensive and mature, and includes substantial SNP association studies providing an adequate

number of instances in which to assess performance of our approach.

2.3.2 Intergenic SNP mention detection

The database dbSNP (Sherry et al., 2001) provides large catalog of SNPs, publicly available from the

NCBI. It provides a mechanism for specifically identifying mutations that occur in intergenic regions

as explained on their website2. We applied that procedure to retrieve all human intergenic SNPs in

dbSNP Build 139, available on-line as of October 31, 2013. From these, we sub-select only those that are

mentioned in the literature corpus that we have compiled.

Since our study is limited to intergenic SNPs identified through dbSNP, we relied exclusively on

mentions of the dbSNP identifiers, also known as the rsIDs (because each is in the form “rs00000”).

The EMU tool (Doughty et al., 2011) was used to detect mention of rsIDs in the abstracts. 10,143 rsID

mentions were detected in the set of 2.7 million abstracts, containing 5,337 unique rsIDs. Of these, 2,409

mentions were classified as intergenic based on dbSNP, representing 1,181 unique rsIDs.

2.3.3 Gene mention detection and normalisation.

The literature is used in our work to establish background statistics of gene-disease association. The

starting point for this is detection of mentions of specific genes in the literature, and normalisation of

those mentions to NCBI Gene database identifiers. We used a dictionary-based approach to annotate the

corpus, as such methods have been shown to be effective for gene normalisation (Jimeno-Yepes et al.,

2013; MacKinlay and Verspoor, 2013), especially for the context of interpreting human SNPs, since

human genes are less ambiguous than gene names in other species.

We used a large dictionary of gene names based on a dictionary built from the human subset of the

NCBI Gene database. We followed the procedure in (Jimeno-Yepes et al., 2013), removing duplicates

and filtering out certain misleading or ambiguous gene names, such as those ending with “disease”,

“syndrome”, or “susceptibility”, and removed terms from a standard stopword list3. The entries in the

dictionary are linked to their originating NCBI Gene identifier. If an entry is common to multiple NCBI

Gene records, all relevant identifiers are associated with the dictionary entry.

We used the ConceptMapper tool (Tanenblatt et al., 2010; Funk et al., 2014)4 as the dictionary tagger

tool, reusing the configuration prepared for the BioCreative 2013 CTD track (MacKinlay and Verspoor,

2http://www.ncbi.nlm.nih.gov/books/NBK44466//#Search.how do i obtain snps located in h
3Stopword list from the SMART system: ftp://ftp.cs.cornell.edu/pub/smart
4http://uima.apache.org/d/uima-addons-current/ConceptMapper/

ConceptMapperAnnotatorUserGuide.html
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2013), which does not make case distinction, tokens have to be matched in the same order, only the

longest match is considered and tokens that form part of a multiple-token name must be adjacent to each

other. The output of ConceptMapper provides a list of extracted genes with their position in text and their

normalization to an NCBI identifier.

ConceptMapper with the NCBI derived dictionary was used to annotate the MEDLINE cancer subset.

For each gene mention identified in text, we have the PMID of the citation, the start and end position of

the mention, the term identified in text and its NCBI identifier. From this annotation, we extract the genes

identified in each citation. This list is used to derive gene-disease associations as shown below.

2.3.4 SNP-disease relationships.

We utilise the literature to establish an association between a SNP and a disease. We first apply the

intergenic SNP detection described above. For each citation in our corpus that mentions at least one

intergenic SNP, we then look for any cancer-related MeSH term in the meta-data for that citation. MeSH

indexing of MEDLINE summarizes the most relevant MeSH concepts with respect to the content of

the article and it is available from the MEDLINE baseline distribution. Cancer-related MeSH terms

are considered the ones under the Neoplasms MeSH heading with tree number starting with C4. This

provides us with SNP-disease editsrelations. The diseases from these relations are used as disease filter;

we estimate gene-disease associations for these diseases as explained below.

2.3.5 Gene-Disease association scores.

To establish the strength of a gene-disease association, we must first count the number of times each

gene is mentioned in an abstract related to a given disease throughout our corpus. We apply the gene

normalisation step to find all abstracts that mention a given gene. For each abstract in our corpus that

mentions at least one gene, we then look for any cancer-related MeSH term in the meta-data for that

abstract following the same procedure as for SNP-disease relationships. For each such disease MeSH

term, we record an association between the genes mentioned in the abstract, and that disease. In this

manner, we establish counts for each {gene, disease} pair in the corpus.

The gene-disease association score is estimated based on the t-test, where the test looks at the

difference between the observed x and the expected mean µ . We have preferred this to other alternatives

like mutual information due to the problems that they have with respect to low frequency events (Manning

and Schütze, 1999).

In the test, the expected mean is the probability of the gene and the disease not being associated, i.e.,

being independent P(Gene)P(Disease), and the observed P(Gene,Disease) is the probability of the gene

and the disease together. The variance is based on the observed distribution considered as a Bernoulli

distribution. N is the number of citations in the cancer corpus.

t =
x−µ
√

s2

N

(1)

The literature-based gene-disease association score generates a ranking that will be the same regardless

of which SNP is considered since that method does not consider the SNP directly. However, we utilise the

established SNP-disease relationships (Section 2.3.4) to limit the diseases considered relevant to the SNP.

This in turn restricts the set of genes which are considered to be potentially relevant to the SNP. Thus,

we produce SNP-gene associations that are based on the SNP’s association to a disease, and intersect

the diseases common to the SNP-disease and disease-gene sets to produce a set of SNP-disease-gene

associations. Each SNP-disease-gene association is assigned the score of the underlying disease-gene

association. This score is used to compute rankliterature.

2.3.6 SNP-gene co-occurrence score ranking

To consider the possibility of direct mentions of intergenic SNP-gene interactions in the literature, we

counted the number of abstracts in which a given intergenic SNP from our data set and a gene are

mentioned together with the text of an abstract (a SNP-gene “co-mention”). Although we did not attempt

to establish the specific nature of the relationship between the SNP and the gene as mentioned in the

article, prior work has found that simple co-occurrence of such concepts can be useful to establish a

biological relationship (Gabow et al., 2008; Verspoor et al., 2013; Sokolov et al., 2013).
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There are very few of these intergenic SNP-gene co-mentions within the abstracts of our literature

dataset. There is an average of 5.88 unique genes co-mentioned with each of the 1,181 intergenic SNPs in

the data set, with a standard deviation of 7.36 across the set of SNPs. This value is consistent with the

result for all the SNPs in the full dbSNP set (average 5.77 and standard deviation 7.33).

We generated a ranking over the genes co-mentioned with each SNP based strictly on the occurrence

count of the co-mentions. However, we found this too sparse for direct use (see Section 3.1).

2.4 Hybrid Spatial-Literature association ranking

Recognising that genomic distance, the spatial association method and the literature-based gene-disease

association method provide editscomplementary information – the editsphysical distance methods captur-

ing mostly direct relationships among SNPs and genes and the literature method capturing mostly indirect

relationships – we experimented with a method combining editsthem.

editsThe hybrid method takes the ranked list of genomic distances, the ranked list of SNP-gene

associations from the spatial method and the ranked list of SNP-(disease)-gene associations based on the

gene-disease association method, and computes a hybrid rank for each SNP-(disease)-gene association as

the geometric mean of the ranks from the editsthree source methods (Bedő and Ong, 2014). This has the

effect of maintaining a high overall rank for an association if it is ranked high in one of the editsthree

methods, even when the rank is very low in the other two.

Since ranks are invariant to monotone transforms of the corresponding scores, some care has to be

taken when aggregating them. In particular, a normalisation procedure has to be applied to the numerical

representation to account for the fact that we have lists which differ in length. In this paper, we consider

fractional ranks in the unit interval, that is each object’s rank is its position in the sorted list normalised by

the length of the list. The simple example in Table 1 illustrates this concept for genomic distance. The

corresponding operations for the spatial method and the literature method are the same.

Distance 43k 2k 500k 8k 1292k

Position (i) 3 1 4 2 5

Rank ( i
n+1

) 3
6
=0.5 1

6
=0.167 4

6
=0.667 2

6
=0.333 5

6
=0.833

Table 1. Scores vs ranks: For a list of length n the fractional rank is given by the position i of the object

divided by n+1.

After ranking, the different sources of information are comparable, and can be directly multiplied.

Therefore, the hybrid rank of rankgen dist , rankspatial and rankliterature is calculated as

rankhybrid = rank(rankgen dist ∗ rankspatial ∗ rankliterature), (2)

where the operation rank(·) just performs the normalisation described in Table 1. This hybrid rank is used

in the validation procedure in the experiments. For the discovery experiments which are across different

chromosomes, genomic distance is meaningless, and therefore is dropped from the hybrid ranking,

rankhybrid = rank(rankspatial ∗ rankliterature). (3)

2.5 Evaluation

Evaluation of any predictive method is difficult in the absence of labeled, gold standard data. Since

functional association of intergenic SNPs to genes has been studied substantially less than the impact of

mutations within genes or proteins, there is limited data available to validate our methods. Therefore a

gold standard proxy must be used. The most suitable data for evaluation of our methods in this case comes

from eQTL studies. These data provide links between SNPs and putative target genes based on statistical

assocation of alleles and gene expression. It has been previously shown that these associations have a

strong link with 3D genome structure linking both genes and SNPs nearby in linear and 3D space (Duggal

et al., 2014). From the eQTL data, we have for each SNP a target gene implicated as the gene affected by

that SNP. We take this as our gold standard proxy – the gene that each method should rank high in the set

of potentially associated genes.

We consider two different experiments to demonstrate the utility of an unbiased search strategy: a

validation experiment to compare the performance of our proposed method with a genomic distance
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baseline, and a discovery experiment where we focus on interchromosomal associations. For the validation

experiment, we had to limit the set of genes considered to those residing on the same chromosome as the

SNP since the genomic distance baseline could not be computed between chromosomes. In addition, we

focussed the comparison on long-range enhancer-like associations by excluding genes within 500Kbp

of the SNP under consideration. For the discovery experiment, we considered only target genes from

different chromosomes as the SNP under study to determine if cross-chromosomal interactions could be

detected.

2.5.1 eQTL data sources

For evaluaton of our approach we extracted eQTL data from the GTEx (Genotype-Tissue Expression)

eQTL Browser (Lonsdale et al., 2013) across all eQTL studies in the database. We obtained all eQTLs

which matched SNPs in our disease-SNP dataset mined from the literature. In each case, the associated

gene was recorded along with the reported p-value for the association between the SNP and gene. This

resulted in a set of 26 unique SNPs for which there was a significant (p < 0.01) association with the

expression of a gene. After filtering of these eQTL SNPs, 17 significant associations were considered

positive labels in our ranking assessment of the SNP target gene methods.

For confirmation of discovery of novel SNP target gene pairs, we queried the HapMap3 (Stranger

et al., 2012) eQTL study data via the GeneVar database5. If a significant association between disease SNP

and putative target gene was found, this was considered evidence for a putative functional relationship

between the SNP and gene.

2.5.2 Comparison of rankings

For each SNP, the eQTL data provides a gene that is strongly associated to that SNP. Our analysis

compares the rank of that target gene in the ranking produced by each method.

We consider the genomic distance-based ranking as the baseline ranking to which we compare the

alternative ranking methods. This reflects the fact that genomic distance is the primary method used in

current approaches to establish SNP-gene associations, as well as the importance of DNA proximity at

a molecular level. In addition, we compute the ranking based on the HiC likelihood and the literature

based sources. For each SNP-disease pair, we ordered all genes based on each of the three sources of

information above, and identified the ranks at which there is eQTL evidence for association. The spatial

and literature rankings are then aggregated using the geometric mean (Eq. 2).

3 RESULTS

3.1 Evaluation of performance of hybrid approach against baseline

Using eQTL associations between the disease SNPs and genes as a gold standard (per Section 2.5) we

assessed the performance of our hybrid ranking methods against a baseline ranking based on 2D (linear)

genomic distance. As mentioned before, we focus on long range associations (> 500Kbp) since these

are the cases of interest. Furthermore the 1MBps resolution of the HiC data means that the score derived

from HiC could be on average up to 500Kbp distant from the SNP of interest. For fair comparison with

genomic distance we limited the hybrid rank approach to genes on the same chromosome as the SNP. This

resulted in a total of 81,569 associations, of which only 18 had eQTL evidence. Two SNPs (rs2029166

and rs7296239) within 2Kbp from each other in AAAS gene had identical spatial and literature scores

hence we considered them as one single instance, leaving a total of 17 eQTL for assessing performance.

The details of the rankings are shown in Table 2. Note that the rankings are performed for each

SNP-disease pair, hence a particular gene may be ranked the same for different SNP-disease combinations

where the ranking relies on same HiC experiment (for example rs344781 in gene PSG11). This shows

an additional advantage of the literature-based approach which allows prioritisation of the putative

associations using disease specific information. From Table 1, it can be seen that spatial ranking (HiC

ranking) or literature ranking alone do not provide results comparable to ranking based on linear genomic

distance. However, a combination of both methods (hybrid ranking) outperforms linear ranking. Figure

1 highlights this by plotting, for each of the eQTL SNPs, the rank of the target gene based on genomic

distance (rankgen dist ) against the rank of that target gene based on rankhybrid . Three of the 17 eQTLs had

lower ranks, and only the top 14 eQTLs are shown. Better performance corresponds to lower rank, i.e., if

the rank according to the hybrid method is lower than the rank of the genomic distance, then the hybrid

5http://www.sanger.ac.uk/resources/software/genevar
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Table 2. eQTL data used for validation. The eQTL column shows the p-value of the eQTL data. GD means genomic distance, and Lit. refers to the score resulting from

literature. rD, rHiC and rL refer to the ranks of genomic distance, HiC and literature respectively, out of Total number of genes which are more than 500Kbp from the

SNP under consideration. rHy is the geometric mean rankhybrid . A nan value in Lit. means that no evidence was found in the literature.

PubMedID SNP Disease chr location Gene GeneID GeneWindow eQTL GD HiC Lit. rD rHiC rL rHy Total

21995493 rs652625 Carcinoma, NSC Lung chr1 12147937 MTOR 2475 chr1:11M-12M 3.94E-05 902741 6.84 1.17 0.0091 0.0046 0.0282 0.0012 2408

20937265 rs344781 Carcinoma, NSC Lung chr19 48866627 PSG11 5680 chr19:48M-49M 1.96E-05 644155 7.16 nan 0.0031 0.0006 0.2842 0.0013 1594

21761413 rs344781 Endometrial Neoplasms chr19 48866627 PSG11 5680 chr19:48M-49M 1.96E-05 644155 7.16 nan 0.0031 0.0006 0.2748 0.0013 1594

20937265 rs344781 Lung Neoplasms chr19 48866627 PSG11 5680 chr19:48M-49M 1.96E-05 644155 7.16 nan 0.0031 0.0006 0.2992 0.0013 1594

19760037 rs7187167 Breast Neoplasms chr16 1289209 WDR24 84219 chr16:0-1M 2.73E-05 608807 7.21 nan 0.0156 0.0021 0.7419 0.0042 961

21995493 rs652625 Lung Neoplasms chr1 12147937 MTOR 2475 chr1:11M-12M 3.94E-05 902741 6.84 -5.59 0.0091 0.0046 0.2263 0.0046 2408

23059779 rs12983047 Carcinoma, Squamous Cell chr19 46526338 CIC 23152 chr19:47M-48M 0.00036 954318 7.15 1.42 0.0218 0.0230 0.0131 0.0075 1607

19358266 rs7187167 Lymphatic Metastasis chr16 1289209 WDR24 84219 chr16:0-1M 2.73E-05 608807 7.21 nan 0.0156 0.0021 0.7034 0.0083 961

23059779 rs12983047 Adenocarcinoma chr19 46526338 CIC 23152 chr19:47M-48M 0.00036 954318 7.15 0.33 0.0218 0.0230 0.0492 0.0137 1607

23059779 rs12983047 Lung Neoplasms chr19 46526338 CIC 23152 chr19:47M-48M 0.00036 954318 7.15 -0.61 0.0218 0.0230 0.0834 0.0168 1607

22267197 rs2823093 Breast Neoplasms chr21 15442702 USP25 29761 chr21:16M-17M 0.00010 581512 6.57 -1.75 0.0101 0.0709 0.1723 0.0169 296

22344756 rs3213182 Carcinoma, Squamous Cell chr20 31726893 ITCH 83737 chr20:32M-33M 0.00021 687808 6.95 -5.09 0.0142 0.0236 0.2079 0.0173 635

23059779 rs12983047 Carcinoma, NSC Lung chr19 46526338 CIC 23152 chr19:47M-48M 0.00036 954318 7.15 -2.16 0.0218 0.0230 0.1176 0.0243 1607

21427733 rs2029166 Breast Neoplasms chr12 52876365 AAAS 8086 chr12:52M-53M 7.79E-05 874685 6.40 -2.42 0.0131 0.0533 0.2238 0.0262 1144

21427733 rs7296239 Breast Neoplasms chr12 52877970 AAAS 8086 chr12:52M-53M 0.00011 876290 6.40 -2.42 0.0131 0.0533 0.2238 0.0262 1144

22344756 rs3213182 Head and Neck Neoplasms chr20 31726893 ITCH 83737 chr20:32M-33M 0.00021 687808 6.95 nan 0.0142 0.0236 0.7858 0.0283 635

21733090 rs7096206 Carcinoma, Hepatocellular chr10 54201690 CHUK 1147 chr10:101M-102M 1.43E-06 47777644 2.00 -1.08 0.6705 0.9153 0.1695 0.5931 956

21733090 rs7096206 Liver Neoplasms chr10 54201690 CHUK 1147 chr10:101M-102M 1.43E-06 47777644 2.00 -4.22 0.6705 0.9153 0.2029 0.6234 956

Table 3. Data used for SNP target gene discovery. HiC means the HiC score and Lit refers to the score resulting from literature. rD, rHiC and rL refer to the ranks of

genomic distance, HiC and literature respectively. rHy is the geometric mean rankhybrid . We report the significant SNPs, confirmed by an independent eQTL study on

GeneVar with p-value 0.05 of Spearman ρ .

PubMedID SNP Disease chr location Gene GeneWindow HiC Lit rHiC rL rHy Total p-value

21948749 rs4796793 Carcinoma, NSC Lung chr17 37795735 ERCC1 chr19:50M-51M 1.52 13.52 0.047955 0.000258 0.000043 23230 0.0152

17602083 rs4796793 Neoplasm Metastasis chr17 37795735 CEACAM7 chr19:46M-47M 1.47 15.74 0.062118 0.000086 0.000043 23230 0.0459

23059779 rs12983047 Carcinoma, NSC Lung chr19 46526338 TP53 chr17:7M-8M 1.37 19.21 0.045003 0.000174 0.000044 22976 0.0173

23059779 rs12983047 Carcinoma, Squamous Cell chr19 46526338 TP53 chr17:7M-8M 1.37 27.91 0.045003 0.000087 0.000044 22976 0.0173

21995493 rs652625 Lung Neoplasms chr1 12147937 TTF1 chr9:134M-135M 1.49 16.41 0.004690 0.000451 0.000045 22175 0.0231

22344756 rs3213182 Carcinoma, Squamous Cell chr20 31726893 PDXP chr22:36M-37M 1.23 19.24 0.036609 0.000292 0.000083 23956 0.0326

17602083 rs4796793 Carcinoma, Renal Cell chr17 37795735 XRCC1 chr19:48M-49M 1.53 73.29 0.046965 0.000043 0.000086 23230 0.0149

21948749 rs4796793 Lung Neoplasms chr17 37795735 CEACAM7 chr19:46M-47M 1.47 18.66 0.062118 0.000172 0.000086 23230 0.0459

21995493 rs652625 Carcinoma, NSC Lung chr1 12147937 ERCC1 chr19:50M-51M 1.05 13.52 0.053890 0.000316 0.000090 22175 0.038

21995493 rs652625 Lung Neoplasms chr1 12147937 CEACAM7 chr19:46M-47M 1.10 18.66 0.041082 0.000180 0.000090 22175 0.0359

21948749 rs4796793 Lung Neoplasms chr17 37795735 CEACAM5 chr19:46M-47M 1.47 18.66 0.061601 0.000258 0.000129 23230 0.0008
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Figure 1. For each eQTL SNP, the rank of the target gene based on each of the three sources: genomic

distance (rankgen dist ), HiC (rankspatial) and literature (ranklit ), are plotted against the rank of that target

gene based on rankhybrid . Points in the upper left corner (the green region) occur when the hybrid rank is

superior. The hybrid rank is better 12/17, 10/17, 15/17 times as compared to the respective sources. The

top row of plots shows the whole range of ranks [0,1], whereas the bottom row of plots shows the same

data zoomed in to the range [0,0.1].

method has outperformed genomic distance-based ranking. This is the case for twelve eQTL SNPs, while

rankgen dist outperforms rankhybrid in five cases. Hence the hybrid method has an advantage in 70% of the

test cases. Figure 2 further demonstrates that the three sources we have considered are complementary. A

pair of correlated sources would result in a scatter plot along the diagonal of the figure.

Since the evaluation set is small, it is difficult to ascertain the statistical advantage of rankhybrid . Work

is currently underway to obtain a larger eQTL database for validation, but the current results already show

the promise of our proposed approach.

We have not included the SNP-gene co-mention strategy (Section 2.3.6) directly in the ranking

comparison, as we found it to be too sparse and noisy to be of direct use in ranking. We identified

133 co-mentions of SNPs and genes for the eQTL SNPs, from which 9 match an entry in the eQTL

experiments. Since there are 35 unique {SNP, gene} pairs in the eQTL benchmark, we can say that the

recall of these is over 25%, even though the precision would be rather low (7%). If we consider only

co-mentions with frequency > 1, there are 3 that match an entry in the eQTL experiments out of 25

co-mentions in total (recall=8%, precision=12%). An informal analysis of the results suggests that many

genes and SNPs are mentioned together in an abstract that are not biologically or linguistically connected.

The precision could be substantially improved by detecting true SNP-gene relationships expressed in the

abstracts rather than simple co-mentions; the strategy used to learn and detect protein-residue relationships

could perhaps be applied here (Ravikumar et al., 2012).

We note that identified SNP-gene co-mentions that do not match an eQTL experiment may in fact

be correct; some co-mentions which are false positives from the perspective of the eQTL data may be

valid relationships. For this reason, it is difficult to have confidence in any precision analysis and we have

preferred the ranking evaluation presented above.
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Figure 2. For each eQTL SNP, the three sources of information: genomic distance (rankgen dist ), HiC

(rankspatial) and literature (ranklit ), is plotted against each other. The top row of plots shows the whole

range of ranks [0,1], whereas the bottom row of plots shows the same data zoomed in to the range [0,0.1].

3.2 Using the hybrid approach for novel SNP target gene discovery

We performed candidate target gene ranking for all of the 67 SNP-disease pairs in our analysis yielding

a total of 1,648,736 predicted candidates. We then used our hybrid ranking strategy to prioritise target

genes for further exploration. Given that our approach is not limited to selection of target candidate

genes on the same chromosome, we filtered our results to look exclusively for candidates on a different

chromosome to the SNP, to highlight the power of our method. The top ranked associations can be found

in Table 3. We considered SNP/target gene pairs for the top 10 ranked results showing a HiC log ratio

greater than 1, combining the ranking from all diseases into one list. The most promising candidate is

shown at the bottom of Table 3, linking a risk SNP associated with non-small cell lung cancer (NSCLC)

on chromosome 17 with a target gene on chromosome 19, CEACAM5. CEACAM5 has been shown

to be over-expressed in lung cancer and was the 6th ranked gene linked to Lung Neoplasms using our

literature ranking approach. These two regions from chromosome 19 and chromosome 17 show evidence

of interacting from HiC data with a log ratio = 1.47. To determine if this SNP and gene have a regulatory

relationship, we searched for supporting evidence from a range of sources.

Firstly, we queried a large-scale eQTL study of HapMap3 (Stranger et al., 2012) data via the GeneVar

database6. In the original study, STAT3 was the reported target gene of SNP rs4796793 (2kb upstream

of the SNP) (Jiang et al., 2011). The study showed decreased risk of NSCLC for the minor allele

(G). However, when we queried the HapMap eQTL data we found no significant association between

STAT3 and rs4796793 across HapMap populations after multiple testing correction. Interestingly, when

we examined CEACAM5, we found a significant association with the SNP (p = 8.0e− 04) for the

Luhya in Webuye (LWK) population in Kenya. The C allele in this case showed increased CEACAM5

expression whereas the G allele showed decreased expression (Figure 3). This suggests that the C allele,

showing increased risk for NSCLC may have a role in increasing expression of CEACAM5, which is in

concordance with the observed increase in expresion in lung cancers (Blumenthal et al., 2007). As the

HiC data reports these regions interacting in three dimensional space for the major allele, we hypothesise

6http://www.sanger.ac.uk/resources/software/genevar
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Figure 3. This figure shows an eQTL evaluation of SNP rs4796793 against CEACAM5 for the LWK

population using GeneVar.

Figure 4. This figure shows SNP rs4796793 mapped to the UCSC genome browser along with tracks

showing ENCODE information for histone modifications, DNaseI Hypersensitivity and transcription

factor binding.

that the minor allele must disrupt this 3D conformation causing decreased expression of CEACAM5 and

hence decreased risk. We examined the genomic region containing the SNP and observed and enrichment

of histone marks supporting the presence of a regulatory element and in addition observed evidence for

an experimentally determined binding site for the transcription factor NFKB (Figure 4). If NFKB were

to bind differentially to either allele, this may explain the change in expression observed in CEACAM5

due to change in the 3D conformation of the DNA. To test if differential binding was likely, we used a

computational method that predicts if the allele significantly alters binding affinity of the transcription

factor (Macintyre et al., 2010). From this the G allele is predicted to have a binding affinity significantly

(p < 5.4e− 06) stronger than the C allele. This provides a putative functional mechanism for linking

a disease-associated SNP with a target gene on a different chromosome. Further experimental work is

required to verify this observation.

4 DISCUSSION

4.1 Integrating multiple sources of information

One major challenge when integrating diverse sources of information is the various intuitive ways of

measuring association. In this work we consider 3D spatial association as a contact probability, 2D

spatial association as genomic distance, and literature association as negative log p-values. These

diverse measures of association can only be numerically combined with appropriate normalisation and

transformation, which may be complex and difficult to properly estimate. For example, genomic distance

and contact probabilities act in opposite directions, i.e., small distances are “good” but big probabilities

are “good”. Furthermore, they have different scales as genomic distances could be large integers whereas

contact probabilities are in the interval [0,1]. Using a ranking approach allows different association

measures to be converted into the same direction and scale.

The spatial and literature scores complement each other as can be seen in the validation experiment.

HiC experiments result in contact map probabilities and hence do not take disease information into account.

Literature methods can take disease association into account, but do not include spatial information. For

example, the SNP rs344781 has no literature evidence, hence resulting an extremely poor rank for

literature. However there is strong HiC evidence for the association (top rank) which results in a good

hybrid rank. When there is little HiC evidence (such as in rs7096206) weak evidence from literature can

pull up the hybrid rank.

The importance of the literature score is further confirmed by Table 2, which shows its value in the

discovery setting. Genomic distance cannot be used across chromosomes, and literature evidence provides
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useful directions, as we have confirmed using GeneVar.

The general approach of integrating various sources of information using the geometric mean is

not limited to two sources of information. As different facets of the putative SNP-gene association or

SNP-disease association can be estimated, these can all be combined using the geometric mean to obtain

a single candidate list of associations for further study.

4.2 Suitability of the eQTL reference set for evaluation

We opted to test the performance of our SNP target gene ranking method using eQTL information as a

gold standard. While we considered this the best independent information currently available associating

SNPs and genes on a genomic scale, there are some pitfalls that need to be made clear. Firstly, many of

the eQTL studies have an inherent bias towards associations that are proximal to the SNP. Due to multiple

testing correction burden, it is not possible to test all SNPs against all genes for association, therefore

only genes nearby the SNP are tested. In this case, we may be artificially penalising our method against

selecting interactions at a large distance. That is, not matching a prediction in the eQTL experiments does

not imply that the SNP-gene association predicted is necessarily incorrect, favouring the use of a ranking

evaluation instead of precision/recall measures. In addition to this, significant eQTL assocations can arise

from a SNP directly affecting a gene, or indirectly affecting the gene via an upstream target. Therefore,

these data may also contain false positives with respect to predicting direct targets. Nevertheless, until

large scale functional chromatin interaction experimental data is available, we believe eQTL data provides

an adequate source of benchmarking data for methods such as those presented in this paper.

4.3 Limitations of the literature-based methods

4.3.1 Recognition of intergenic SNPs

To focus specifically on intergenic SNPs, it is necessary to categorise SNPs as intergenic or not. The

Human Genome Variation Society (HGVS) nomenclature (Den Dunnen et al., 2000) provides specific

notation for non-coding RNA reference sequences (with the prefix “n.”), as well as for referencing specific

nucleotides in any genomic reference sequence (with the prefix “g.”), where the locations may or may not

be coding DNA. This nomenclature in principle provides a technique for straightforward identification of

intergenic regions, by looking for genomic variants and cross-referencing their positions with the gene

starts/stops in the reference sequences. However, our prior experience with text mining of genetic variants

(Jimeno Yepes and Verspoor, 2014b) suggests that these descriptors are extremely rarely used in practice.

The vast majority of references to genetic variants in the literature refer to coding DNA or protein variants.

Our approach to SNP identification, therefore, is limited to recognising known intergenic SNPs (Section

2.3.2). Other methods could be explored to extend the set of SNPs extracted from text (Krallinger et al.,

2009; Thomas et al., 2011).

4.3.2 Reliance on named entity recognition for literature identification

As indicated above, there is prior work on using the biomedical literature to support SNP interpretation

(Raychaudhuri et al., 2009; Johansson et al., 2012). Both of these methods rely on links from the NCBI

Gene database to identify relevant literature; in contrast we do not rely on the existence of such curated

links and perform indexing of direct gene mentions throughout the available abstracts. We are not aware

of a study that has specifically considered the completeness of the links to the literature available from the

NCBI from the Gene or GeneRIF (Gene Reference Into Function) resources, but given that they must

be manually updated or submitted by a member of the community, it is likely that the citations linked

there represent only a fraction of the literature relevant to a given gene. A brief investigation of these

resources for a single well-studied gene, Human BRCA1, indicates that there are 1,956 PubMed citations

associated to its NCBI Gene record. In contrast, our annotation of the abstract text identifies well over

7,000 abstracts that reference that gene. In contrast, for less well-studied genes, we found that there could

be links to the literature in the NCBI Gene record that we did not identify from abstract mentions, likely

due to mentions of the gene in the full text of the article rather than the abstract, or due to missing name

variants/synonyms in our gene name dictionary.

4.3.3 Alternative methods for establishing gene-disease associations from the literature

Various strategies for establishing gene-disease associations have been explored previously; while we

have tested one approach, it could be straightforwardly substituted with an alternative knowledge-

based method for establishing gene-disease associations. There are literature-based methods that have
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addressed association of genes to disease based on co-occurrences for a set of articles defined by a

user query (Rebholz-Schuhmann et al., 2007; Tsuruoka et al., 2008) or that rely on matching of MeSH

profiles (Cheung et al., 2012; Xiang et al., 2013). Other methods use indirect relations from co-occurrence

analysis (Frijters et al., 2010) or based on interaction networks (Gonzalez et al., 2006; Özgür et al., 2008).

Some combine different sources of information including the literature, such as Endeavour (Aerts et al.,

2006), DisGeNET (Bauer-Mehren et al., 2010), G2D (Perez-Iratxeta et al., 2005), MimMiner (van Driel

et al., 2006), PolySearch (Cheng et al., 2008) or the approach proposed by Tiffin et al. (2005). Many of

these methods could be effectively integrated into our approach.

An alternative to utilising MeSH annotations to establish the association to diseases in the literature

would be to do direct annotation of disease mentions in the text, as we have done for gene names. This is

the strategy employed by (Johansson et al., 2012) and some of the other approaches introduced above.

However, any automated name recognition strategy will suffer from some rate of noise. For the purposes

of experimenting with the literature-based concept, we felt that it was sufficient to utilise the MeSH

annotations provided in MEDLINE. Furthermore, we verified that the key terms available from the

citation meta-data matched the disease linked with the SNPs in our data. Text-level annotation of disease

names would be appropriate for a method that requires explicit mentions of diseases, e.g., sentence level

co-occurrence or information extraction methods.

4.3.4 Potential bias stemming from the literature

As discussed by (Raychaudhuri et al., 2009), any literature-based method is dependent on the completeness

of the literature and indeed the literature ultimately reflects only those experiments that have been

performed. Particularly for the SNP-gene co-mention literature method that we propose, sparseness

of mentions in the literature is a problem. This is compounded by the fact that many mentions of

genetic variants appear only in the supplementary materials of publications (Jimeno Yepes and Verspoor,

2014a) and are therefore difficult to extract using standard text mining strategies. For these reasons, the

co-mention strategy is not employed in our evaluation.

As an additional comment, due to the reliance in prior work on genomic distance or eQTLs to establish

SNP-gene associations, we would expect that the literature would show bias favoring such associations.

This is an additional reason to prefer the use of gene-disease associations in this context rather than direct

mentions of SNP-gene associations. Utilising these indicative associations provides indirect evidence; as

we have seen this evidence appears to provide a broader context for establishing associations in a disease

context.

5 CONCLUSIONS

The functional interpretation of intergenic genetic variants poses a challenge to current methods for

studying the genetic basis of disease, despite their prevalence in the genomes of individuals. Of particular

difficulty are intergenic SNPs that do not appear to have a relationship with the closest gene but instead

impact more distant genes, either on the same or even a different chromosome. Such variants cannot

be adequately handled by the standard approach of a genomic distance-based ranking. In this work we

have editsexplored several edits strategies for ranking genes as associated to a given SNP; one based

on published spatial relationships, another based on general gene-disease relationships mined from the

published literature, and proposed a novel third method, editsin which the two are combined. The focus

of our method on ranking genes with respect to genetic variants in intergenic regions is novel with respect

to prior work.

We found in a validation study that this hybrid method outperformed a genomic distance baseline in

70% of our test cases, identifying a stronger association between a given SNP and the gene identified in

an eQTL study as related to that SNP. This was observed despite an overall bias towards nearby genes in

the reference data set. We also considered a direct literature co-occurrence strategy for relating a SNP to a

gene, finding that its sparsity made it inappropriate for ranking but that with some refinement it may prove

helpful for hypothesis validation. A more exploratory analysis specifically of putative interchromosomal

relationships indicates that the hybrid method has substantial promise to support hypothesis generation,

identifying potential relationships of SNPs to genes that should be prioritised for experimental validation.

Our validation study is small, due to limited availability of appropriate test data, and our discovery

experiment is merely suggestive. There remain many questions about the potential relationship of the

genes that our ranking methods identify as strongly associated to the SNPs we have studied, for which no
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eQTL data is available. These may very well be important new SNP-gene relationships worthy of targeted

study.

We have observed the potential of our proposed methods specifically in assisting the interpretation

of SNPs interacting with genes on different chromosomes. These are cases that are particularly difficult

for any methods that assume proximity of SNPs to the genes they impact to characterise. In future

work, editsin addition to refining the methods with respect to substantially more data and furthering our

understanding of their performance, and exploring alternative methods for the constituent parts of the

hybrid method in more depth, we plan to build on this observation to develop an architecture that enables

characterisation of the full spectrum of intergenic SNPs, by determining criteria that will allow automatic

selection of the appropriate ranking method in particular circumstances. That is, rather than insisting that

there is a one-method-fits-all-variants ranking solution, we aim to handle more cases more effectively by

acknowledging and modelling the full complexity of the problem space.
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Figure 1

Ranks of individual data sources vs. hybrid rank

For each eQTL SNP, the rank of the target gene based on each of the three sources: 

genomic distance (rank
gen_dist

), HiC (rank
spatial

) and literature (rank
lit
), are plotted against the 

rank of that target gene based on rank
hybrid

. Points in the upper left corner (the green region) 

occur when the hybrid rank is superior. The hybrid rank is better 12/17, 10/17, 15/17 times as 

compared to the respective sources. The top row of plots shows the whole range of ranks 

[0,1], whereas the bottom row of plots shows the same data zoomed in to the range [0,0.1].
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Figure 2

Pairwise rank comparison of each of the three source rankings.

For each eQTL SNP, each of the three sources of information: genomic distance 

(rank
gen_dist

), HiC (rank
spatial

) and literature (rank
lit
), is plotted against each other. The top 

row of plots shows the whole range of ranks [0,1], whereas the bottom row of plots shows the 

same data zoomed in to the range [0,0.1].
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Figure 3

eQTL of SNP rs4796793 against CEACAM5

This �gure shows an eQTL evaluation of SNP rs4796793 against CEACAM5 for the LWK 

population using GeneVar.
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Figure 4

SNP rs4796793 in the UCSC genome browser

This �gure shows SNP rs4796793 mapped to the UCSC genome browser along with tracks 

showing ENCODE information for histone modi�cations, DNaseI Hypersensitivity and 

transcription factor binding.
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